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Abstract

The high-resolution magnetic resonance image (MRI)
provides detailed anatomical information critical for
clinical application diagnosis. However, high-resolution
MRI typically comes at the cost of long scan time,
small spatial coverage, and low signal-to-noise ratio.
The benefits of the convolutional neural network (CNN)
can be applied to solve the super-resolution task to re-
cover high-resolution generic images from low-resolution
inputs. Additionally, recent studies have shown the po-
tential to use the generative advertising network (GAN)
to generate high-quality super-resolution MRIs using
learned image priors. Moreover, existing approaches
require paired MRI images as training data, which is
difficult to obtain with existing datasets when the align-
ment between high and low-resolution images has to be
implemented manually.

This paper implements two different GAN-based mod-
els to handle the super-resolution: Enhanced super-
resolution GAN (ESRGAN) and CycleGAN. Different
from the generic model, the architecture of CycleGAN is
modified to solve the super-resolution on unpaired MRI
data, and the ESRGAN is implemented as a reference
to compare GAN-based methods performance. The
results of GAN-based models provide generated high-
resolution images with rich textures compared to the
ground-truth. Moreover, results from experiments are
performed on both 3T and 7T MRI images in recovering
different scales of resolution.

1 Introduction

In recent years, there has been a huge increase of com-
puter vision research leading to an important propor-
tion of information related to this field. Image super-
resolution (SR) is an exploitable image processing field
that refers to recovering high-resolution (HR) images
with rich details from given low-resolution (LR) images.

At the present time, several deep learning-based meth-
ods have been proposed to improve the quality of images.
Convolutional neural networks (CNN) can model vari-
ous complex structures and utilize large quantities of
training data. After completing the training phase, no
additional process is required to produce output im-
ages; thus, it does not cost time for the sub-sequence
process. Recently, many CNN-based methods have out-

performed in the field of SR. Dong et at.[1] proposed
the SRCNN, which learns an end-to-end mapping from
LR image to HR images. Since the work of Dong et al.
[1], different CNN based super-resolution approaches
have been implemented.

By improving the network architectures and training
process, CNN-based SR has achieved significant success
on both objective (peak signal-to-noise ratio - PSNR)
[2, 3, 4] and subjective (human visual quality assess-
ment tests) [3, 5] criteria. A deep neural network with
large capacity can improve the performance in general
[6]. However, it also increases the computation cost of
the training phase. With different techniques such as
skip connection [7], embedding [8] or normalization [9],
reducing computation time for a effective training now
is possible. Following the study of Kim et al. [4], a deep
network using advanced techniques to increase network
depth could ease the difficulty of training networks, and
the structure of the neural network is the key to obtain
the high quality of SR outputs.

Tong et al. [10] have proposed the densely connected
network (SRDenseNet) to solve SR tasks, using several
hierarchical features in different layers into the final
construction layer. Sub-sequence layers can effectively
utilize extracted feature information from convolutional
layers. It is a new measure to preserve the features of
different levels extracted from different convolutional
layers in the network. It retains the ground truth image
features to a greater extent, so the dense connection
can effectively improve image reconstruction quality.
SRDenseNet has significantly improved performance
over the model using multi-level features, indicating
that level fusion is indeed beneficial for SR problems.
Besides, since ResNet has been published by He et al.
[7], it has proved its efficiency in reducing training com-
putation time and benefit in SR fields [11]. Since their
introduction in [12], generative adversarial networks
(GAN) have become a trend to solve many different
computer vision problems. The generic GAN model
includes a generator and a discriminator. While the
generator is trained to learn a mapping from source
images in a domain to target images in another domain,
the discriminator distinguishes and targets generated
images with binary labels. Once well trained, GAN can
perform on high-dimensional target images.

Following the progress of neural networks applied in
natural images, medical image analysis is one of several
applications that is benefited from the improvement of



SR approaches. Further research has been proposed to
improve medical image quality, such as computed to-
mography (CT) or Magnetic Resonance Imaging (MRI).

MRI is widely used in medical imaging because of
its non-invasive assessment of the body’s anatomy and
physiology in both health and disease while providing
the best contrast resolution on soft tissues. However,
MRI images are normally acquired with a finite resolu-
tion limited by the signal-to-noise ratio (SNR), hard-
ware, or time limitation. In the clinical and research
centers, usually high-resolution and high-contrast MRI
is preferred because it provides critical structural details
with a smaller voxel size. Therefore, the request for
image quality with sufficient details is fast increasing
in medical imaging. In recent years, the ultra-high-
field MR 7T scanners were introduced, which allow
high-resolution MRI scanning with many advantages
compared to routine MRI, such as 3T MRI or 1.5T.
The 7T MRI scanner can provide higher resolution im-
ages while maintaining a similar signal-to-noise ratio
(SNR), which has a linear relation to the magnetic field
in general for MRI scanning.

Recently, many studies have been proposed for medi-
cal image analysis, especially super-resolution. the va-
riety of methods stretches from statistical method such
as interpolation [13, 14], dictionary mapping [15, 16],
self-learning [17] to automatically techniques such as
CNN based-method [18, 19] or hybrid methods [20].
However, most existing approaches are implemented
on private datasets because algorithms require paired
datasets for training. Such datasets usually come from
collaborating hospitals. However, these are not large
enough due to the tedious and time-consuming task of
paired data retrieval. As an example, to obtain paired
3T and 7T MRI, patients must take the test on the
same day, and later, images have to be aligned manu-
ally. Besides, there is also the difficult to publish due
to security issues.

For super-resolution task, a paired dataset contains
both low and high-resolution MRI, which is not easy
to obtain. There is no available scanner to produce HR
MRI, which generally have HD or 2K resolution. All
the pre-process of super-resolution has to be prepared
manually with a very complicated process of alignment.
At this moment, there is no public dataset with paired
MRI.

This paper implements two different types of GAN-
based models to solve SR on MRI images: the En-
hanced Super-Resolution GAN (ESRGAN) and Cycle-
GAN. The advantage of the approach is that image pair-
ing is not required for the training dataset. Therefore
they can be executed on several publicly available MRI
datasets, thus overcoming the limitations explained
earlier.

CycleGAN is known as a very popular method
for image-to-image translation. However, the super-
resolution problem requires some special characteristics
due to the difference between input and output. With
some modifications to network architecture, we make
CycleGAN fit with the SR problem. The generator is
modified with several different building blocks from the

generic CycleGAN to automatically solve up-sample
and down-sample images by applying skip connection
techniques. In term of ESRGAN [21], it is an improved
version of SRGAN [3]. With these special modifications
of network architecture, ESRGAN has shown excellent
performance in SR fields. To our knowledge there is
no ESRGAN implementation for medical images at the
present time, therefore we decide to explore ESRGAN
performance in MRI super-resolution. It also can be
used as a reference to compare with CycleGAN perfor-
mance later.

In the next section, we introduce background knowl-
edge and concepts of image super-resolution with dif-
ferent CNN-based methods and techniques. Then we
discuss the details of network architectures used in our
experiments.

2 Related work

2.1 Image super-resolution

Before deep learning-based approaches achieved state-
of-the-art performance, SR techniques mostly relied
on statistical analysis, interpolation, edge-preservation,
and sparse dictionary learning[22]. Since the study of
Dong et al. [1], CNNs have been increasingly popular
to solve the SR problem. The SRCNN can handle
feature extraction, feature space building and image
reconstruction together in an end-to-end training. Later,
many follow-up approaches with the improvement of
network structures have been inspired by the SRCNN
[4, 10, 23].

2.2 Residual, dense blocks and skip
connection

The performance of deep learning methods is fast im-
proving. In contrast, these models are significantly
increasing model size, wherein the depth of modes be-
comes a practical problem. Moreover, when the net-
work is too deep, gradient disappearance and gradient
explosion issues are declared [24]. Although these gra-
dient issues can be solved by data regulation and batch
normalization, it can lead to model performance degra-
dation. To address this problem, ResNet proposed by
He et al. [7] introduced residual learning, where the
output of the previous convolutional layer connected
to the next for smoother information flows through a
short cut. The detail of residual blocks is shown in
Figure 1. The shortcut connection neither increases the
number of network parameters nor the computational
complexity of algorithms.

DenseNet [25] proposed a connectivity pattern to im-
prove the flow of feature information by concatenating
information of previous layers. The network is more
efficient and outperforms ResNet with fewer parameters.
In addition, recent studies in image super-resolution
show that removing BN layers in residual blocks [21]
and dense blocks [2] can reduce computational cost,
memory usage, and boost model performance. The



flow of the gradient is unobstructed due to the direct
link between layers. SRDenseNet[10] is a version of
DenseNet to solve the SR problems.

Additionally, Zhang et al. [26] introduced Residual
Dense Network (RDN), a combination of DenseNet
and ResNet to solve the image super-resolution task
by using residual dense blocks (RDB), which contain
several dense connected layers, a local feature fusion,
and the residual learning as the final layer. Figure 1
illustrates the design of all blocks in different super-
resolution models with the removing of BN layers .

2.3 Generative adversarial network
and GAN-based Super-resolution

Since Goodfellow et al. citegoodfellow2014generative
have proposed the generative adversarial networks
(GAN) model, many follow-up studies of GAN and
its variations have been applied in several computer
vision tasks. In general, GAN has proved its efficiency
to achieve state-of-the-art performance in the image
synthesis field. Recently, GAN has also been applied
in the super-resolution field. SRGAN [3] and ESRGAN
[21] have been successfully applied to solve SR problems
for color images. Besides, CycleGAN [27] proposed by
Zhu et al. is an image-to-image translation model for
learning to translate an image from a source domain to
a target domain in the absence of paired examples. In
general, CycleGAN has been applied in image synthesis
and image translation domain. By applying the benefits
of skip connection techniques and CNN based methods,
we can also apply CycleGAN to solve SR problems. The
advantage of both methods is that they do not require
paired image datasets, which is challenging to achieve
HR MRI image due to the limit of devices and manual
process.

Most previous super-resolution methods aim to op-
timize HR image reconstruction by minimizing the
voxel-wise difference between original and generated
images. However, a drawback that merely cares about
local pixel-wise differences leads to extreme difficulty in
restoring important small details. In contrast, if global
perceptual constraints can be taken into account, the
SR model is guided by both local intensity informa-
tion and patch-wise perceptual information, probably
leading to a better and sharper SR reconstruction [3].

With benefits from the GAN framework of Goodfel-
low et al. [12] for its unsupervised-learning potential of
capturing perceptually important image features, Ledig
et al. [3] proposed the SRGAN to handle the super-
resolution issue. The principle of GAN relies on two
components: a generator and a discriminator. While
the generator generates fake images as real as possi-
ble, the discriminator distinguishes and evaluates to
improve generated image accuracy. In the end, the
discriminator can separate real and generated image,
while the generator can produce realistic-looking im-
ages. Next, the perceptual loss is defined in the GAN
model [12] and extended in SRGAN. SRGAN defines
the perceptual loss on the activation layers of a pre-
trained deep network, where the distance between two

activated features is minimized.
Several techniques have been implemented to provide

different architectures of building units to transform LR
into HR image and reduce computation cost during the
training phase. Residual blocks (RB) from ResNet of He
et al. [7] and Dense block (DB) from DenseNet of Huang
et al. [25] are the most popular architecture use in SR
tasks. Based on different models, these building blocks
can be combined or modified. In SRGAN, residual
blocks have been used for the generator.

3 ESRGAN

Improved from SRGAN, ESRGAN proposed by Wang
et al. [21] aims to increase the quality of HR images.
While SRGAN uses residual blocks as basic blocks, ES-
RGAN uses Residual-in-Residual Dense blocks (RRDB)
without Batch Normalization (BN) layers as building
units. As shown in Figure 1, RRDB is a combination of
multi-level residual blocks and dense block connection.

Recent studies have shown that removing BN lay-
ers can reduce computational cost, memory usage, and
boost model performance [2]. Although BN layers use
mean and variance computations to normalize the fea-
tures during training and later during testing, BN layers
tend to produce unpleasant artifacts and limit gener-
alization ability when the difference between training
and testing set is significant[21].

The addition of layer and connections can improve
model performance [26, 28], RRDB exploits deeper and
more complex connections than the residual blocks of
SRGAN. Meanwhile, the general high-architecture of
the ESRGAN model is kept as SRGAN. The details of
the generators with the additions of RRDB are shown
in Figure 2.

The discriminator of ESRGAN is also improved from
SRGAN, based on the relativistic GAN [29]. Instead
of estimating the probability of an input being real
or natural, the relativistic discriminator calculates the
probability of a real image to be relatively more realistic
than a fake image [21].

In terms of perceptual loss, ESRGAN uses features
before the activation layers, which helps overcoming
the drawbacks of the original design. The perceptual
loss in SRGAN can cause inconsistent reconstructed
brightness compared with the ground-truth image or the
sparsely activate of features when deep network is very
deep [21]. The architecture of ESRGAN is implemented
from the original as a reference to compare performance
of GAN-based model.

4 CycleGAN

The core problem of the SR task in the real world is the
lack of paired datasets. Zhu et al. [27] introduced Cycle-
GAN - an image-to-image translation framework using
unpaired data. Later, it has inspired many following
studies in different computer vision tasks, and potential
for SR. CycleGAN aims to translate input images from
a class into another class without the requirement of



Figure 1: Architecture of building blocks in network. (i) Residual blocks in SRGAN[3] (ii) Residual blocks
without BN in [2] (iii) Dense blocks in SRDenseNet[10] (iv) Residual Dense Blocks from (ii) and (iii) in [26], (v)
Residual-in-residual dense blocks in ESRGAN[21]

Figure 2: Network architecture of ESRGAN generator
[21].

paired images during training. However, different from
traditional image translation, which assumes input and
output images have the same size, SR requires output
images larger than the inputs, making it very difficult
to apply CycleGAN directly.

A recent study of Zhang et al. [26] has introduced
the Residual Dense Network (RDN), which provides an
exemplary architecture of basic blocks. Based on resid-
ual blocks and dense blocks, RDN proposed a Residual
Dense Blocks (RDB) to handle super-resolution tasks.
Like the RRDB, RDB also removes BN layers to reduce
computational time, memory usage, and to speed up
the training process. With the addition of the basic
block, the network also introduces contiguous memory
[26], which allows direct access of information between
each block layer. The model also improves the preserva-
tion of information inside the network using local and
global feature learning which also combine the low and
high-level features.

Using the RDN, we focus on the generator architec-
ture of CycleGAN to adapt to super-resolution prob-
lems. In the super-resolution CycleGAN, the generator
contains several RDB for feature extractions with local
and global residual learning to keep information con-
vection. Next, local and global features are stacked for
up-sampling or down-sampling to produce output. The
details of the generators with the additions of RDB is
shown on Figure 3.

A generic CycleGAN model can perform translations
between two classes in both directions. Therefore we
build two different generators to up-sample from LR to

Figure 3: Network architecture of CycleGAN generator.
The generator contains several RDBs with local residual
learning structure to improve information flow. At the
higher architecture, the global residual learning struc-
ture use multi-level features to synthesize information
in LR before up-sampling.

HR and down-sample from HR to LR simultaneously.
The architecture of the discriminator is kept to evaluate
the performance of generators.

The cycle architecture or CycleGAN is kept identi-
cal to the original model [27]. The generator should
eventually be able to trick the discriminator about the
authenticity of its generated images. This can be done if
the recommendation factor of the discriminator for gen-
erated images is as close to 1 as possible. The content
of cycle consistency and adversarial loss - the outstand-
ing properties of CycleGAN - is kept. The adversarial
loss of CycleGAN is calculated based on the MSE loss
between the real and fake images of two classes. To
handle the generating of non-related output from input,
the cycle loss consistency is applied. In detail, when an
image is generated, the second generator will convert it
back to the original class. Then, the cycle consistency
is calculated by the average of L1 loss between the real
input and the cyclic output. The difference between
the original image and the cyclic image should be as
small as possible.

The discriminator must be trained such that recom-
mendation factor for images from the first category be
as close to 1 as possible, and vice versa for the second
discriminator. So the first discriminator would like to
minimize the loss between the generated and the real
ones, and the same goes for the second category as
well. Since discrimination should be able to distinguish
between generated and original images, it should also



be predicting 0 for images produced by the generator.

5 Experiment and Results

Dataset

At this moment, there is no benchmark MRI dataset for
the super-resolution task. Current MRI scanners are
not available to produce high-resolution MRI, which
generally have HD or 2K resolution. Obtaining high-
resolution MRIs requires them to be processed manually
through a complex alignment system.

As mentioned in the previous section, we aim to im-
plement methods that does not require paired images as
training data. In this project, we used the BraTS2018
[30] dataset - a public dataset containing 3T MRI im-
ages with different types of sequences. BraTS is a very
popular dataset used in the segmentation and classifi-
cation domain. The variety of the dataset is confirmed
when samples were acquired with different clinical pro-
tocols and various scanners from multiple institutions.
The field of view is 155 × 240 × 240, wherein the slice
thickness is 1mm. The size of the original image is kept
at a 1:1 ratio when the output is 240 × 240 pixels.

Within the project scope, we also want to explore
the performance of methods on different types of MRI.
7T MRI has proved its function in medical image anal-
ysis. However, there is no 7T dataset available at this
moment. With the support of the 7T system from
Siemens Healthineers at Poitiers University Hospital,
we can build a dataset containing several brain 3T and
7T MRI samples with high-quality. We aim to use that
dataset to explore super-resolution performance. Differ-
ent from 3T, 7T technology provides MRI images with
higher quality and deeper voxel spacing between slices.
The field of view is 255 × 320 × 320, wherein the slice
thickness is 0.7mm. The original image’s size is also
kept at a 1:1 ratio when the output is 320 × 320 pixels.

Training setting

The training process is implemented on BraTS2018,
which contains only 3T MRI. Later, the testing set
of BraTS and 7T MRI dataset is used on the test-
ing phase to evaluate the performance of the super-
resolution model. Due to the lack of high-resolution
(HD or 2K) MRI, training images in the dataset are
degraded into lower-resolution to simulate LR images
with scale factors. All image resolution changes are
implemented during the pre-processing step without
modifying original data during the training phase.

The training of both ESRGAN and CycleGAN is
executed on patches to ensure the diversity of data.
Besides, we also want to reduce the computational
cost of the model during the training process. The
complexity of GAN-based models is very considerable,
with millions of parameters. This number will increase
along with the increase of model depth or the size of the
input. For each training batch, images are randomly
extracted into 16 patches on LR images corresponding
to a size of 64 × 64 on HR images.

For CycleGAN, we keep the content of adversarial loss
and cycle consistency loss. The generator is modified
to contain residual dense blocks. In CycleGAN, due
to the network architecture, two generators are built
to up-sample and down-sample images. In the down-
sample generator, there are two options to down-sample
images with convolutional layers or pooling layers. The
learning rate is initialized to 0.0005 and decay starts
after every 100 iterations. The ADAM optimizer is used
to update network weights based on training data.

For ESRGAN, we have implemented the model fol-
lowing the original paper to use it as a reference for
the GAN-based method reference. The generator con-
tains several RRDB. Different from CycleGAN, a single
ESRGAN model only can implement the upsample or
down-sample images. The learning rate is initialized
to 0.0002 and decay starts after the fifth epoch. The
ADAM optimizer is also used to update network weights.
The first 100 batches are to ”warm-up” the training
phase, which uses only pixel-wise loss.

Results

Benefiting from these improvements, results of GAN-
based models provide generated high-resolution images
with rich textures that compare to ground-truth data.
Results from our experiments are performed on both 3T
and 7T MRI images to reconstruct different resolution
levels. Figure 4 shows the result of ESRGAN and
CycleGAN on 3T and 7T MRI images with different
types of sequences.

Bicubic ESRGAN CycleGAN
PSNR SSIM PSNR SSIM PSNR SSIM

3T MRI 27.26 0.52 35.85 0.88 36.76 0.92
7T MRI 25.45 0.51 31.85 0.59 36.79 0.91

Table 1: Average value of PSNR (dB) and SSIM for
scale factor ×4 on 3T and 7T MRI data

Table 1 shows average distortion and fidelity values
obtained on the test set by GAN-based methods. We
have also included simple bicubic interpolation to use it
as a reference for quality. Image quality measurement
in terms of PSNR and SSIM shows that CycleGAN
methods can achieve relatively low distortion at the
×4 scale factor, while ESRGAN is still limited. We
consider that the CycleGAN has better and more stable
performance compared to ESRGAN.

As shown on Figure 4 and Table 1, both ESRGAN
and CycleGAN provide super-resolution 3T MRI images
with rich textures. The performance of CycleGAN
outperforms that of ESRGAN especially on 7T MRI
data. CycleGAN SSIM scores exceed 0.9, thus ensuring
a better fidelity of image structures such as contours
or fine details compared to the original images. The
generated images of ESRGAN contains noise, while the
CycleGAN images are relatively stable.



(a) 3T T1 MRI superresolution (b) 7T T1 MRI super-resolution

Figure 4: Super-resolution on MRI images. From top to bottom: full-size and zoom image. From left to right:
original image, ESRGAN image, CycleGAN image

6 Conclusion

Until now, the existing methodologies in the field of
MRI SR required paired low and high-resolution MRI
images for training, which are difficult to obtain. Due
to the advantage of the GAN-based methods, we can
use the BraTS 2018 dataset as unpaired training data.
We also test the performance of models on 7T MRI
data.

The CycleGAN model is a prevalent method known
for image synthesis. With the advantage of self-learning
between two different classes, it can be used for super-
resolution tasks. By the modification of network archi-
tecture, we use CycleGAN to match the problem of SR.
To have a reference to compare with CycleGAN, we
also implemented ESRGAN - a popular method in the
super-resolution task which has no implementation for
medical images as far as we know.

Experimental results show that the performance of
CycleGAN on BraTS 2018 and on our 7T dataset is
better and more stable than that of the ESRGAN model.
In further works, we intend to validate our results with
subjective tests made performed on a population of
radiologists trained for 7T analysis.
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