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Abstract—Conformal antenna arrays are able to fit seamlessly
on curved 3D-shaped surfaces, which are found ubiquitously on
vehicles, aircraft, a human body, etc. In addition, conformal
structures can overcome the scan loss limitations of conventional
planar arrays. Yet, only a few computational analysis methods
have been proposed with either performance or applicability
limitations. In this study, a rapid analysis methodology is de-
veloped for the analysis of arbitrary-shaped conformal beam-
scanning arrays. The method requires only specifying the element
position vectors and normals in space. Arbitrary individual
antenna patterns could be specified. Finally, an example study
is provided examining the beam-steering performance of half-
cylinder conformal arrays vs a reference square planar array.

Index Terms—conformal array, beam scanning, directivity,
scan loss, rapid code.

I. INTRODUCTION

Conformal antenna arrays provide powerful performance
capabilities whenever an antenna has to fit in geometrically
on 3D-shaped surfaces like that found on space- and air-
craft. Traditional planar and reflector antenna arrays affect
the aerodynamic performance of the aircraft as well as have
limited scanning capabilities (usually up to ±60◦) [1]. There-
fore, conformal antenna arrays are considered as an attractive
alternative. Conformal array technology is still rarely used
in commercial applications. It is limited mostly to military
communications and aviation, missile electronic warfare, and
radar systems. This is also important for future aircraft designs
that use thrust vectoring and, thus, can decouple the flight
and aircraft axes. In addition to military applications, the
conformal antenna arrays are gaining importance in mobile
communications. Future mobile base stations can be concealed
for aesthetical reasons. One of the most important applications
of the conformal arrays in the future is expected to be the
smart skin approach [2]. It envisages the integration of non-
planar active antenna apertures in curved surfaces adapted to
the skin of the platform: aircraft, satellite, car, etc. Biomedical
applications have been also considered recently for both in-
body [3] and on-body [4] devices.

A fundamental problem in the analysis of conformal arrays
is that there is an infinite number of the possible surfaces
to conform to. Furthermore, if there is no symmetry, each

Fig. 1. Problem formulation: an arbitrary shaped surface containing a
conformal antenna array defined in a global Cartesian coordinate system as
{(r1, ..., ri) | ri in R3 and i = N ×M}. Individual element orientations
are defined using normals n̂i. Vector rp leads to the observation point in the
far field and rs to the scan direction.

element will see a different environment and this complicates
the mathematics. As a consequence, the element factor cannot
be factored out from the array factor. This is directly translated
to the simulation time needed for the analysis.

Implementation of analysis algorithms is nontrivial as well.
It requires interdisciplinary background in antennas and elec-
tromagnetics, analytic geometry, advanced linear algebra, and
rapid code development. Therefore, only a few codes have
been proposed so far. Brégains et al. proposed a methodology
for the analysis of arbitrary conformal arrays [5]. The local
coordinate systems have to be pre-specified explicitly for each
array element. This code was later extended to deal with
heterogeneous elements with potentially different polarizations
[6]. Kobayashi et al. have recently proposed a simple calcula-
tion method of equi-phase fronts of conformal arrays based on
the direction-cosine relation [7]. As for the commercial codes,



to the best of authors’ knowledge, only Phased Array System
Toolbox TM implemented in MATLAB [8] provides a complete
script-based framework for the analysis of conformal arrays.

In this study, we propose a new tool for rapid analysis of
arbitrary-shaped conformal beam-scanning arrays. Compared
to [6], only the element position vectors ri and normals
n̂i are required to set up the array. More than a twofold
reduction of execution time and memory complexity was
achieved compared to [8]. This enables the analysis of larger
and more complex structures. Finally, an example study is
provided that examines beam-steering performance of a half-
cylinder conformal array vs a reference square planar array.

II. PROBLEM FORMULATION

A. Coordinate Systems

We define the array geometry in global coordinates (GCS)
via the element position vectors ri = (xi, yi, zi) and the
normals n̂i = (θi, ϕi) (Fig. 1). Transitions between spherical
and Cartesian forms are as defined in [9, Sec. 3.5.3.1]. For
the isotropic elements [i.e. fi is a scalar constant independent
of (θ, ϕ)], defining only GCS is enough. However, for an
arbitrary conformal array consisting of directive elements, it
is useful to define the local coordinates systems (LCS). We
accomplish this by, first, placing (ri) and orienting (n̂i) the
array elements in GCS. Then, we use the rotation matrices X,
Y, and Z (as defined in [9, Sec. 3.5.3.2]) around each axis
(x, y, z) in Cartesian coordinates. The full 3×3 transformation
matrix T is then generated for each element by multiplying
successively the rotation matrices:

T = ZYX. (1)

Assuming no polarization, the rotation is required only around
y- and z-axes. X is therefore an identity matrix, or T = ZY.

The transformation matrices allow now to determine the set
of observation point vectors {(rp1 , ..., rpi) | rpi in R3} in
LCS for each element by, first, multiplying T by a column-
vector rp and, second, summing the columns of a resulting
matrix R. Finally, rpi could be converted back to spherical
coordinates. Now we can determine the contribution of each
element at the direction rp.

B. Far-Field Superposition

For an arbitrary conformal array depicted in Fig. 1, the
radiation pattern is obtained by superposition of contributions
of each element [10]:

E (θ, ϕ) =

N×M∑
i=1

fiwie
−jkri·rp , (2)

where θ = azimuth angle, ϕ = elevation angle, fi = individual
element radiation patterns, wi = |wi|e−jβi are the complex
weights, βi = phase of the ith element, k = 2π/λ is the
wavenumber at the frequency f , ri = (xi, yi, zi) is the position
vector of the ith element relative to the center of GCS, and
rp = vector to an arbitrary observation point P (θ, ϕ).

Individual array elements consist mainly of simple anten-
nas: patches, dipoles, monopoles, etc. Their smooth radiation
patterns can be accurately reproduced using simple analytical
expressions. For the sake of simplicity, we represent here a
generic directive antenna using a second-order cosine:

Ei = cos2 ϕi cos2 θi. (3)

C. Array Scanning

Array scanning to an angular direction (θscan, ϕscan) can be
accomplished by applying the complex weights wi. These are
chosen so that the path length differences for the generalized
conformal array in Fig. 1 are compensated in order to make
the radiated phase fronts from all elements arrive in phase at
a given point S in far field. Therefore, the complex weights
could be easily found as [10, p. 15]:

wi = aie
−jkri·rs , (4)

where ai is the real-valued amplitude of the ith element.
Therefore, the phase βi = tan−1 [= (wi) /< (wi)] and rs is
the steering vector obtained from (θscan, ϕscan) as

rs =

− cos (ϕscan) cos (θscan)
− cos (ϕscan) sin (θscan)

− sin (ϕscan)

 . (5)

Note that (4) is exact for an array of isotropic elements.
For anisotropic elements—as (3)—the solution is approximate
with its error proportional to the steering angle.

D. Directive Properties

Directive gain is a ratio of the array radiation intensity in
a given direction over the radiation intensity of an isotropic
source. We calculate it as [11]

D =
4πU (θ, ϕ)

Prad
, (6)

where U (θ, ϕ) = |E (θ, ϕ) |2 is the radiation intensity and
Prad is the total radiated power. The latter could be obtained
by integrating U over the entire solid angle of 4π [11, Ch.
2.4]:

Prad =

�
Ω

UdΩ =

� 2π

0

� π

0

U sin θ dθdϕ. (7)

We solve (7) numerically as given in [11, Ch. 2.7].
Finally, the directivity D0 of the array is defined as the

maximum value of the directive gain D0 = max [D ((θ, ϕ)].

III. EXAMPLE RESULTS

Using the outlined methodology, we developed a MATLAB
code for the analysis of arbitrary-shaped conformal beam-
scanning arrays. For demonstration and benchmark purposes,
we perform a simple analysis of a half-cylindrical-segment
conformal array and compare its beam-steering performance
with a reference planar array. For instance, such problem can
arise in an aircraft-wing antenna design when facing a decision
of mounting a planar array behind an aerodynamic radome or
conforming the array to a wing.
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Fig. 2. Geometry of the example problem: comparison of beam-scanning
performance of (a) square planar and (b) half-cylindrical-segment conformal
arrays. Both arrays span the same area on y–z plane. The element separation
distance is λ/10 so that the fundamental bounds on D0 are obtained. The
individual elements patterns are according to (3). The element normals n̂i

(denoted by red arrows) are orthogonal to the array surfaces.

A. Half-Cylindrical-Segment vs Planar Arrays

Fig. 2 shows the geometries of the arrays under comparison.
The element separation distance is λ/10 that allows obtaining
the fundamentally achievable D0 in a given steering direction
(ϕscan, θscan). The square planar array (Fig. 2a) contains 400
elements, and the conformal one (Fig. 2b) has 620 elements.
Both arrays span the same (2λ)2 area on the y–z plane. The
individual element patters fi are given by (3), and the element
normals n̂i are orthogonal to the array surfaces.

Well-known scanning performance of a planar array is
demonstrated in Fig. 3a: the scanning range is limited by a
maximum of about 60◦ in both azimuth and elevation planes.
End-fire radiation in a given direction can only be achieved
using the individual elements with appropriate patterns to
satisfy the superposition in this direction [12].

Conformal arrays allow to mitigate such limitations. Clearly,
the elevation-scan range is improved as Fig. 3b shows: even
at 90◦ only a few dBi of scan loss is observed. A less obvious
result is that the azimuth scanning range is also significantly
improved for non-zero elevation angles. In other words, for
the arrays in Fig. 2, the planar one has inaccessible scan range
of about 30◦ from y–z plane in any direction. However, the
half-cylindrical conformal array has a blind zone only ≈ 20◦

around the y-axis. Note that we analyzed the scanning range
only for a +x half-space since we consider here the cosine-
squared array elements with no back lobes. The conformal
array has also a limited scanning capability in the −x half-
space, i.e. beyond ϕscan > 90◦. As the scan loss will be high
in this angular space, we omitted these results for clarity.

The obtained results were verified using the Phased Array
System Toolbox TM implemented in MATLAB [8] and are in
perfect agreement. As for the performance of our code, the
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Fig. 3. Comparison of beam-scanning performance of (a) planar and (b) half-
cylindrical-segment conformal arrays. The broadside scanning direction is
(ϕ, θ) = 0◦. Only a quarter of the scanning range is shown due to the
symmetry properties of the arrays in Fig. 2. Maximum directivity in the
scanning direction is shown, and the corresponding elements weights wi are
estimated using (4).

analysis of D0 for one scanning angle took 9.1 s, whereas
[8] requires 21.9 s to execute (average times over 10 runs;
Intel Core i7-6700 CPU, 32 GB DDR4 RAM). Note that
(θscan, ϕscan) ∈ [0, 90]

◦ has been analyzed to obtain the
results in Fig. 3, which represent significant performance
improvement.

The memory complexity is also significantly reduced com-
pared to [8]. Low memory usage makes it possible to analyze
much larger structures. For instance, the analysis of the 10λ
half-cylindrical array (15.7k elements) was impossible using
[8]: memory overflow occurred even on a computation server
with 256 GB RAM. Using our code, the run time for one
scanning angle took 48.2 min in average (over three runs) on
the aforementioned 32-GB-RAM desktop computer.

IV. CONCLUSION

In this study, we proposed a new tool for fast analysis
of arbitrary-shaped conformal beam-scanning arrays. Imple-
mentation of the proposed methodology allow for rapid and
accurate analysis of the radiative properties of conformal



beam-scanning arrays with arbitrary spatial configurations in
R3. Considering nearly identical mathematical approach, the
method can also be applied to the analysis of complex 3D-
shaped apertures [11, Ch. 12]. Future work includes the im-
plementation of arbitrary element polarizations and existing in-
house optimization approaches (e.g. [13]) to enable radiation
pattern synthesis of arbitrary conformal arrays.
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