
HAL Id: hal-03003022
https://hal.science/hal-03003022

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Forecasting Pest Risk Level in Roses Greenhouse:
Adaptive Neuro-Fuzzy Inference System vs Artificial

Neural Networks
Ahmad Tay, Frédéric Lafont, Jean-François Balmat

To cite this version:
Ahmad Tay, Frédéric Lafont, Jean-François Balmat. Forecasting Pest Risk Level in Roses Greenhouse:
Adaptive Neuro-Fuzzy Inference System vs Artificial Neural Networks. Information Processing in
Agriculture, In press, �10.1016/j.inpa.2020.10.005�. �hal-03003022�

https://hal.science/hal-03003022
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Forecasting Pest Risk Level in Roses Greenhouse: Adaptive1

Neuro-Fuzzy Inference System vs Artificial Neural Networks2
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Abstract5

The purpose of this study is to establish a system for the prediction of the pests’ risk level in6

a roses greenhouse by applying Artificial Neural Networks (ANNs) and an Adaptive Neuro-Fuzzy7

Inference System (ANFIS). Pests in roses greenhouses are known to be fatal to plants if not detected8

at a premature stage. Early detection could avoid huge agronomic and economic losses. Though,9

it could be a difficult task to achieve. The complexities arising from the interactions between10

variables influencing the development could be a barrier to fulfill the previously mentioned task.11

The output of the developed system represents the next day’s risk level of Western flower Thrips12

(WFT) (Frankliniella occidentalis) in a roses greenhouse. Four explanatory variables, such as internal13

temperature, internal humidity, today’s pest risk level and human intervention have been considered14

for this estimation. The main contributions of this study are three fold; providing a daily estimate15

WFT risk level, reducing the use of pesticides and finally mitigating yield loss. The obtained16

results were compared to each other and to real data. The performance of the models has been17

evaluated by 3 statistical indicators. Numerical results showed conspicuous performance of both18

models, indicating their efficiency for pest monitoring. The novelty associated with the system is19

the creation of decision support tool for daily risk assessment of WFT. Relying on a small number20

of variables, this system is a monitoring tool which contributes to help farmers early reveal warning21

signs. In addition, this is a first attempt to employ ANNs and ANFIS for the prediction of WFT.22
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1. Introduction25

Western Flower Thrips (WFT), or Frankliniella occidentalis (Pergande 1895), is a polyphagous26

pest species in horticulture and agriculture worldwide. The origin of this species of thrips is the27

North-West of America and Mexico [1]. The presence of F. occidentalis was reported for the28

first time in Europe in 1983 and in 1986 on French territory, and since then it is considered a29

cosmopolitan serious pest [2]. This pest insect attack ornamental crops, trees and vegetables, and30

lead to enormous economical and agricultural losses. Their tiny size, high and fast reproduction31

rate, affinity for protected zones and their behavior on host plants (difficulty to predict the way32

they shift from leaves into rosebuds) hinder their early detection [3]. Accordingly, and in addition33

to the fact that F. occidentalis feed on flowers, leaves and on other herbivores [3], they cause a vast34

economic damage. It is then essential to adopt Integrated Pest Management (IPM) programs. IPM35

involves the implementation of several control protocols such as chemical (pesticides), biological,36

physical and others ([4] and therein). Separate carrying out of those approaches had not led to37

auspicious consequences. For example, the huge dependence on pesticides led to the resistance of38

pests to them, and hindered their efficiency. It is hence more preferable to adopt other practices39

or combine several strategies for a better control of WFT [5, 6]. Among the eight IPM principles40

[6], monitoring (aka scouting [7, 8]) is one of the most important tactics to control WFT. Scouting41

is defined as counting and estimating population densities of a pest species [9]. It helps detect42

harmful organisms and it incorporates two methods [10]: direct sampling by tapping flower heads,43

and indirect sampling using yellow sticky traps. Thrips population densities could be also estimated44

using computational and mathematical models and early diagnosis systems with the help of45

professional advisors [6].46

47

Many models have been developed to estimate thrips population. The joint purpose of these48

models is to serve as a potential decision tool. Ogada et al. [11] introduced a deterministic model49

consisting of differential equation systems to estimate thrips population growth by incorporating the50

effect of Tomato Spotted Wilt Virus (TSWV) on its dynamic. The model required a huge number51

of variables to be constructed (18 variables). A mathematical model was built to estimate WFT52

on greenhouse grown chrysanthemum by considering the temperature, population density and food53

availability [12]. Wang [13] predicted population dynamics of F. occidentalis depending on females’54

fecundity, sex ratio and larval mortality. Many other approaches have been developed for modeling55

insects populations ([10, 14, 15] and therein). None of the models was established to provide a56
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real-time daily estimate. They also required too many variables which are difficult to obtain by57

regular farmers (sticky traps, amount of eggs in infected plants, sex, leaves damages, etc.). Certain58

models were established under laboratory conditions, unconcerned with complexities arising from59

interactions inside the greenhouse [14, 16]. These difficulties drive us to avail Soft Computing (SC)60

to design an eligible model to estimate F. occidentalis population in a roses greenhouse.61

62

Soft Computing is the establishment of approximate models to solve real complex problems63

which include uncertainty, and impreciseness. Artificial Neural Networks (ANNs) and Adaptive64

Network-based Fuzzy Inference System (ANFIS) are critical algorithms for SC [17]. ANNs are65

nonlinear algebraic computational models introduced by McCulloch and Pitts in 1943 [18], based66

on the biological neural network. ANFIS is a fuzzy system developed by exploiting the similarities67

between Fuzzy Logic (FL) and certain forms of neural networks. ANFIS was first proposed by J.-S.68

Jang for system identification and time series prediction [19].69

70

Artificial Neural Networks have been a major subject for applications in many fields including71

agriculture. They have shown robust performances when it comes to prediction of disease and72

pests. ANNs were applied to estimate weekly population of thrips per leaf in cotton crops [20],73

monthly populations of Melon thrips and Diamondback moth [21], incidence of rust in coffee [22],74

monthly wheat Deoxynivalenol [23], and the geographic distribution of pests [24]. They were also75

employed to estimate other crop diseases and pests ([25, 26, 27]). As for ANFIS, it has been used76

in agriculture due to its ability to structure nonlinear relation between a set of predictors and a77

set of dependent variables. It was employed for the classification of different types of diseases of78

tomato and brinjal/eggplant via features extraction [28]. ANFIS was also utilized to classify three79

cotton leaf’s diseases [29] and for the diagnosis of soya-beans diseases [30], but not yet for WFT80

risk estimation in roses production.81

82

Our study aims to assist farmers and decision makers to monitor the population of WFT in83

roses greenhouses by introducing ANNs and ANFIS models. One of the main advantages of84

this study is that the model provides a daily risk index, unlike other models which give weekly85

estimates. This advantage is very substantial for IPM because it could help farmers to employ86

appropriate strategies based on the displayed signal. Also, we are interested in developing a model87

to predict thrips populations in a roses greenhouse, relying on a small number of variables. Selecting88
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few descriptors, meaning the dependence on few sensors, is an important aspect because some89

greenhouses might not be equipped with many sensors, due to their expensive prices, and difficulty90

to use and understand.91

92

The incentives of this work are to avoid yield loss, to optimize the production by reducing93

the use of pesticides, and to help the farmer effectively against WFT. The aspects of this study94

are interesting just as the system discloses a daily risk value, notifying the user about the risk95

level in the greenhouse. As this project is a collaboration between the university of Toulon and96

the Technical Institute of Horticulture (ASTREDHOR), the obtained results were validated by97

experts with whom we collaborate, at the Syndicate of the Regional Center for Application and98

Horticultural Demonstration (SCRADH), its station in Hyères, France.99

100

The rest of paper is organized as follows. Section 2 is dedicated to present the materials101

and methods in which we introduce the place of the study, the data and the proposed models.102

Section 3 includes the experimental results. Section 4 presents a discussion about the findings of103

this research. At the end, a general conclusion is presented. The comparison with FL was not104

included in this study because we are rather interested in data-based systems than knowledge105

based.106

2. Materials and Methods107

2.1. Experimentation’s site description108

Hyères is a major city in the south-eastern France, known for its importance in producing roses in109

the French Riviera. The SCRADH, latitude 43◦ 6’ 55.9836” N, longitude 6◦ 9’ 11.663” E, is a center110

that conducts experiments and research programs in the horticultural sector in Hyères. They have111

been carrying out experimental protocols on greenhouse crop production systems, then validating112

the technical and economic feasibility of new production concepts. Their inquiries and explorations113

are concerned with adopting appropriate strategies to control WFT, which has been an annoying114

pest since many years. A high percentage of crop loss has been observed (100% at some periods) due115

to WFT. The experimental greenhouse (300 m2) consists of 6 benches (B1 to B6) of 24m long each,116

each carrying 6 plots (Fig. 1) (36 plots in total). Each plot (parcel) measures 4m ×1m = 4m2 and117

contains about 34 rose-plants of same variety, for instance, Milva 2A, Samourai, Amaretto, Penny118
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Lane, etc. The plants size varies between [0.5m, 2m] and the average size of the plants is about 1.5m119

(Fig. 2). None of the plants was withered and replaced during data acquisition period.

Figure 1: Distribution of plots in the greenhouse [31]

Figure 2: Rose plants at commercial stage and experimentation materials used to tap the rosebuds

120

5



2.2. Factors promoting the development of WFT121

Temperature and humidity are considered the most important factors affecting WFT development.122

Olatinwo and Hoogenboom [32] stated all the climatic factors temperature, rainfall, and relative123

humidity that influence the development of WFT. The effect of relative humidity on the124

determination of WFT has been discussed by Fatnassi et al. [33] and Steiner et al. [34]. The125

results of the previously cited studies showed that the perfect temperature for thrips survival is126

between 23◦C and 28◦C, while the optimal relative humidity varies between 70% and 80%.127

According to SCRADH’s expertise and existing literature, the development of WFT is also contingent128

upon the existing population of WFT, and physical interventions carried out by farmers. The present129

density of WFT in the greenhouse following survival is important to measure the risk on rose plants.130

The selection of human intervention is suggested by our partners at SCRADH as a consequence of131

its effect on reducing thrips density.132

2.3. Data acquisition133

Data provided by the SCRADH consists of temperature and humidity data measured by sensors and134

pest data measured by manual counting.135

2.3.1. Temperature and humidity data136

The hourly internal temperature Ti (◦C), and internal relative humidity HR (%) data are utilized,137

and they were recorded between October 2012 and May 2014.138

2.3.2. Insect population data139

For each plot, 4-5 plants were randomly selected, with 1.5 meters in between. Engineers at140

SCRADH counted the number of WFT individuals inside the rosebuds (of the selected plants) at141

harvesting (commercial) stage by threshing each rosebud on a white paper (Fig. 3). The number of142

WFT in each flower plot tri is classified into 4 classes: 0, 1, 2, and 3, respectively corresponding to143

the total absence, existence of 1, 2, and 3 and more WFT individuals.144

145

Let ni be the frequency (number of repetitions) of each class tri. Since tr3 = 3 corresponds146

to the existence of 3 and more thrips, then its frequency is considered more significant than the147

others. For example, even if the counted population is 1000, it is marked 3. When we compute148
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Figure 3: WFT individuals threshed on white papers

the mean, there will be a loss of information, and the relevant value is not a good representative.149

For a realistic and logical demonstration, each ni is associated with a certain weight wi, such that150

w0 = w1 = w2 = 0.1 and w3 = 0.7 = 1 − (w0 + w1 + w2). The weights were proposed by the151

SCRADH’s engineers following their expertise, but they could be adjusted depending on strong152

knowledge in the field. The measured risk level of WFT (WFTweek) in the greenhouse ∈ [0, 3] is153

attained as shown below (Eq. (1)):154

WFTweek =

∑3
i=0 winitri∑3
i=0 wini

(1)155

As an example, on week 19 in 2013, 0 thrips individuals was detected in 20 plots, only 1 thrips in156

8 plots, 2 individuals in 3 plots, and 3 and more in 5 plots (Table 1). We remind that tr3 = 3157

corresponds to the presence of 3 and more thrips, and that its frequency n3 = 5 is way more158

important than others classes.

Table 1: Counting of WFT individuals on week 19 of the year 2013

tri 0 1 2 3 total

ni 20 8 3 5 36

wi 0.1 0.1 0.1 0.7 1

159

Accordingly, the measured level of WFT on week 19 of the year 2013 is:160

WFTweek19 =
0.1× 20× 0 + 0.1× 8× 1 + 0.1× 3× 2 + 0.7× 5× 3

0.1× 20 + 0.1× 8 + 0.1× 3 + 0.7× 5
= 1.8 (2)161

Fig. 4 presents the risk values of WFT on all the other weeks of the study, calculated following the162

same method as the one shown above (Eq. (1)). Each value is defined and interpreted as the risk163

level of WFT and not the mean value. We are currently working on a method to transform this164

value into an approximated value of WFT individuals.165

166
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Figure 4: WFT weekly risk levels calculated from Eq. (1)

Since we strive at obtaining a daily prediction of WFT risk level, we calculated the daily167

averages of Ti and HR respectively. As for pest data, WFTweek underwent linear interpolation168

using newton’s formula [35] to approximate the daily WFT risk level (WFT ).169

2.3.3. Human intervention170

Engineers at SCRADH observed remarkable decreases in WFT populations during human171

intervention, i.e, Dishooting (DS) (the rosebuds are broken so the plants accumulate nutrients),172

pruning (PR), and massive harvesting (MH). The population of WFT is respectively reduced by173

50% and 90% at the end of PR and MH periods. DS is a weekly performed intervention and leads174

to the removal of equal WFT subpopulations. Hence, the weekly eliminated percentage is 100%
s175

where s ≥ 1 is the number of weeks predetermined for DS. Management practices were performed176

as follows:177

• Dishooting: weeks 46-50.178

• Massive harvesting: Christmas holidays (weeks 13-15, 66-67) and Valentine’s day (weeks 21-22,179

73-74).180

• Pruning: weeks 2-3 and 71-72.181

• Insecticides: Applied 3 times per month from May to July (weeks 35-42) and between182

September and October (weeks 52-56) (Fig. 4).183
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By reason of the fact that a significant shortage of knowledge about the removed daily quantities184

exists, we consider that equal subgroups are withdrawn. For a clear demonstration, the daily185

eliminated percentage due to PR, MH, and DS are correspondingly 50%
D1 , 90%

D2 , and 100%
7s . The186

daily weighting coefficients γ(t) of each of the intervention phases can be written as follows:187

γ(t) =



(1− 0.5/D1) PR = 1

(1− 0.9/D2) MH = 1

(1− 1
7s ) DS = 1

1 otherwise

(3)188

189

where D1 and D2 are the planned durations of PR and MH in days respectively. For instance,190

if we plan to prune the plants over 6 days (D1=6 days), then the daily weighting coefficient is191

γ(t) = 1− 0.08 = 0.92. Considering one week of DS, i.e, s=1, then γ(t) = 1− 1/7 = 0.85.192

2.4. Artificial neural networks ANNs193

ANNs can be defined as mathematical models or data-processing systems that simulate biological194

neurons. ANNs are considered as function approximations to model complex and nonlinear195

relationships between a set of outputs and a set of inputs [20]. The Feed Forward neural network196

(FFNN) or multilayer perceptron (Fig. 5) is one of the mostly used and efficient network among197

other ANN prototypes [36]. The output of the kth node of the hidden layer can be written as:198

Hk = f(

P∑
j=1

wk,jXj + bk1) (4)199

where wkj are the weights connecting the jth input and the kth hidden neuron, and bk1 is the bias of200

the kth neuron. The activation function f could be sigmoid, linear, tangent hyperbolic or any other201

defined differentiable function. The output of the network is the estimated target variable, and its202

calculation depends on the outputs of previous hidden layer and other connection weights between203

the outputs nodes and the hidden nodes. It is mathematically expressed as follows:204

Ol = g(

L∑
l=1

w?
l,kHk + bl2) (5)205

where w?
lk are the weights connecting the kth hidden neuron with the lth output neuron, and b2l is206

the bias of the lth output neuron. The value of the activation function g is the predicted output207

of the network Ol. As they are data driven models, ANNs use learning algorithms [37] to adjust208
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Figure 5: Typical architecture of an FFNN with one hidden layer

the connections of the network in order to obtain the best operating model. This model is obtained209

when the error Etotal is minimized to a certain threshold:210

Etotal =
1

N

N∑
i=1

(
1

2

L∑
l=1

(Ol − Yl)2) (6)211

where N is the total number of training samples, L is the number of outputs, ( 1
2

∑L
l=1(Ol − Yl)2)212

is the error for training sample N, Ol and Yl are, respectively, the predicted and desired outputs213

at node l. Learning algorithm is the adaptive procedure through which the network modifies the214

weights repeatedly to approach the goal point with the lowest error [36].215

216

Fig. 6 shows the ANN based model used to perform estimation. The output of ANN is the217

predicted pre-intervention WFT risk level (PRE WFT (t+ 1)). The final output of the model, the218

post-intervention WFT risk level (POST WFT (t + 1)) is gained by multiplying the intervention219

coefficient γ(t) and (PRE WFT (t+ 1)).220

Following the recommendations of Negnevitsky [38], the topology of ANN comprises one hidden221

layer. Aiming at avoiding over-training (more neurons) and under-fitting (less neurons), the number222

of hidden neurons is M = 2P + 1 following Kolmogorov’s theorem [39], where P is the number223
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Figure 6: Architecture of the ANN-based model (WANN)

of input variables. Because data is normalized between 0 and 1, the logistic sigmoid activation224

functions was chosen for the output (Eq. (7)).225

f1(

P∑
j=1

wk,jxj + bk1) =
1

1 + e−(
∑P
j=1 wk,jxj+bk1 )

(7)226

227

Regarding the hidden layer, and using the error and trial procedure, the logistic sigmoid provided228

better performance than linear, hyperbolic tangent sigmoid, rectified linear unit (ReLU) and229

leaky ReLU activation functions [40]. The weights were uniformly distributed following Glorot’s230

initialization algorithm [41] to break symmetry when back propagating, and to avoid the problems231

of exploding and vanishing gradients. The gradient descent algorithm was utilized with an adaptive232

learning rate (Eq. (8)). We started by a relatively large learning rate to proceed rapidly toward the233

good zone, which was then progressively reduced until a small rate was achieved at the end for more234

precision. The optimized parameters of ANN were obtained when the global error was smaller than235

10−3.236

η(iter) =
η0√
iter

(8)

where iter is the current learning epoch, η0 is the initial rate (0.3), and η(iter) is the learning rate237

at epoch iter.238

2.5. Adaptive Neuro-Fuzzy Inference System239

ANFIS was introduced by Jang [19] for system identification, estimation and contol, to overcome240

the drawbacks of ANNs and FL [42]. ANFIS is used to model complex input-output relationships241

because it incorporates the knowledge representation of FL and learning ability of ANNs. The242

most important advantage of ANFIS is that when the training process is finalized, knowledge is243

explicitly constituted by the fuzzy rules (gray-box comportment). ANFIS uses a Takagi-Sugeno244
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(or Sugeno) FIS [43] to estimate the output. The output MFs of a Sugeno FIS could be linear245

(first-order polynomial) or constant (zero-order polynomial). The fuzzy reasoning mechanism of a246

2 input (X1 and X2) Sugeno model can be expressed as follows:247

Rule 1 : If X1 is A1 and X2 is B1, then y1 = k01 + k11X1 + k21X2248

Rule 2 : If X1 is A2 and X2 is B2, then y2 = k02 + k12X1 + k22X2249

where A1, A2, B1 and B2 are the fuzzy sets of X1 and X2, y1 and y2 are the linear output functions.250

The coefficients {(k01, k11, k21), (k02, k12, k22)} are the conclusion parameters of rules 1 and 2251

respectively. Fig. 7 shows the architecture of ANFIS corresponding to the implementation of the252

above rules.253

ANFIS consists of five layers in which layers 1 and 4 (squares) are adaptive (their parameters are254

tuneable) whereas the others are fixed (circles). The concept of ANFIS is described below.

Figure 7: ANFIS structure

255

256

Layer 1: Known as the fuzzification layer where the crisp inputs are transformed into fuzzy257

sets. The outputs of this layer are nothing but the MFs.258

O1,j = µAj (X1) for j = 1, 2 (9)259

O1,j = µBj (X2) for j = 1, 2 (10)260

where Aj(X1) and Bj(X2) are the linguistic label associated with the nodes, µAj and µBj are the261

MFs. Parameters in this layer are called the nonlinear parameters of the model, or the premise262
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parameters.263

Layer 2: A fixed layer referred to as the rule layer. The output of each node is the firing strength264

of the rule described as the product (
∏

i) of all incoming signals.265

O2,i = wi = µAj (X1)× µBj (X2), i = 1, 2 (11)266

Layer 3: The firing strength of every rule i is calculated to the sum of firing strengths of all rules.267

Consequently, this layer is known as the normalization layer (Ni).268

O3,i = w̄i =
wi∑
i wi

269

=
wi

w1 + w2
, i = 1, 2 (12)270

Layer 4: This layer is known as the defuzzification layer whose nodes are adaptive in nature. The271

processing in this layer can be interpreted as the contribution of every rule to the overall output.272

The node function of the ith node is:273

O4,i = w̄iyi = w̄i(k0i + k1iX1 + k2iX2), i = 1, 2 (13)274

where w̄i is the output of layer 3, X1 and X2 are the inputs, and {k0i, k1i, k2i} are the linear275

(consequent) parameters.276

Layer 5: This is the final layer which consists of one node only. This node calculates the overall277

output by summing up (
∑

) all the incoming signals.278

O5,1 = y =
∑
i

w̄iyi (14)279

= w̄1y1 + w̄2y2 (15)280

ANFIS employs a hybrid learning algorithm [19, 44] to tune its antecedent and consequent281

parameters.282

In this study, the risk level of WFT was also evaluated by examining an ANFIS-based model (Fig. 8).283

284

Initial partitioning of the input space was performed using the grid method. This approach is285

as follows: based on a predefined number of MF, the data is partitioned into fuzzy rectangular286

subspaces using axis-paralleled partitions. The grid method is recommended when the number of287

inputs is small (less than 6). It is due to the fact that the number of rules increase exponentially as288

the number of inputs increases, which requires a large computer memory to perform the learning.289

13



Figure 8: Architecture of the ANFIS-based model (WANFIS)

Regarding ANFIS, the Gaussian MF (Eq. (16))290

µA(x, c, σ) = e−
(x−c)2

2σ2 (16)291

with c and σ being respectively the center and the width of the fuzzy set A, was found superior to292

all other types and it was consequently chosen to train the model. Based on the hybrid learning293

algorithm, ANFIS was trained until the training error was smaller than 10−3.294

2.6. Evaluation of Models Performance295

The goodness-of-fit for the two models was evaluated through three statistical indicators: the296

coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE).297

They indicate the accuracy of prediction by calculating the difference between measured and298

predicted values. They are defined as follows [45]:299

R2 = 1−
∑N

n=1(yn − ŷn)2∑N
n=1(yn − ȳn)2

(17)

RMSE =

√√√√ 1

N

N∑
n=1

(ŷn − yn)2 (18)

MAE =
1

N

N∑
n=1

|ŷn − yn| (19)

where ŷn and yn are respective predicted and measured WFT levels for the nth data entry, and ȳn300

is the average of yn.301

3. Results302

In order to prevent the problems caused by the varying scales which often lead to under-fitting (the303

model could not generalize the relationship between a set of inputs and a set of outputs during304
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the training process), data were normalized between 0 and 1 using the maximum standardization305

method [46], to equalize the contribution of inputs to the prediction of the output. The training306

data is composed of 510 observations corresponding to the interpolated values and the testing data307

is constituted of 87 samples representing the real measured values.308

3.1. Evaluation of WANN309

The first task is to validate the neural network as it is considered the crux of the WANN model. The310

robustness of ANN can be regarded in Table 2 by means of high determination coefficients during311

training R2 = 0.98 and testing R2 = 0.96 phases.

Table 2: Goodness-of-fit indicators of ANN and WANN

Model ANN WANN

Target PRE WFT (t+ 1) Actual POST WFT (t+ 1)

Predicted

Training Testing PRE WFT (t+ 1) POST WFT (t+ 1)

R2 0.98 0.96 0.96 0.96

RMSE 0.10 0.13 0.13 0.12

MAE 0.08 0.10 0.10 0.10

312

In consideration of the testing phase, we can interpret that ANN explained 96% of variation between313

real and estimated values. In terms of RMSE and MAE, ANN illustrated a high prediction accuracy314

with RMSE=0.1 (3.3%) and MAE=0.08 (2.7%) for the training data, and RMSE=0.13 (4.3%) and315

MAE=0.1 (3.3%) when calculated for testing data.316

Fig. 9 shows the correlation between predicted and actual WFT level for testing dataset. The model317

is very accurate showing a strong correlation between the model’s predictions and its actual results.318

We can therefore rely on ANN to estimate WFT after intervention (POST WFT (t+1)). The input319

variable human intervention γ(t) is utilized as a weighting coefficient to PRE WFT (t + 1). The320

component “WANN” of Table 2 aims to demonstrate the influence of intervention of the prediction321

procedure. In that regard, we compute the indicators between actual thrips after intervention (Actual322

POST WFT (t+1)) and that predicted before (Predicted PRE WFT (t+1)) and after intervention323

(Predicted POST WFT (t + 1)). We observe that intervention provokes a slight enhancement of324

results (in terms of RMSE). However, they are almost identical and the influence of intervention is325
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Figure 9: Scatter plot of ANN of actual versus predicted PRE WFT (t + 1) for the testing phase

negligible because the information is included in the input of network.326

3.2. Evaluation of WANFIS327

Table 3 tabulates the measures of accuracy associated with ANFIS showing a highR2 (Training: 0.99,328

Testing: 0.98). In terms of RMSE and MAE, ANFIS also revealed smaller error values indicating a329

vigorous performance. Such results justify the selection of POST WFT (t) in the input vector.330

Fig. 10 shows the correlation between predicted and actual WFT level for testing data-sets. It’s331

trivially noticed that ANFIS is very accurate showing a strong correlation between the model’s332

predictions and its real values.

Table 3: Goodness-of-fit indicators of ANFIS and WANFIS

Model ANFIS WANFIS

Target PRE WFT (t+ 1) Actual POST WFT (t+ 1)

Predicted

Training Testing PRE WFT (t+ 1) POST WFT (t+ 1)

R2 0.99 0.98 0.98 0.98

RMSE 0.06 0.11 0.11 0.11

MAE 0.05 0.08 0.08 0.08

333
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Figure 10: Scatter plot of ANFIS of actual versus predicted PRE WFT (t + 1) for the testing phase

We therefore rely on ANFIS to estimate WFT after intervention (POST WFT (t+1)). The variable334

human intervention γ(t) is utilized as a weighting coefficient to PRE WFT (t+ 1). Table 3 displays335

the effect of intervention on the prediction procedure no significant change is perceived. This336

indicates that we can neglect human intervention in its current form. It is trivial that the results337

with or without intervention are identical.338

3.3. WANN vs WANFIS339

Based on prediction results in sections 3.1 and 3.2, we compared WANN and WANFIS. Fig. 11340

displays the plot of actual (full line, black-*) and estimated daily WFT risk level of WANN (dotted341

line, green-�) and WANFIS (dashed line, red-o).342

The plot indicates high prediction accuracy when comparing the three curves. Even though it is343

difficult to reveal which model is better through visualization, or by making a one-to-one comparison344

for the estimated values, we notice that the curve corresponding to WANFIS overlaps more perfectly345

with real-data curve, disclosing consistency with the results of Tables 2 and 3.346

Fig. 12 presents the percentage of residuals (PE) between real and predicted values for each model347

(Eq. (20)).348

PE(%) = (real − predicted)× 100 (20)349

The residues are small, varying between ±10% (acceptable range), upholding the high forecasting350

quality of both models. Results demonstrated that both are competitive. It is obvious that the351
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Figure 11: Actual and predicted WFT risk level after intervention

residues of WANFIS are globally smaller than those of WANN. WANFIS was found superior to352

WANN in terms of all statistical indicators making it considerably more reliable.

Figure 12: Daily residuals of WANN and WANFIS

353

The predictions generated by WANN and WANTS didn’t show any statistically significant difference354

(Mann-Whitney U-test [47], Z=0.052, p=0.95). In other words, the medians of the two estimated355

populations were found equal. Besides, although the residues are small, the average percentage error356
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(APE) was evaluated to know if the models have the tendency to overestimate or underestimate357

(Eq. (21)).358

APE(%) =
PE

total number of observations in the test phase
=
PE

87
(21)359

Table 4 tabulates the obtained results. The negative APE = −0.2% indicates that on average,360

the WANN model had a tendency to overestimate. On the contrary, we observed that WANFIS361

possessed an underestimation tendency APE = −0.4%.

Table 4: Average percentage error for WANN and WANFIS

Model WANN WANFIS

APE(%) -0.2% 0.4%

362

Based on what was interpreted above, it would more efficient to consider WANFIS because knowledge363

is extracted through the IF-THEN rules constructed by the system. This implies that the farmer can364

interpret the risk level, analyze the results, review decision making principles and conduct suitable365

strategies.366

4. Discussion367

These results were obtained upon data collected from in an experimental greenhouse, during a368

production period. The strengths of the models are that they are friendly-applicable by end-users,369

they rely on a small number of variables, and they help optimize the production and its cost370

(yield/pesticides). Also, they depend on real-time data, so they are self-adaptive to meteorological371

perturbations and seasonal variations. On the other hand, they possess some disadvantages. Like372

other learning models, a training data-set is required to optimize the model parameters. Collecting373

this data is not always possible by farmers unless some engineers are hired to do so. The achievement374

of study’s objectives (potential of decreasing the use of pesticides and yield loss) is the most useful375

part for the end-user.376

Moreover, the results found in this research are related to a project about designing a decision support377

system (DSS) for IPM in roses greenhouses. Based on the theoretical concepts used in this study,378

a supervision interface is being created. Hence, based on the displayed prediction, the end-user will379

take appropriate decisions. Since the system provides daily information, spraying pesticides could380

be replaced by other IPM strategies (biological, cultural, etc...), and we therefore expect a reduced381

pulverization of chemicals. Concerning human intervention, we saw that its effect was too small for382

19



both models WANN and WANFIS. This is attributed to the fact that intervention information is383

included in each sample of the training (interpolated) and testing (real) data because we are dealing384

with dynamic models. An alternative could be to reset the system to certain thresholds at the end385

of each intervention stage. Such decision is authorized when the greenhouses is in rest mode, i.e, no386

interest for evaluating the risk at a certain period. Those results express the importance and ability387

of applying ANN and ANFIS for pest risk assessment. Knowing that some diseases such as Mildew388

are caused due to WFT, then early detection could avoid the contamination.389

5. Conclusion390

The research documented in this paper corresponds to the employment of ANNs and ANFIS models391

in agriculture, precisely for integrated pest management. The objective of this study is to predict392

the next day’s WFT risk level in roses greenhouse depending on today’s internal temperature393

and humidity, human intervention, and WFT risk level. Human intervention was found useless394

in its current modeling form and should be properly considered. Drawing comparison between395

models WANN and WANFIS demonstrated promising results for both (R2 = 0.96 and R2 = 0.98396

respectively) with higher accuracy for WANFIS. Being ANFIS-based, WANFIS is recommended397

because the complexities ruling the system’s behaviors are explicable through the If-Then rules398

generated by ANFIS. In so doing, the farmer can understand and analyze the relations between the399

inputs and the output, and accordingly carry out relevant programs. Two of the main contributions400

this study brings are the development of a risk assessment model that relies on a small number of401

variables (low cost, less time, more efficiency), and that provides a daily, rather than weekly, risk402

assessment.403
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