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ABSTRACT Modern embedded computing platforms used within Cyber-Physical Systems (CPS) are
nowadays leveraging more and more often on heterogeneous computing substrates, such as newest Field
Programmable Gate Array (FPGA) devices. Compared to general purpose platforms, which have a fixed
datapath, FPGAs provide designers the possibility of customizing part of the computing infrastructure,
to better shape the execution on the application needs/features, and offer high efficiency in terms of timing
and power performance, while naturally featuring parallelism. In the context of FPGA-based CPSs, this
article has a two fold mission. On the one hand, it presents an analysis of the Damped Least Square (DLS)
algorithm for a perspective hardware implementation. On the other hand, it describes the implementation
of a robotic arm controller based on the DLS to numerically solve Inverse Kinematics problems over a
heterogeneous FPGA.Assessments involve a Trossen RoboticsWidowX robotic arm controlled by aDigilent
ZedBoard provided with a Xilinx Zynq FPGA that computes the Inverse Kinematic.

INDEX TERMS Cyber physical systems, damped least square, design automation, embedded systems, field
programmable gate arrays, hardware, heterogeneous platforms, reconfigurable architectures, robotic arm
controller, robot kinematics.

I. INTRODUCTION
Cyber-Physical Systems (CPSs) are complex platforms, com-
posed of physical and computing parts deeply inter-wined,
characterized by a strong interaction with environment and
users [1]. This continuous interaction requires high flexibil-
ity and a certain degree of adaptivity, due to the numerous
triggers CPSs are subjected to. The cyber part of a CPS often
leverages on embedded computing platforms, which nowa-
days have become heterogeneous, integrating different types
of computing units, e.g. different cores and coprocessors.
Such kind of platforms is suitable to serve the needs of CPSs,
being capable of acquiring large data-streams from a plethora
of different sensors, and of processing them, when required,
in parallel. Field-Programmable Gate Array (FPGA)-based
platforms can play a crucial role in the described context:
they have turned into heterogeneous architectures offering,
at the same time, the flexibility and efficiency given by the
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integrated core(s), connected to custom hardware accelera-
tors that can be reconfigured at run-time.

In general, the research activity in this context is flourish-
ing [2]–[8]. In the H2020 CERBERO1 European Project [8]
we worked on providing a continuous design environment
for CPSs that, at computational level, relies on many tools
for FPGA-based CPSs, which have been accessed during the
project time-frame on a Planetary Exploration use-case [9].
An adaptive embedded controller for a robotic manipulator
has been implemented over an FPGA. Such a controller was
supposed to work in stringent survival conditions (radiation
and harsh environment), being able to meet the reliability
constraints of a robotic exploration mission, as well as func-
tional constraints such as a good accuracy over the requested
tasks. Performance and accuracy are key requirements in
robotic applications, not only in the space exploration field.
For instance, also surgery [10] and industrial [11] applica-
tion fields require an accurate trajectory control during their

1http://www.cerbero-h2020.eu/
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tasks execution, even in the proximity of singularity points.
At the same time, if online trajectory calculation is enabled,
the time requested to evaluate it may be critical in achieving
responsiveness.

Most of the commonly used methods for solving the faced
problem, namely Forward Kinematic (FK) or Inverse Kine-
matic (IK), split the trajectory in smaller paths, each calcu-
lated singularly, and the higher is the number of smaller paths
used to split the original trajectory, the more accurate will
be the overall robotic arm movement. As a drawback, if the
number of smaller paths grows the amount of calculations
increases in turn. So that, to meet such colliding requirements
different solutions are adopted, ranging from given algorithm
modifications to the usage of different algorithms for differ-
ent places within the workspace. Besides algorithm-oriented
approaches, the explosion of computational complexity could
be addressed by relying on modern computing platforms,
which are suitable to support parallel computation and offer
heterogeneity. Parallelization gives the possibility of execut-
ing different operations of the algorithms concurrently, while
heterogeneity provides differentiation in terms of comput-
ing cores, shaping them according to the functionality they
are dedicated to. Nevertheless, parallel and heterogeneous
platforms have a cost in terms of design effort, since they
are usually hard to program and control in an efficient way.
Moreover, most of robotics algorithms are not easy to be
parallelized, e.g. due to the dependencies between successive
smaller paths calculations, and exploiting heterogeneity by
shaping computing cores or by optimizing the execution on
the different available ones, according to the involved opera-
tions, is not trivial.

This article focuses on the analysis of the Damped
Least Squares (DLS) algorithm for IK solution, looking
to a prospective hardware implementation on FPGA of a
DLS-based hardware controller for a robotic arm. More in
details, the contributions of this article are:
• the open-source sequential and parallel MATLAB
implementations of the DLS [12]. These implementa-
tions have been released as open data of the CERBERO
project together with a trajectory generator [13] for the
workspace described in Section II.

• the analysis of the DLS algorithm, with the spe-
cific intent of understanding which parameters could
influence a perspective hardware implementation. This
analysis is reported in Section V where two differ-
ent implementations, a traditional sequential one and a
parallel one based on segmentation, are discussed and
analyzed. To the best of our knowledge no attempt to
parallelize the DLS has been done prior to this work.

• a preliminary FPGA-based implementation of the
robotic arm controller capable of executing different
DLS profiles (baseline and high-performance). As dis-
cussed in Section VI, an automated High-Level Syn-
thesis (HLS)-based strategy has been used to reduce
the designers effort needed to master the target het-
erogeneous platform. To the best of our knowledge,

despite our implementation is just preliminary and the
assessment is covering just the reconfigurable part of
the FPGA-based arm controller, the present work is the
first one porting DLS for IK problems solving on such
heterogeneous substrate.

This article is organized as follows. In Section II, the con-
text of the target robotic manipulator is presented. State-of-
the-art IK solutions with a focus on the DLS algorithm are
discussed in Section III. In Section IV, state-of-the-art works
on hardware implementations of the algorithms solving the
IK problem are proposed. In Section V, a detailed analysis
of pros and cons in the usage of the DLS algorithm in the
context of the CERBERO project is presented. Section VI is
dedicated to the design flow and assessment of the proposed
hardware implementation of the DLS algorithm. Section VII
concludes the paper.

II. REFERENCE PROBLEM
This section provides an overview of the physical context of
the proposed work. The target manipulator, the workspace
it operates into, and the tasks considered for the execu-
tion within such workspace are described in the subsections
below.

A. TARGET MANIPULATOR
Any robotic manipulator is composed of different parts,
namely: 1) a base; 2) rigid links; 3) joints (each of them con-
necting two adjacent links); and 4) an end-effector. Figure 1
shows as an angle, θi, can be associated to each rotational
joint.

FIGURE 1. Robotic manipulator example.

Describing the movement of the manipulator in the space
implies to define the trajectory of the end-effector from its ini-
tial given spatial coordinates, or from the origin A(x0, y0, z0),
to the final ones, or to the destination Z (x1, y1, z1). It is
possible to describe such a trajectory by:
• computing the spatial coordinates of the end-effector
from all the joint angles, resolving a FK problem.

• computing the joint angles from a desired end-effector
spatial coordinate, resolving an IK problem.
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To implement an arm controller, the second type of problem
has to be solved to derive the angles of the joints starting from
a given desired position (or set of positions).

The characteristics/features of the manipulator are gen-
erally vendor specific. The target we have considered is a
WidowX Robotic Arm by Trossen Robotics [14], charac-
terized by four main Degrees of Freedom (DoFs) for wrist
and clamp movements. This manipulator is equipped with
six Dynamixel actuators, controllable in terms of angular
position, speed and acceleration, and each of them provides
a full control of the relative joint via a digital communica-
tion using a Universal Asynchronous Receiver-Transmitter
(UART) protocol. The manipulator comes with an integrated
Arduino-based ArbotiX-M controller, which can be used to
control it directly, even though one of the goals of this article
is to prove that it is possible to substitute the built-in controller
with an FPGA based one.

B. WORKSPACE, TASKS AND REQUIREMENTS
The reachable coordinates depend on the chosen robotic arm
and on its fabrication parameters that define the operating
workspace, which has to include the set of points reachable
by the end-effector, meant as both the initial and final spatial
coordinates, as well as the positions along the trajectory. The
workspace for a six-axis robotic arm is a six-dimensional
space that consists of all possible combinations of values for
the six degrees of freedom of the arm, e.g. the complete set
of positions and orientations of the robot.

In this workspace, there might be also singularity points
that are positions where the IK solver fails to find a con-
vergent solution. Main ones are wrist, elbow and shoulder
singularities. Passing close to a singularity results in high
joint velocities, which are normally to be avoided since they
might damage the arm itself. A properly built workspace
could limit, or even prevent, the risks related to singularities.

In this work, we have adopted a singularity-free workspace
defined by the Thales Alenia Space company for the chosen
type of manipulator and made available as an open-data [15]
of the CERBERO project [8]. The workspace is limited to a
safe area of operation specified in cylindrical coordinates (see
Equations 1, 2 and 3). In this region, given the equations and
assumptions specified in [15], the end-effector can describe
any type of trajectory without encountering singularities.
Moreover, moving from A(x0, y0, z0) to Z (x1, y1, z1) it is
needed to guarantee that sgn(x0) = sgn(x1) or sgn(y0) =
sgn(y1), so that not direct displacement is produced from one
quadrant of the XY plane to the opposite one.

1+
2
5
ρ < z < 29−

2
5
ρ (1)

10 < ρ < 35 (2)

ρ2 = x2 + y2 (3)

According to the described workspace, we have derived,
and made available as an open-data [13] of the CERBERO
project, a trajectory generator. The trajectory generator is a
MATLAB script that generates 100 possible trajectories for

the WidowX Robotic Arm. For each of them the initial and
final position of the end-effector are defined as spatial coor-
dinates within the workspace. By default, the initial point is
fixed toA(x0, y0, z0) = {35, 0, 15} that is the idle resting posi-
tion of the arm. Along with the script itself, a trajectories.csv
file is also provided. It contains the set of trajectories that are
used for the algorithm explorations reported in this article
in Section V. They can be classified in three groups, short,
medium, and long, on the basis of their length. Please note
that, given the reference workspace, the minimum length of a
trajectory is around 2 cm and the maximum is around 65 cm.
The identified groups are composed as follow:

1) small - trajectories ID: [1 to 35]; range of length:
[2.11 cm to 22.75 cm]

2) medium - trajectories ID: [36 to 73]; range of length:
[23.05 cm to 39.76 cm]

3) long - trajectories ID: [74 to 100]; range of length:
[41.23 cm to 64.79 cm]

The definition of the workspace has to be accompanied by
other requirements to specify the reference problem. As it
will become evident in Section V, the tasks that the robotic
arm has to execute may indeed affect programmers’ decisions
when choosing/tuning the IK solver. In this article, we con-
sider that the chosen algorithm should be capable of executing
two different tasks, presenting different requirements and
characteristics:
• Task 1: Retrieval of rock samples from planetary surface
of Mars
– Approximate distance of trajectories: 50 cm
– Required positioning accuracy: 10 mm

• Task 2: Manipulation of biocontainment
– Approximate distance of trajectories: 10 cm
– Required positioning accuracy: 5 mm

These tasks are the same that have been used to demonstrate
CERBERO technologies within the Planetary Exploration
use case and have been provided by Thales Alenia Space [15].

III. SOLUTIONS TO THE INVERSE KINEMATIC PROBLEM
Solving an IK problemmeans computing the joint angles of a
body starting from a desired end-effector spatial coordinate.
This is a non-linear problem that requires to solve complex
trigonometric functions. Indeed, an IK problem can have
multiple solutions, only one or even none at all. In particular,
the number of solutions depends on the desired end-effector
coordinates and the number of DoFs. For instance, a point
could result to be non-reachable and thus the problem would
be not solvable. On the contrary, two different sets of angles
may represent a solution when considering the elbow-up
or elbow-down poses of an arm, but possibly only one of
them could be physically possible for a certain considered
arm. Thus, before solving an IK problem, it is necessary
to take in consideration any joint angles limitation and
singularities-related problem, and which are the out-of-reach
end-effector spatial coordinates. In this regard, it is crucial
to properly define the workspace, identifying the out-of-
reach trajectories to be avoided by constructions. Similarly,
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singulatity matters could be avoided by excluding specific
points from the workspace, as done by Thales Alenia Space
in [15].

The IK problem has been deeply addressed in literature,
mainly in the robotic and in the computer graphic fields. The
computer graphic field is the one that offers more flexibil-
ity in studying the solvers for IK problems, and is the one
considered by Aristidou et al. [16] in their classification of
the possible solutions for IK. In particular, they consider four
main categories of solvers, that present different behaviors:

1) Analytic solutions: considering the length of the arm,
the initial position and the physical constraints, the
analytic methods are used for finding all the possible
solutions to the problem. They guarantee fast computa-
tion and the best solution. They generally do not suffer
from the singularity problem and are highly reliable.
However, they are suitable only for mechanisms with
low DoFs. The problem is not easily scalable, the big-
ger is the chain of links and the more are the DoFs,
the more difficult is the solution of the IK problem
adopting an analytic solver.

2) Numerical solutions: based on a cost function to
be minimized, this family includes the methods that
require various iterations to converge over a solu-
tion. In general, solutions belonging to this family
are better capable of mastering more DoFs and mul-
tiple end-effectors (e.g. fingers of a hand or arms of
a body). Many algorithms, based on numerical solu-
tions, exist: Heuristic methods and Cyclic Coordinate
Descendant ones [17], Newton-basedmethods exploit-
ing the second-order Taylor expansion, and Jacobian-
based ones adopting inversed, pseudo-inversed and
transposed Jacobian matrices [18].

3) Data-Driven methods: learning-based techniques are
the foundation for these methods that require having
available large datasets and pre-learned postures to
match the position of the end-effector. These character-
istics make them suitable for complex problems such as
human-like structures.

4) Hybrid methods: they are based on the simplification
of the IK problem, by decomposing it in a combination
of analytical and numerical components and exploiting
the related algorithms for the solution. As data-driven
methods, the hybrid methods are suitable for com-
plex problems, such human-like structures or multiple
end-effectors ones.

Due to the peculiarities of the numerical solutions, that
are highly suitable for the problem we address in this arti-
cle, we focus our attention on this family. Indeed, given the
chosen target (see Section II-A), wheremultiple end-effectors
or body-like mechanisms are not there, complex data-driven
or hybrid methods can be excluded. Having available six
DoFs (four for the hand effector positioning, one for wrist
and one for clamp), numerical methods seems to be the most
straightforward choice. In our studies, we opted for the DLS
IK solver, which falls into the Jacobian-based family, due to

computational complexity considerations as explained below
in Sections III-A and III-B.

A. JACOBIAN-BASED METHODS
Jacobian methods are based on the Jacobian matrix [19],
defined as:

f : � ⊆ Rn
→ Rm

Jf (x) =



∂f1
∂x1

(x)
∂f1
∂x2

(x) . . .
∂f1
∂xn

(x)

∂f2
∂x1

(x)
∂f2
∂x2

(x) . . .
∂f2
∂xn

(x)

...
...

. . .
...

∂fm
∂x1

(x)
∂fm
∂x2

(x) . . .
∂fm
∂xn

(x)


∈ Rm,n

Such a matrix represents a transformation between two time
derivative-related spaces, the Cartesian space and the velocity
space. The latter can be related to the velocity joints space.
Solving an IK problem requires finding the joint angles of
the body from the desired spatial coordinates. Therefore we
need to compute the joint space vector, 1

−→
2 , as:

1
−→
2 = J†1−→e (4)

where 1−→e is the error or displacement vector and J† is
computed from the Jacobian matrix, J , accordingly with the
chosen Jacobian-based solver.

The 1
−→
2 and 1−→e vectors are expressed as:

1
−→
2 = [1θ1 1θ2 . . . 1θn]T (5)

and

1−→e =
[
1x 1y 1z δx δy δz

]T (6)

where [1x 1y 1z]T defines a linear displacement, while
[δx δy δz]T a rotational one.

Figure 2 illustrates the general flow of Jacobian-based
IK algorithms, no matter of the chosen specific solver. The
trajectory itself is specified by initial and final end-effector
coordinates. The former are computed solving a FK problem,
which requires to know the angles assumed by the manip-
ulator in the initial position; while the latter correspond to

FIGURE 2. Jacobian-based IK algorithms flow diagram.
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the desired position to be reached. The way of computing
J† depends on the chosen Jacobian-based IK solver. In any
case, an iterative process to compute the new joint variables
is required.

Prior to execute the algorithm, the displacement vector
must be defined according to Equation 6. The following
simplification hypothesis [δx δy δz]T = [0 0 0]T has been
taken, meaning that we will consider linear displacements
only. Therefore, trajectories are computed just on the basis of
the values assigned to [1x 1y 1z]T , and the displacement
vector is expressed as:

1−→e =
[
xfin − xinit
i+ 1

yfin − yinit
i+ 1

zfin − zinit
i+ 1

0 0 0
]T

where xinit , yinit , and zinit represent the initial point
coordinates, xfin, yfin, and zfin the coordinates of the final
position that the end-effector must reach, and i is the iteration
parameter.

In our setup, the joint space is composed only by angles,
since we are using rotational-only joints. The process to
obtain integral angles from the joint space, is iterative:

−→
2 new =

−→
2 old +1

−→
2 (7)

The number of repeated steps can be set by an iteration
parameter of the algorithm. At each iteration, the last cal-
culated

−→
2 new is used as

−→
2 old to compute the next

−→
2 new.

This procedure is equivalent to the calculation of the defined
integral of thetas along the trajectory.

The first mathematical solution for Equation 4 is comput-
ing J† as J−1 [18]. However, J might be neither square nor
invertible. Therefore, several alternative solutions have been
studied to solve this problem. The Jacobian transpose [18]
computes J† using the transpose of J as J† = αJT , while the
Pseudo-inverse methods [18] leverage on J† = JT (JJT )−1.
The computation of J†, given by the transpose-based solu-
tions, presents low complexity, but transpose-based solutions
fail in handling singularities [20], and in many cases null
space methods have been adopted to avoid singular config-
urations [21], [22]. The Single Value Decomposition (SVD)
method [23] has been proposed to deal with the singularities.
It generalizes the eigen-decomposition of a square normal
matrix, decomposing the matrix J as J = UDV T , where
U is an m × m unitary orthogonal matrix, D is an m × n
rectangular diagonal matrix with non-negative real numbers
on the diagonal, and V T is an n × n unitary orthogonal
matrix. This solutions is based on the calculation of the
eigenvalues and eigenvectors, at high computational costs.
The Damped Least Square (DLS) algorithm [24], computes
J† as J† = (JT J + λ2I )−1JT . This algorithm handles the
singularity problem by using a damping factor λ, and does
not require the computation of eigenvalues and eigenvectors.
Therefore, in our studies we opted for this latter to have
the possibility of porting the designed hardware controller in
different workspaces, not necessarily singularity-free ones,
and to maintain the computational load of the robotic arm
controller to be implemented as low as possible.

B. THE DAMPED LEAST SQUARE ALGORITHM:
MATHEMATICAL FORMULATION
The DLS algorithm is also known as Levenberg—Marquardt
algorithm [24], and computes J† as:

J† =
(
JT J + λ2I

)−1
JT (8)

so that, using Equation (8), the Equation (4) can be expressed
as:

1
−→
2 =

(
JT J + λ2I

)−1
JT1−→e (9)

The damping factor, λ, is a non-zero constant that needs
to be large enough to make the solution behave well near
singularities, but not too large to make the convergence rate
excessively slow. This factor can be set as a static parameter,
which has to be defined a-priori before starting the computa-
tion, or as a dynamic one to be calculated at run-time, between
two subsequent iterations. In our hardware implementation,
as discussed in Section V-E, a static λ is used.

To obtain the Jacobian J matrix, prior to the application of
the DLS, the mathematical model of the chosen manipulator
has to be derived. Commonly, the Denavit-Hartenberg (DH)
parameters [25] are used. These are a set of four parameters
composed of two angles (α and θ ) and two displacements
(a and d), defined for each link-joint group and obtained
from the manipulator mechanical dimensions and joint ori-
entations, as shown in Figure 3. Values related to the chosen
set-up/manipulator are reported in Table 1.

FIGURE 3. Graphical representation of Denavit-Hartenberg parameters.

TABLE 1. Denavit-Hartenberg parameters of the chosen manipulator.
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For each set of parameters a transformation matrix is
defined as:

n−1Tn =


t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

 (10)

where

t11 = cos θn
t12 = − sin θn cosαn
t13 = sin θn sinαn
t14 = an cos θn
t21 = sin θn
t22 = cos θn cosαn
t23 = − cos θn sinαn
t24 = an sin θn
t32 = sinαn
t33 = cosαn
t34 = dn
t31 = t41 = t42 = t43 = 0

t44 = 1

This transformation matrix represents the position and the
orientation of the nth-joint with respect to the previous one.
For an N -joints manipulator there will be N transformation
matrices. The general transformation matrix is defined as the
chain product of each transformation matrix:

T =0 T 1
1 T2 . . .

N−1 TN =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (11)

This matrix represents the end-effector spatial coordinates
and orientation with respect to the manipulator base coor-
dinates. The derived DH parameters, used in Equation (10),
allow to determine the general transformation matrix orienta-
tion coefficients (nx , ny, nz, ox , oy, oz, ax , ay, and az) and the
position coefficients (px , py, and pz).

nx = − sin(θ3 − θ2 + θ4) cos θ1
ox = − cos(θ3 − θ2 + θ4) cos θ1
ax = − sin θ1
ny = − sin(θ3 − θ2 + θ4) sin θ1
oy = − cos(θ3 − θ2 + θ4) sin θ1
ay = cos θ1
nz = − cos(θ3 − θ2 + θ4)

oz = sin(θ3 − θ2 + θ4)

az = 0

px , py and pz are the end-effector spatial coordinates with
respect to joint angles, defined throughout the manipulator

FK over the final desired position.

px = 5 cos θ1 [3 sin(θ2 − θ3)− 3 sin(θ3 − θ2 + θ4)

+ 3 cos θ2 + sin θ2]

py = 5 sin θ1 [3 sin(θ2 − θ3)− 3 sin(θ3 − θ2 + θ4)

+ 3 cos θ2 + sin θ2]

pz = −15 cos(θ2 − θ3)− 15 cos(θ3 − θ2 + θ4)

− 5
√
10 cos(θ2 + arctan 3)

Once nx , ny, nz, ox , oy, oz, ax , ay, and az, and px , py, and pz
are known, according to the theory in [19], Equation (11) can
be used to derive J as follow:

J =


j11 j12 j13 j14
j21 j22 j23 j24
j31 j32 j33 j34
j41 j42 j43 j44
j51 j52 j53 j54
j61 j62 j63 j64

 (12)

where

j11 = −5 sin θ1[3 sin(θ2 − θ3)− 3 sin(θ3 − θ2 + θ4)

+ 3 cos θ2 + sin θ2]

j12 = 5 cos θ1[3 cos(θ2 − θ3)+ 3 cos(θ3 − θ2 + θ4)

+ cos θ2 − 3 sin θ2]

j13 = −5 cos θ1[3 cos(θ2 − θ3)+ 3 cos(θ3 − θ2 + θ4)]

j14 = −15 cos(θ3 − θ2 + θ4) cos θ1
j21 = 5 cos θ1[3 sin(θ2 − θ3)− 3 sin(θ3 − θ2 + θ4)

+ 3 cos θ2 + sin θ2]

j22 = 5 sin θ1[3 cos(θ2 − θ3)+ 3 cos(θ3 − θ2 + θ4)

+ cos θ2 − 3 sin θ2]

j23 = −5 sin θ1[3 cos(θ2 − θ3)+ 3 cos(θ3 − θ2 + θ4)]

j24 = −15 cos(θ3 − θ2 + θ4) sin θ1
j31 = j41 = j51 = j62 = j63 = j64 = 0

j32 = 15 sin(θ2 − θ3)− 15 sin(θ3 − θ2 + θ4)+

+ 5
√
10 sin(θ2 + arctan 3)

j33 = 15 sin(θ3 − θ2 + θ4)− 15 sin(θ2 − θ3)

j34 = 15 sin(θ3 − θ2 + θ4)

j42 = sin θ1
j43 = j44 = − sin θ1
j52 = − cos θ1
j53 = j54 = cos θ1
j61 = 1

C. THE DAMPED LEAST SQUARE ALGORITHM: SUMMARY
OF THE FEATURES AND CHARACTERISTICS
As already said, the DLS presents a singularities tolerance,
which is a crucial desirable characteristic when theworkspace
is not singularity-free. The DLS is capable of passing through
workspace singularities: the algorithm allows tuning the solu-
tion around singularities by means of the damping factor,
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resulting in a smoothed movement. Moreover, it does not
require to compute eigenvalues or eigenvectors, leading to
a reduced computational complexity more suitable for hard-
ware implementation. Furthermore, the DLS algorithm can
achieve a good trade-off between computation time and accu-
racy even if complex application scenarios, where full body
reconstruction are considered [26].

Generally speaking, computation time and accuracy
strongly depend on two main parameters of the DLS: the
number of iterations, which are the points along the trajectory
from source to destination, and the damping factor λ, which
define the behavior near the singularities. In particular, fixing
the number of iterations per trajectory it is possible to predict
computation time and accuracy of the DLS execution. This
time predictability is a distinctive feature of the DLS that can
drive the choice towards this IK solver under certain con-
strained application scenarios, such as in critical applications
where the algorithm convergence has to be guaranteed within
a hard deadline in time.

IV. RELATED WORKS
The literature available on the IK solvers is generally mainly
focused on algorithms optimization when calculated offline.
Not many state-of-the-art works address the implementations
of IK solvers leveraging on hardware acceleration platforms.

With the advent of CPSs and Internet of Things (IoT),
devices are every day more power limited, while being
requested to be highly computational efficient. Dedicated
hardware allows for the efficient execution of complex algo-
rithms even in constrained contexts, where finding trade-offs
among system aspects of interest, e.g. power consump-
tion versus quality of service, may be fundamental [27].
Profiling the algorithms to find the sub-parts that can be
accelerated is surely necessary, as well as the identifica-
tion of parallelism, since parallel off-the-shelf or dedicated
devices could improve both timing and power performance.
In particular, while off-the-shelf devices force designers to
shape the parallel execution over the available concurrent
resources, dedicated platforms can be customized to support
the native parallelism of the algorithm. Dedicated hardware
also enables pipelining of resources, which can be seen as a
further hardware-level degree of parallelism, additional to the
algorithm-level one.

The two subsections below provide, first of all, an overview
of the state-of-the-art regarding the available hardware imple-
mentations of IK solvers and, then, a closer look into what has
been done specifically on the DLS is provided.

A. HARDWARE IMPLEMENTATIONS OF INVERSE
KINEMATIC SOLVERS
The hardware acceleration of IK solvers has been only par-
tially explored by the scientific community. Moreover, while
pipelining is often applied, algorithm-level parallelization is
not. Analytical IK solvers have been accelerated with FPGAs,
mainly addressing industrial robotics applications [2], [28].
Other works proposed the adoption of algorithms not

commonly used for solving IK problems, but intrinsically
parallel. A behavior-based solver has been adopted by
Köpper and Berns [6]. Such solver has an intrinsically parallel
nature; therefore, it turns out to be suitable for an FPGA
implementation: calculation of the different DoFs can be
parallelized, resulting in a substantial speed-up with respect
to general purpose systems, even if the accelerator has not
been optimized yet. Hildebrand et al. [29] instead adopted a
conformal geometrical algebra approach to solve the IK prob-
lem addressing computer graphics application with FPGA
support. Both pipelining and algorithm-level parallelization
methods are exploited on the reconfigurable logic of the
FPGA, resulting in extremely shorter execution time with
respect to a full software processing. Other studies adopted
common IK solvers, where algorithm level parallelism is
more difficult to be extracted. Yu et al. [30] considered
the generalized inverse Jacobian method adopted for FPGA
acceleration by means the parallel calculation of matrix mul-
tiplications. Suriano et al. [31] instead adopted the iterative
Nelder-Mead optimization method to solve the IK problem,
investing effort in parallelizing the application in different
ways (intra- and inter-iteration). The resulting parallel solu-
tions are then ported on an FPGA fabric tightly coupled
with a multi-core system: the application is split between
general purpose and dedicated computing units, which are
provided in several instances enabling multi-parallelism on
the hardware acceleration side.

Table 2 summarizes the described IK solvers hardware
implementations together with the approach proposed in this
work. The analyzed state-of-the-art works adopt algorithms
that are not suitable for the manipulator that is used in this
work [2], [28], or algorithms that are meant for application
fields far from the one considered in this article [29], or even
algorithms that might not converge [31]. As already said,
we adopted the DLS that has a predictable convergence time
for a given trajectory length, and it is capable of tolerating sin-
gularities in the workspace. As will be detailed in Section VI,
the proposed robotic arm controller will be implemented in
hardware on a Xilinx Zynq FPGA platform. In this study
we propose also a possible parallelization of the chosen
IK solver, following a segmentation-based approach.

B. DAMPED LEAST SQUARE FOR INVERSE KINEMATICS
To the best of our knowledge, considering IK problems
there are neither works in literature that address the hard-
ware implementation of the DLS, nor works that analyze the
DLS characteristics for a prospective hardware implemen-
tation. Works available in literature rarely use a pure DLS
approach, meaning a purely numerical solution according to
Aristodou et al. [16] classification. They are mainly pre-
liminary studies combining also other behaviors, such as a
system for robotic thumbs where both kinematics (DLS for
movements) and dynamics (force model for grasping) [32],
or full body reconstruction [26].

Other works focus on DLS drawbacks: being an iterative
method, where each step (iteration) depends on the previous
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TABLE 2. Hardware Implementation and Parallelization of Inverse Kinematics Solvers. [The DoFs number below refers to those of the chosen target in the
different works; in our case, despite the manipulator has 6 available DoFs we are considering just 4 of them (see Section II-A), leaving out the wrist and
clamp related ones].

TABLE 3. Damping least square for inverse kinematics overview.

one, the error is cumulative and it may result in a considerable
distance between the actual and the desired end-effector posi-
tion, especially when several DoFs are involved. To reduce
the error, the number of iterations (see Section V-B) can be
increased at the expenses of the computation time, which
become longer. Another option to reduce the error is to couple
DLS with other methods, such as the Newton-Raphson one
that limits the cumulative error of DLS when it becomes
too large, improving accuracy without increasing the
DLS iterations [33].

Most of DLS implementations, in combination with other
methods, play on the algorithm knobs: number of iter-
ations and damping factor. Such a combination mainly
speeds-up computation and achieves accuracy improvements.
Wang et al. [34], [35] focused on the number of iterations,
adjusting it by means of supervised learning techniques,
considering different DoFs and different target platforms
for implementation, among which an embedded multi-core
system.

Other works focused more on the damping factor, which
also impacts on accuracy and computation time of the
DLS algorithm. In particular, addressing snake-like robots
employed in micro-surgery applications, where hard accu-
racy and time requirements are present, Omisore et al. [10]
adopted a deep-learning approach to optimally adjust the
damping factor for every target point of the DLS, obtain-
ing speed-up and accuracy improvements. Damping fac-
tor optimization is also desired for enhancing behavior of
the DLS algorithm when passing close to singularities.
Some works also aimed at such goal, by optimizing it by
means of genetic algorithms [36] or closed-loops imple-
mentations, where the singularity problem and the Jaco-
bian matrix are taken into consideration for damping factor
adjustment [37].

Table 3 summarizes theworks adoptingDLS for IK solving
and their main features and characteristics. Most of these
works focus on the algorithm optimization under certain met-
rics, as computing time and accuracy, by coupling DLS with
other algorithms or by playing with its parameters. None of
those works focus on implementation details of the DLS, such
as parallelization or optimization for execution on specific
devices. Considering the addressed application fields, imple-
mentation aspects should be considered in future due to the
stringent constraints and autonomous behavior possibilities,
which are already envisioned for some of them, like for
space and micro-surgery purposes. Based on this analysis,
to the best of our knowledge, the proposed work is the first
attempt to study parallelization and hardware acceleration of
DLS algorithm for IK solving.

V. DAMPED LEAST SQUARES ALGORITHM: ANALYSIS
The goal of this analysis is to verify features, pros and cons
of the DLS algorithm, when parameters vary. In particular
we analyze two different MATLAB implementations that
we made available as an open-data [12] of the CERBERO
project. We will refer to these implementation as:
• classic - intended as fully sequential, where prior to start
a new iteration of the algorithm the current computation
of Equation 7 should be completed. In this case, pro-
grammers can play with two parameters: the damping
factor and the number of iterations.

• parallel - This implementation is composed of two steps.
In the first one the DLS is used to obtain coarse points
over the whole trajectory; the outcome is a segmentation
of the whole trajectory. In the second step, the DLS
is run again over each segment, using as starting and
final points the sequence of adjacent points calculated
in the first step. In this case, programmers can play with
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three parameters: the damping factor, the number of iter-
ations in the first DLS step and the number of iterations
in the second DLS step.

Figure 4 illustrates an example of the operation of the two
implementations.

FIGURE 4. DLS: classic versus parallel computation.

The parallel implementation has been considered to under-
stand the potential benefits of implementing the DLS over
a parallel computing infrastructure, as the one used in [31].
Clearly, due to physical hardware limitations, we cannot
assume an infinite parallel factor. As an example, dividing
a trajectory into 50 different segments would require the
availability of as many parallel computing units, which is
highly unlikely in practice. For this reason, in the experi-
ments below, we have considered up to 4 parallel computing
units (that could be prospectively different cores or dedicated
co-processors) to estimate the execution time.

Our explorations focus mainly on the error reaching the
desired position and the elapsed execution time needed to
compute the trajectories in [13]. All the raw data are avail-
able in [12]. Time measurements are obtained by using
the ‘‘tic/toc’’ MATLAB functions, thus they are machine-
dependent.2

In the classic case the provided estimation time is straight-
forward, while in the parallel one the estimation is given
by summing up the time needed to compute step 1 (ts1),
plus the time needed to compute step 2 (ts2) weighted with
respect to the available parallel computing units. Equation 13
provides an example of the formula used to estimate the
elapsed execution time needed to compute N different parallel
segments over k parallel computing units.

timepar = ts1 +
N
k
∗ ts2 (13)

Regarding the error, considering Z (x1, y1, z1) as the final
desired position of the end-effector, it is possible to define the
error among the desired target and the actual reached position
as computed by the chosen implementation. Equation 14 is
representative of the error with respect to Z when using the
classic implementation of the DLS, while Equation 15 when
using the parallel implementation of the DLS.

1errcl =
√
(x1cl−x1)2+(y1cl−y1)2+(z1cl−z1)2 (14)

2In all the experiments reported below the following machine has been
adopted: PC Intel Core i7 8550U / 1.8GHz / 8 MB Cache / 16 GB
DDR4 memory

1errpar =
√
(x1par−x1)2+(y1par−y1)2+(z1par−z1)2 (15)

In the subsections below the 15 different explorations listed
in Table 4 are discussed in details.

TABLE 4. Scenarios. [Please note that in the case of parallel design
implementations N(M) stands for N iterations in the first step,
with M iterations in the second step].

A. SCENARIO 1: FIXED ITERATIONS AND FIXED
DAMPING FACTOR
This analysis refers to Scenario 1 in Table 4. All the results
are obtained with a fixed damping factor λ = 0.5. For the
parallel implementation, we have chosen 100 iterations in the
first step of the algorithm, which leads to have 100 segments.
Then, for each segment, 10 iterations of theDLS are executed.
Therefore, the DLS is executed 100+100∗10 = 1100 times.
To allow a fair computational comparison, classic is run with
1100 iterations too. Figure 5 reports on the error among
the desired target and the actual reached position for each
trajectory in [13]. This figure includes two curves: Classic
is representative of Equation 14 and Parallel is representative
of Equation 15. The trend of the curves is the same and the
error increases with the trajectory ID that, as already stated
in Section II-B, are ordered by length. From Figure 6 to
Figure 8 the analysis of the different groups of trajectories
in [13] is shown. Trajectories are grouped according to their
length as described in Section II. In case of small trajectories
both DLS implementations perform well. It is never the case
that the error is above the worst given tolerance limit, which
is set to 5 mm according to the requirements presented in

FIGURE 5. SC #1 - Error among the desired target and the actual reached
position.
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FIGURE 6. SC #1 - Focus on short trajectories: Error among the desired
target and the actual reached position.

FIGURE 7. SC #1 - Focus on medium trajectories: Error among the desired
target and the actual reached position.

FIGURE 8. SC #1 - Focus on long trajectories: Error among the desired
target and the actual reached position.

Section II-B. There is a good margin to even reduce the
number of iterations in both the classic and the parallel case.
For medium trajectories the situation changes. The classic
implementation still guarantee that the requirement is met,
the error is always below the given tolerance limit and there
is still a good margin to reduce the number of iterations,
maximum error is 1.65 mm. In the parallel case, instead,
those trajectories with a length longer than 28 cm start to

present an error with respect to the target that is larger than
the required accuracy. For long the situation is the same: the
classic implementation allows meeting the requirement with
a maximum error of 3.03 mm, while this is never the case
when the parallel one is adopted.

Both classic and parallel implementations would be fine
for Task 2 (see Section II), which is characterized by trajec-
tories having an approximate length of 10 cm belonging to
the short group identified above. Therefore, in both cases the
accuracy stay always below the 5 mm required by Task 2.
If we consider the computation time, we can appreciate the
advantage of the parallel solution with respect to the classic
one. Figure 9 presents three curves reporting the elapsed time
to compute short trajectories, two of them refer to the parallel
implementation of the DLS. The Ideal Parallel considers hav-
ing available an infinite number of parallel computing units;
therefore, in Equation 13, Nk = 1 and timepar = ts1+ ts2. The
Parallel Over 4 Slots sets k = 4; therefore, in Equation 13,
N
k = 25 and timepar = ts1+25∗ ts2. In general, the advantage
of segmentation is clear. The average processing time for the
classic implementation is 11.23 ms with a standard deviation
of 2 ms, while for the realistic parallel execution over 4 slots
the average processing time is 4.11 ms with a standard devi-
ation of 1.61.

SHORT TRAJECTORIES
Parallelization via segmentation has positive effect

on short trajectories, the error is kept within the toler-
ance. Timing advantage is there, being on average nearly
1/3 of the classic one. In practice, this advantage would
strongly depend on the communication overhead, and
target dependent results are expected.

In general, there are margins to reduce the number
of iterations, since the difference between the computed
errors and the expected accuracy is large. This is partic-
ularly true for the classic DLS implementation, which
is discussed more in details in Section V-D. Never-
theless, reducing the number of iterations may impact
on the smoothness of the movement itself. Therefore,
the identification of the minimum number of iterations
to be considered has to be defined also according to the
physical impact on the movement.

The other two groups, medium and long, are relevant for
Task 1, which contains trajectories that can be up to 50 cm
long. In this case the accuracy is set to 10 mm. This means
that the parallel implementation would fit when executing
Task 1 over medium trajectories, being the actual error in this
group always less than 7 mm. While for the long ones this is
not the case: trajectories around 50 cm present an error around
10 mm (i.e Trajectory 87 has a length of 50.63 cm and an
error of 8.61 mm, and Trajectory 88 has a length of 50.70 cm
and an error of 10.4 mm). Trajectories from 88 to 100 have
even larger error values, and are theoretically reachable by the
arm, but not relevant for Task 2. In terms of elapsed execution
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FIGURE 9. SC #1 - Focus on short trajectories: Elapsed time.

FIGURE 10. SC #1 - Focus on medium and long trajectories: Elapsed time.

time, the trend of the curves presented in Figure 10 is the same
of Figure 9 and the theoretical saving is still approximately
1/3 in favor of the parallel implementation of the DLS with
respect to the classic one.

MEDIUM TRAJECTORIES
Parallelization via segmentation has positive effects

on medium trajectories too: the error is kept always
within the tolerance and execution time is lower. There-
fore, the same considerations made for the short case
stands here too.

LONG TRAJECTORIES
Parallelization via segmentation does not have a gen-

erally positive effect on long trajectories. Tolerance
boundaries are, in some cases, either exceeded or no
margins are there. Viable solutions to overcome this
issue may be the following:
• experiment different values of the damping factor,
for which you should refer to Section V-B.

• change the number of segments, for which you
should refer to Section V-C.

FIGURE 11. SC #2 - Focus long trajectories: Error among the desired
target and the actual reached position.

TABLE 5. SC #2 - Focus on long trajectories: Samples example of error
among the desired target and the actual reached position.

B. SCENARIO 2 - FOCUS ON PARALLEL: FIXED
ITERATIONS AND VARIABLE DAMPING FACTOR
This analysis refers to Scenario 2 in Table 4. It focuses on
the parallel implementation of the DLS and all the results
are obtained for a fixed number of iterations (trajectories
of 1100 points), while varying the damping factor λ that
can assume the values 0.1, 0.2, 0.5 and 0.8. The damping
factor λ influences not only the behavior around singularities,
but also accuracy [38]: smaller λ should provide, in general,
more accurate solutions. Therefore, choosing a small λ could
solve the long trajectories issues discussed in the previous
section. Figure 11 reports on this analysis for the long tra-
jectories of the given workspace only, since they are those
affected by accuracy issues when a parallel implementation
of the DLS is chosen. The trend of the error for all the
chosen damping factor value is the same and, as clearly
demonstrated also in Table 5, the variation of λ, when we
are so close to the workspace boundaries, is not sufficient
to guarantee that the requirement on the accuracy is safely
met.

LONG TRAJECTORIES
Parallelization via segmentation, even considering a

variable λ, does not have a generally positive effect on
long trajectories. Tolerance boundaries are still, in some
cases, either exceeded or no margins are there.
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FIGURE 12. SC #3 - Focus long trajectories: Error among the desired
target and the actual reached position.

FIGURE 13. SC #3 - Focus on long trajectories: Elapsed time.

C. SCENARIO 3 - FOCUS ON PARALLEL: VARIABLE
ITERATIONS IN THE 1ST DAMPED LEAST SQUARE
STEP AND FIXED DAMPING FACTOR
The third considered scenario is meant to assess what would
happen by changing the number of iterations in the first
step of the parallel DLS implementation. Two different runs
are compared, where the number of points is 100 (as in
SC #1), and 150. The number of iterations per segment in
the second step is kept equal to 10 and the damping factor
is 0.5. The focus, as shown in Figure 12, is kept on the long
trajectories of the given workspace only, since the issue of
their accuracy when adopting a parallelDLS implementation
is still there. The trend of the error curves is the same in
both 100(10) and 150(10) cases, but increasing the overall
number of segments has a positive effect: a reduced number
of trajectories (98 to 100) is at the limit or exceeds the
given accuracy requirement for Task 1. Nevertheless, having
a closer look to them, as reported in Table 6, they all have
a length above 60 cm, while Task 1 presents lengths around
50 cm. Therefore, despite being included in the workspace,
they are not relevant for the considered task. The boundaries
of Task 1 are provided by trajectories 85 to 88, which error is
well below (maximum error is 7.34 mm, when up to 10 mm
are admitted) the required accuracy when 150 iterations in
step 1 are chosen. Figure 13 reports on the elapsed time,

TABLE 6. SC #2 - Focus on long trajectories: Samples example of error
among the desired target and the actual reached position.

FIGURE 14. SC #4 - Focus on short trajectories: Error among the desired
target and the actual reached position.

when 4 parallel computing units are chosen. Clearly, the more
iterations are chosen, the higher is the elapsed time for the
computation. In this figure also the elapsed time values for
two runs of the classic DLS implementation are shown:
Classic 1100 has as many iterations as Parallel 100(10), while
Classic 1650 has as many iterations as Parallel 150(10). Still
parallel implementations are preferable, in terms of elapsed
time, than their corresponding classic version. Moreover,
even considering 150 iterations in the first step, the elapsed
time is smaller than in the classic implementation with fewer
number of points.

LONG TRAJECTORIES Parallelization via seg-
mentation is positively affected by an increased N, num-
ber of points in the fist iteration of the DLS. Accuracy
is met with a good margin. In the reference problem
considered in this article, there are no limitations on
timing or on the number of parallel computing units that
can be used, so that we can conclude that playing with N
leads to keep the accuracy under control also on Task 1.

D. SCENARIO 4 – FOCUS ON CLASSIC ONLY: VARIABLE
ITERATIONS AND FIXED DAMPING FACTOR
Having said that the number of iterations matters, this
scenario is focused on exploring the relationship between
the number of iterations and the accuracy when adopt-
ing the classic DLS implementation to solve IK problems.
By looking at Figures 14 to 16 one may notice that, no matter
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TABLE 7. SC #4 - Samples example of error among the desired target and the actual reached position (1) and density (D). For the sake of conciseness,
1err cl = 1 and it is computed using Equation 14.

FIGURE 15. SC #4 - Focus on medium trajectories: Error among the
desired target and the actual reached position.

FIGURE 16. SC #4 - Focus on Long Trajectories: Error among the desired
target and the actual reached position.

on the chosen number of iterations, the error trend is growing
with the trajectory ID, that is with the trajectory length. Only
for N = 500 and N = 1000 all the trajectories meet the
worst case accuracy requirement (Task 2, 5 mm accuracy).
By looking at Table 7, we can draw more considerations
related to what happens at the boundaries of Task 1 and Task 2
in the considered workspace. Regarding Task 2, all the chosen
N are fine and there is still a good margin to further reduce
N since in the worst case an error of 2.64 mm is there, while
the tolerance is set to 5 mm, so more or less 50%. This is not
the case for Task 1. Given the chosen N values, we need at
least N = 250 to guarantee that the tolerance of 10 mm is

met: in the worst case an error of 4.78 mm is there, while the
tolerance is set to 10 mm, so again more or less 50%. In both
cases, you can assume a satisfactory margin when the density
of points per trajectory (columns D in Table 7), defined as the
length divided by the number of iterations, is around 0.2 cm.

ALL TRAJECTORIES
If we consider no constraint in terms of timing, a clas-

sic fully sequential implementation of the DLS IK algo-
rithm can be chosen. Also in this case, it is important
to properly choose the number of iterations to be per-
formed. By looking at our reference problem, it can be
empirically derived that, to have a considerable margin
(50% as defined above) with respect to the reference
requirement, a density of points per trajectory of 0.2 cm
should be fine.

E. WRAP UP OF THE DAMPED LEAST SQUARE ANALYSIS
To summarize all the carried out analysis:
• a one-fit-to-all solution is not there. The DLS solver
has to be characterized according to the executed task,
to its requirements (e.g. accuracy) and to its features (e.g.
approximate length of trajectories within a task).

• despite it is true that λ is fundamental to address the
singularity problem, in a singularity-free workspace
this parameter is not fundamental to meet the accuracy
requirement, as the number of iterations turned out to be.

Given the fact that in our reference problem there are no
timing limitations to be considered, which may lead to opt
for a parallel solution, we decided to implement in hardware
the classic algorithm. Indeed, the classic solver has proved
to imply overall less iterations to meet the accuracy require-
ments with larger margins that, in turn, means less communi-
cation overhead. Please note that, a parallel implementation
can be easily derived from the classic one, since it has only
to be replicated while properly managing data flowing.

In the assessment below, implementations are character-
ized by: i) a static λ, which is fixed to 0.5, and ii) by a
number of iterations per execution that is 1. Nevertheless,
in all the proposed hardware implementations, λ can be
changed at runtime, making them suitable for other contexts
and workspaces which may involve singularities. Moreover,
multiple runs of the hardware implementations can be done
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according, e.g., to the empirical optimal density of points per
trajectory derived in Section V-D, which is 0.2 cm. In sum-
mary, the proposed implementations can be potentially used
with varying λ and number of iterations.

VI. HW IMPLEMENTATION
As already discussed in the introduction of this work, FPGA
implementations could be extremely advantageous in the ref-
erence context since they are by construction flexible comput-
ing substrates, suitable to the reactive and dynamic behaviors
characterizing CPSs, while being capable to efficiently sup-
port heavy computational workloads.

Therefore, in this section, we explore the possibility
of implementing the DLS for the solution of IK problems
with dedicated hardware. In Section VI-A we present the
considered target architecture and the adopted design flow,
in Section VI-B the DLS application is profiled and opti-
mized, and finally in Section VI-C the obtained preliminary
experimental results are discussed.

A. ARCHITECTURE AND DESIGN FLOW
Figure 17 illustrates the scenario setup addressed in this
work. The Trossen Robotics WidowX Robotic aArm is
controlled by an FPGA, in particular the one illustrated
in figure is a Xilinx Zedboard, a Zynq FPGA that inte-
grates the XC7Z020CLG484 chip. The reference architecture
addressed in this work is a processor-coprocessor configura-
tion where the processor runs most of the control flow tasks,
while the coprocessor computes the onerous tasks, which in
this case are related to the DLS calculation. The processor
is the dual core ARM Cortex-A9 present on the addressed
ZedBoard, while the coprocessor is fully custom and is gen-
erated with the Multi-Dataflow Composer (MDC) tool3 [39],
[40]. Processor and coprocessor communicate through an
AMBA AXI4 system bus: the AXI4-Lite protocol is adopted
for coprocessor configuration and control purposes, while
the AXI4-full one is used for data transfers. This kind of
coprocessing unit, being accessible through a commercial
and widely adopted bus system, is suitable to different types
of implementation. In the presented case, as discussed in
SectionV-E, there is no need of parallelization, but potentially
the same type of coprocessor could be used in a parallel
architecture too [5].

To deploy such a system, we can exploit a dataflow-based
design flow, in which applications to be accelerated in
the coprocessor are specified as dataflow models [41].
A dataflow is basically a functional programming language
describing applications through directed graphs whose nodes
are the operations of the applications, defined as the actors.
Dataflows already revealed to be effective in addressing
software and/or hardware design and mapping in heteroge-
neous systems [42]. Leveraging on dataflow specifications,
it was possible to exploit a set of commercial and academic
tools for a complete automated design flow. In particular,

3Available Open-Source at: https://github.com/mdc-suite/mdc

FIGURE 17. Overview of the robotic arm controller scenario and related
processor-coprocessor architecture.

the MDC tool supports the coprocessor design and deploy-
ment. It provides a dataflow-based automated flow targeting
reconfigurable coprocessors, which can implement i) dif-
ferent functionalities with some common operations, or ii)
different profiles (e.g. in terms of timing performance, power
consumption, etc.) of the same functionality. Actors can be
specified using standard imperative languages (e.g. C), which
can be used to derive the Hardware Description Language
(HDL) specifications, necessary for hardware implementa-
tion of the coprocessor, by leveraging on HLS engines [43].
Once the functionalities are modelled through dataflows and
the corresponding HDL actors are provided, MDC is capable
of automatically deriving the corresponding reconfigurable
coprocessor in which common actors are shared by the dif-
ferent functionalities/execution profiles, and reconfiguration
is enabled by multiplexing resources in time. Please note that,
the adoption of dataflows tomodel theDLS application and of
the MDC tool to generate the system opens to the possibility
of exploiting, in future, the advanced features offered by
this tool, such as coprocessor topology optimization [44] and
power management [45].

In the considered context, we used MDC reconfigura-
bility support to derive a design able to execute different
profiles for the classic implementation of the DLS algo-
rithm. In particular, we explored a baseline (BL) profile
with slow DLS calculation but limited power consumption,
and a high-performance (HP) profile with fast DLS calcula-
tion but high power consumption. The capability of switch-
ing among different execution profiles is particularly useful
in self-powered systems. The HP profile could potentially
be enabled only when critical operations, with strict time
constraints, have to be performed; while, in default con-
ditions, the BL profile is enabled to preserve the batteries
charge.

To port the above-mentioned profiles in hardware over
an MDC-compliant coprocessor the following steps have
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FIGURE 18. Graphical overview of DLS dataflow, in the BL version.

been performed. Starting from the MATLAB classic (see
Section V) implementation of the DLS algorithm, the corre-
sponding C code has been derived using the MATLAB Coder
feature [46]. Once obtained an imperative C version, the DLS
execution has been partitioned into five operations, which
constitute the dataflow actors:

• J_Matrix calculates the Jacobianmatrix J of the arm (see
Equation 12);

• J2_Matrix calculates
(
JT J + λ2I

)
;

• Min performs a first step for the calculation of(
JT J + λ2I

)−1
;

• J2Cof_Matrixfinalizes the calculation of
(
JT J + λ2I

)−1
;

• Theta performs final calculations of the new angles start-
ing from the output of the other actors and according to
the target position of the end effector (see Equation 9).

A graphical overview of the resulting dataflow, showing
the BL profile, is depicted in Figure 18. Here, it is possible to
see the operations execution order and mutual dependencies.
Please note that, in the resulting hardware implementation,
all the operations will be executed asynchronously since they
are performed by dedicated logic and First In First Out (FIFO)
data buffers are placed between actors, allowing for a natural
implementation of pipelining.

The HDL descriptions of the actors have been automati-
cally derived through Vivado HLS, which is the HLS engine
provided by Xilinx [47]. As common HLS engines, Vivado
HLS allows the developer to tune the obtained HDL, in par-
ticular playing on the trade-off among resources and latency,
through pragmas. In this way, it is possible to derive several
versions of the actors/operations with different resources ver-
sus latency trade-offs, as explained here-under.

B. APPLICATION PROFILING AND OPTIMIZATION
Based on the profiling and performance of the BL profile,
the HP profile has been derived, leveraging on the pragmas
made available by Vivado HLS. The pragmas have been
applied to the most computationally intensive actors within
the BL dataflow. Table 8 depicts the latency required by
the BL actors for executing one step of the DLS algorithm.
The latency has been measured through a post-synthesis
simulation of the actors performed with Vivado Simulator.
J_Matrix is the most time consuming actor, being responsible
of about 45%of the overall latency. Also J2_Matrix and Theta
are quite computationally intensive: their execution requires
more than 20% of the overall execution time. J2Cof_Matrix

TABLE 8. Profiling of the BL DLS hardware implementation actors.

and Theta are instead requiring not more than 10% of total
latency each.

According to the profiled data, three actors have been
identified for latency optimization: J_Matrix, J2_Matrix and
Theta. J_Matrix_HP, J2_Matrix_HP and Theta_HP have
been derived instrumenting the corresponding C specifica-
tions with pragmas, mainly aimed at pipelining and unrolling
inner loops of the computation. So that, two different execu-
tion profiles of the DLS hardware implementation have been
developed:

• BL profile, involving non optimized J_Matrix,
J2_Matrix and Theta;

• HP profile, involving the optimized J_Matrix_HP,
J2_Matrix_HP and Theta_HP actors.

Please note that BL and HP profiles share the remaining
actors,Min and J2Cof_Matrix.

C. PRELIMINARY ASSESSMENT
In this section we assess the reconfigurable DLS implemen-
tation (reconf), derived using the design flow described in
Section VI-A, and capable of performing both BL and HP
profiles. Please note that this assessment focuses on a pre-
liminary study of the reconfigurable DLS hardware datapath
(MDC CGR accelerator in Figure 17). Therefore, we mainly
focused on the study of the resource occupancy on board,
which gives a first hint on the feasibility of the implemen-
tation, and on the latency and power data, which give hints
on the possibility of achieving effective trade-off switch-
ing between the BL and HL configurations. The proposed
implementation has been evaluated considering: i) resource
occupancy data, coming from logic synthesis of the actors
and the reconfigurable DLS HDL specification through the
Vivado Synthesis Solution; ii) latency data, measured with
post-synthesis simulations of the design running at 100 MHz
and performed with the Vivado Simulator; iii) power con-
sumption data, given by the Vivado Power Report considering
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TABLE 9. Resource occupancy of the different actors involved actors and
of the reconfigurable DLS implementation. In brackets the percentage of
variations for HP actors with respect to the corresponding BL version.

TABLE 10. Execution latency and power consumption of the
reconfigurable DLS implementation. In brackets the percentage of
variations for HP profile with respect to the BL one.

the real switching activity of the system gathered during the
same post-synthesis simulations running at 100 MHz.

Table 9 depicts resources occupancy details of the reconf
design and of its standalone actors. The most time consuming
actor, that is J_Matrix according to Table 8, is also the most
resource hungry one. Such relationship is not always verified
since J2Cof_Matrix, which is one of the less time consuming
actors according to Table 8, is the second one in terms of
resource occupancy. What is sure is that HP actors consume
always more resources than the corresponding BL version.
Such increase in resources demand is maximum for J_Matrix,
where DSP touches +389%, and minimum for BRAM in
J2_Matrix and Theta. In terms of reconfigurability, we can
notice that the reconf design, which can execute both BL and
HP profiles, takes less resources than the sum of single actors
(see sum row in Table 9) synthesized stand-alone. This is due
to optimizations made by the synthesizer. Indeed, resources
partially employed in single actor cases are fully exploited,
in shared manner, in the reconf one.
Table 10 shows execution latency and power consumption

of the reconfigurable DLS implementation while operating
under the different execution profiles. The desired trade-off is
now clear: providingHP versions of J_Matrix, J2_Matrix and
Theta actors made it possible to almost halving the execution
latency in the HP profile. In this case a single DLS iteration
terminates in a bit more than 34 µs, against the almost 63 µs
of the BL one. As a drawback, the increased resources usage
of the HP profile is reflected on the consumed power: HP
consumes 9% more overall power, which reaches 19% if the
only dynamic contribution4 is considered.

VII. CONCLUSION
In the context of CPSs design, it turned out to be
particularly important for the embedded computing plat-
forms to support complex execution workloads without

4In FPGA this term is usually most important than the static one since this
latter, being not dependent on the occupied resources, is always constant for
a given operating condition.

sacrificing flexibility, to be able to dynamically react to
system- and environmental-driven triggers. Heterogeneous
platforms, such as modern FPGAs, could easily serve the
purpose and, lately, have been used in many new application
fields, one of them is certainly the robotic one.

In this article we presented the first attempt of imple-
menting the DLS algorithm, for IK problems solution, over
an FPGA substrate. The implementation has been realized
leveraging on commercial (MATLAB, MATLAB Coder,
Vivado HLS, Vivado) and open-source academic (MDC)
tools, to mitigate the designer effort and make the implemen-
tation more straightforward also for software programmers.
The developed implementation is suitable for playing at run-
time with the main algorithm parameters, such as number
of iterations or damping factor. Preliminary results showed
that the proposed implementation is capable of processing
one DLS iteration in less than 0.1 ms and that different
execution profiles, trading-off execution latency and power
consumption, can be enabled.

The other important contribution of this article is the anal-
ysis of the DLS for a perspective parallel implementation.
From our study on the algorithm, it turned out that segmenta-
tion could be used to reduce the execution time, at the price of
adoptingmore iterations of the DLSwith respect to a classical
sequential solution. Such a price could worth to be paid in
strictly timing constrained scenarios, and a parallel hard-
ware implementation like the one presented in [31] for the
Nelder Mead IK solver could be adopted. The coprocessing
infrastructure presented in Figure 17 is already compliant [5]
with the parallel FPGA-based architecture presented in [4]
and used in [31] for robotic purposes. Therefore, in future,
a parallel hardware implementation of the DLS could be
certainly attempted.
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