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Introduction

Western Flower Thrips (WFT), or Frankliniella occidentalis (Pergande 1895), is a polyphagous pest species in horticulture and agriculture worldwide. The origin of this species of thrips is the North-West of America and Mexico [START_REF] Kirk | The pest and vector from the west: frankliniella occidentalis[END_REF]. The presence of F. occidentalis was reported for the first time in Europe in 1983 and in 1986 on French territory, and since then it is considered a cosmopolitan serious pest [START_REF] Kirk | The spread of the western flower thrips frankliniella occidentalis (pergande)[END_REF]. This pest insect attack ornamental crops, trees and vegetables, and lead to enormous economical and agricultural losses. Their tiny size, high and fast reproduction rate, affinity for protected zones and their behavior on host plants (difficulty to predict the way they shift from leaves into rosebuds) hinder their early detection [START_REF] Morse | Invasion biology of thrips[END_REF]. Accordingly, and in addition to the fact that F. occidentalis feed on flowers, leaves and on other herbivores [START_REF] Morse | Invasion biology of thrips[END_REF], they cause a vast economic damage. It is then essential to adopt Integrated Pest Management (IPM) programs. IPM involves the implementation of several control protocols such as chemical (pesticides), biological, physical and others ( [START_REF] Cloyd | Effects of predators on the below ground life stages (prepupae and pupae) of the western flower thrips, frankliniella occidentalis (thripidae: thysanoptera): a review[END_REF] and therein). Separate carrying out of those approaches had not led to auspicious consequences. For example, the huge dependence on pesticides led to the resistance of pests to them, and hindered their efficiency. It is hence more preferable to adopt other practices or combine several strategies for a better control of WFT [START_REF] Mouden | Integrated pest management in western flower thrips: past, present and future[END_REF][START_REF] Barzman | Eight principles of integrated pest management[END_REF]. Among the eight IPM principles [START_REF] Barzman | Eight principles of integrated pest management[END_REF], monitoring (aka scouting [START_REF] Cloyd | Western flower thrips (frankliniella occidentalis) management on ornamental crops grown in greenhouses: have we reached an impasse?[END_REF][START_REF] Hollingsworth | Scouting methods for detection of thrips (thysanoptera: thripidae) on dendrobium orchids in hawaii[END_REF]) is one of the most important tactics to control WFT. Scouting is defined as counting and estimating population densities of a pest species [START_REF] Kaas | Scouting for thrips -the development of a time saving sampling program for echinothrips[END_REF]. It helps detect harmful organisms and it incorporates two methods [START_REF] Pizzol | Comparison of two methods of monitoring thrips populations in a greenhouse rose crop[END_REF]: direct sampling by tapping flower heads, and indirect sampling using yellow sticky traps. Thrips population densities could be also estimated using computational and mathematical models and early diagnosis systems with the help of professional advisors [START_REF] Barzman | Eight principles of integrated pest management[END_REF].

Many models have been developed to estimate thrips population. The joint purpose of these models is to serve as a potential decision tool. Ogada et al. [START_REF] Ogada | Predictive models for tomato spotted wilt virus spread dynamics, considering frankliniella occidentalis specific life processes as influenced by the virus[END_REF] introduced a deterministic model consisting of differential equation systems to estimate thrips population growth by incorporating the effect of Tomato Spotted Wilt Virus (TSWV) on its dynamic. The model required a huge number of variables to be constructed (18 variables). A mathematical model was built to estimate WFT on greenhouse grown chrysanthemum by considering the temperature, population density and food availability [START_REF] Nothnagl | Modelling population dynamics of frankliniella occidentalis pergande (thysanoptera: thripidae) on greenhouse grown chrysanthemum[END_REF]. Wang [START_REF] Wang | Simulation model for population dynamics of frankliniella occidentalis (thysanoptera: thripidae) on greenhouse cucumber[END_REF] predicted population dynamics of F. occidentalis depending on females' fecundity, sex ratio and larval mortality. Many other approaches have been developed for modeling insects populations ( [START_REF] Pizzol | Comparison of two methods of monitoring thrips populations in a greenhouse rose crop[END_REF][START_REF] Li | An evaluation of frankliniella occidentalis (thysanoptera: thripidae) and frankliniella intonsa (thysanoptera: thripidae) performance on different plant leaves based on life history characteristics[END_REF][START_REF] Tonnang | Advances in crop insect modelling methods-towards a whole system approach[END_REF] and therein). None of the models was established to provide a real-time daily estimate. They also required too many variables which are difficult to obtain by regular farmers (sticky traps, amount of eggs in infected plants, sex, leaves damages, etc.). Certain models were established under laboratory conditions, unconcerned with complexities arising from interactions inside the greenhouse [START_REF] Li | An evaluation of frankliniella occidentalis (thysanoptera: thripidae) and frankliniella intonsa (thysanoptera: thripidae) performance on different plant leaves based on life history characteristics[END_REF][START_REF] Wang | Mathematical model for the control of a pest population with impulsive perturbations on diseased pest[END_REF]. These difficulties drive us to avail Soft Computing (SC)

to design an eligible model to estimate F. occidentalis population in a roses greenhouse.

Soft Computing is the establishment of approximate models to solve real complex problems which include uncertainty, and impreciseness. Artificial Neural Networks (ANNs) and Adaptive Network-based Fuzzy Inference System (ANFIS) are critical algorithms for SC [START_REF] Dogan | An overview of soft computing[END_REF]. ANNs are nonlinear algebraic computational models introduced by McCulloch and Pitts in 1943 [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF], based on the biological neural network. ANFIS is a fuzzy system developed by exploiting the similarities between Fuzzy Logic (FL) and certain forms of neural networks. ANFIS was first proposed by J.-S.

Jang for system identification and time series prediction [START_REF] Jang | ANFIS: adaptive-network-based fuzzy inference system[END_REF].

Artificial Neural Networks have been a major subject for applications in many fields including agriculture. They have shown robust performances when it comes to prediction of disease and pests. ANNs were applied to estimate weekly population of thrips per leaf in cotton crops [START_REF] Patil | A prediction model for population dynamics of cotton pest (thrips tabaci linde) using multilayer-perceptron neural network[END_REF], monthly populations of Melon thrips and Diamondback moth [START_REF] Yan | Multiple regression and artificial neural network for the prediction of crop pest risks[END_REF], incidence of rust in coffee [START_REF] Corrales | Early warning system for coffee rust disease based on error correcting output codes: a proposal[END_REF], monthly wheat Deoxynivalenol [START_REF] Klem | A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop[END_REF], and the geographic distribution of pests [START_REF] Peacock | The application of artificial neural networks in plant protection[END_REF]. They were also employed to estimate other crop diseases and pests ( [START_REF] Golhani | A review of neural networks in plant disease detection using hyperspectral data[END_REF][START_REF] Durgabai | Pest management using machine learning algorithms: a review[END_REF][START_REF] Kim | Crop pests prediction method using regression and machine learning technology: survey[END_REF]). As for ANFIS, it has been used in agriculture due to its ability to structure nonlinear relation between a set of predictors and a set of dependent variables. It was employed for the classification of different types of diseases of tomato and brinjal/eggplant via features extraction [START_REF] Sabrol | Plant leaf disease detection using adaptive neuro-fuzzy classification[END_REF]. ANFIS was also utilized to classify three cotton leaf's diseases [START_REF] Mayannavar | Adaptive neuro-fuzzy inference system for recognition of cotton leaf diseases[END_REF] and for the diagnosis of soya-beans diseases [START_REF] Rahmon | A neuro-fuzzy system for diagnosis of soya-beans diseases[END_REF], but not yet for WFT risk estimation in roses production.

Our study aims to assist farmers and decision makers to monitor the population of WFT in roses greenhouses by introducing ANNs and ANFIS models. One of the main advantages of this study is that the model provides a daily risk index, unlike other models which give weekly estimates. This advantage is very substantial for IPM because it could help farmers to employ appropriate strategies based on the displayed signal. Also, we are interested in developing a model to predict thrips populations in a roses greenhouse, relying on a small number of variables. Selecting few descriptors, meaning the dependence on few sensors, is an important aspect because some greenhouses might not be equipped with many sensors, due to their expensive prices, and difficulty to use and understand.

The incentives of this work are to avoid yield loss, to optimize the production by reducing the use of pesticides, and to help the farmer effectively against WFT. The aspects of this study are interesting just as the system discloses a daily risk value, notifying the user about the risk level in the greenhouse. As this project is a collaboration between the university of Toulon and the Technical Institute of Horticulture (ASTREDHOR), the obtained results were validated by experts with whom we collaborate, at the Syndicate of the Regional Center for Application and Horticultural Demonstration (SCRADH), its station in Hyères, France.

The rest of paper is organized as follows. Section 2 is dedicated to present the materials and methods in which we introduce the place of the study, the data and the proposed models.

Section 3 includes the experimental results. Section 4 presents a discussion about the findings of this research. At the end, a general conclusion is presented. The comparison with FL was not included in this study because we are rather interested in data-based systems than knowledge based.

Materials and Methods

Experimentation's site description

Hyères is a major city in the south-eastern France, known for its importance in producing roses in the French Riviera. The SCRADH, latitude 43 • 6' 55.9836" N, longitude 6 • 9' 11.663" E, is a center that conducts experiments and research programs in the horticultural sector in Hyères. They have been carrying out experimental protocols on greenhouse crop production systems, then validating the technical and economic feasibility of new production concepts. Their inquiries and explorations are concerned with adopting appropriate strategies to control WFT, which has been an annoying pest since many years. A high percentage of crop loss has been observed (100% at some periods) due to WFT. The experimental greenhouse (300 m 2 ) consists of 6 benches (B1 to B6) of 24m long each, each carrying 6 plots (Fig. 1) (36 plots in total). Each plot (parcel) measures 4m ×1m = 4m 2 and contains about 34 rose-plants of same variety, for instance, Milva 2A, Samourai, Amaretto, Penny (Fig. 2). None of the plants was withered and replaced during data acquisition period. Olatinwo and Hoogenboom [START_REF] Olatinwo | Weather-based pest forecasting for efficient crop protection[END_REF] stated all the climatic factors temperature, rainfall, and relative humidity that influence the development of WFT. The effect of relative humidity on the determination of WFT has been discussed by Fatnassi et al. [START_REF] Fatnassi | Within crop air temperature and humidity outcomes on spatio-temporal distribution of the key rose pest frankliniella occidentalis[END_REF] and Steiner et al. [START_REF] Steiner | Relative humidity controls pupation success and dropping behaviour of western flower thrips, frankliniella occidentalis (pergande) (thysanoptera: thripidae)[END_REF]. The results of the previously cited studies showed that the perfect temperature for thrips survival is between 23 • C and 28 • C, while the optimal relative humidity varies between 70% and 80%.

According to SCRADH's expertise and existing literature, the development of WFT is also contingent upon the existing population of WFT, and physical interventions carried out by farmers. The present density of WFT in the greenhouse following survival is important to measure the risk on rose plants.

The selection of human intervention is suggested by our partners at SCRADH as a consequence of its effect on reducing thrips density.

Data acquisition

Data provided by the SCRADH consists of temperature and humidity data measured by sensors and pest data measured by manual counting.

Temperature and humidity data

The hourly internal temperature Ti ( • C), and internal relative humidity HR (%) data are utilized, and they were recorded between October 2012 and May 2014.

Insect population data

For each plot, 4-5 plants were randomly selected, with 1.5 meters in between. Engineers at SCRADH counted the number of WFT individuals inside the rosebuds (of the selected plants) at harvesting (commercial) stage by threshing each rosebud on a white paper (Fig. 3). The number of WFT in each flower plot tr i is classified into 4 classes: 0, 1, 2, and 3, respectively corresponding to the total absence, existence of 1, 2, and 3 and more WFT individuals.

Let n i be the frequency (number of repetitions) of each class tr i . Since tr 3 = 3 corresponds to the existence of 3 and more thrips, then its frequency is considered more significant than the others. For example, even if the counted population is 1000, it is marked 3. When we compute the mean, there will be a loss of information, and the relevant value is not a good representative.

For a realistic and logical demonstration, each n i is associated with a certain weight w i , such that w 0 = w 1 = w 2 = 0.1 and w 3 = 0.7 = 1 -(w 0 + w 1 + w 2 ). The weights were proposed by the SCRADH's engineers following their expertise, but they could be adjusted depending on strong knowledge in the field. The measured risk level of WFT (W F T week ) in the greenhouse ∈ [0, 3] is attained as shown below (Eq. ( 1)):

W F T week = 3 i=0 w i n i tr i 3 i=0 w i n i (1)
As an example, on week 19 in 2013, 0 thrips individuals was detected in 20 plots, only 1 thrips in 8 plots, 2 individuals in 3 plots, and 3 and more in 5 plots (Table 1). We remind that tr 3 = 3 corresponds to the presence of 3 and more thrips, and that its frequency n 3 = 5 is way more important than others classes. 

w i 0.1 0.1 0.1 0.7 1 
Accordingly, the measured level of WFT on week 19 of the year 2013 is:

W F T week19 = 0.1 × 20 × 0 + 0.1 × 8 × 1 + 0.1 × 3 × 2 + 0.7 × 5 × 3 0.1 × 20 + 0.1 × 8 + 0.1 × 3 + 0.7 × 5 = 1.8 (2) 
Fig. 4 presents the risk values of WFT on all the other weeks of the study, calculated following the same method as the one shown above (Eq. ( 1)). Each value is defined and interpreted as the risk level of WFT and not the mean value. We are currently working on a method to transform this value into an approximated value of WFT individuals. Since we strive at obtaining a daily prediction of WFT risk level, we calculated the daily averages of T i and HR respectively. As for pest data, W F T week underwent linear interpolation using newton's formula [START_REF] Muthumalai | Note on newton interpolation formula[END_REF] to approximate the daily WFT risk level (W F T ).

Human intervention

Engineers at SCRADH observed remarkable decreases in WFT populations during human intervention, i.e, Dishooting (DS) (the rosebuds are broken so the plants accumulate nutrients), pruning (PR), and massive harvesting (MH). The population of WFT is respectively reduced by 50% and 90% at the end of PR and MH periods. DS is a weekly performed intervention and leads to the removal of equal WFT subpopulations. Hence, the weekly eliminated percentage is 100% s where s ≥ 1 is the number of weeks predetermined for DS. Management practices were performed as follows:

• Dishooting: weeks 46-50.

• Massive harvesting: Christmas holidays (weeks 13-15, 66-67) and Valentine's day (weeks 21-22, 73-74).

• Pruning: weeks 2-3 and 71-72.

• Insecticides: Applied 3 times per month from May to July (weeks [START_REF] Muthumalai | Note on newton interpolation formula[END_REF][START_REF] Rezaeianzadeh | Flood flow forecasting using ANN, ANFIS and regression models[END_REF][START_REF] Hagan | Training feedforward networks with the marquardt algorithm[END_REF][START_REF] Negnevitsky | Artificial neural networks[END_REF][START_REF] Kolmogorov | On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition[END_REF][START_REF] Wang | The influence of the activation function in a convolution neural network model of facial expression recognition[END_REF][START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF][START_REF] Sakunthala | A review on artificial intelligence techniques in electrical drives: neural networks, fuzzy logic, and genetic algorithm[END_REF] and between September and October (weeks 52-56) (Fig. 4).

By reason of the fact that a significant shortage of knowledge about the removed daily quantities exists, we consider that equal subgroups are withdrawn. For a clear demonstration, the daily eliminated percentage due to PR, MH, and DS are correspondingly 50% D1 , 90% D2 , and 100% 7s . The daily weighting coefficients γ(t) of each of the intervention phases can be written as follows:

γ(t) =                    (1 -0.5/D1) P R = 1 (1 -0.9/D2) M H = 1 (1 -1 7s ) DS = 1 1 otherwise (3) 
where D1 and D2 are the planned durations of PR and MH in days respectively. For instance, if we plan to prune the plants over 6 days (D1=6 days), then the daily weighting coefficient is γ(t) = 1 -0.08 = 0.92. Considering one week of DS, i.e, s=1, then γ(t) = 1 -1/7 = 0.85.

Artificial neural networks ANNs

ANNs can be defined as mathematical models or data-processing systems that simulate biological neurons. ANNs are considered as function approximations to model complex and nonlinear relationships between a set of outputs and a set of inputs [START_REF] Patil | A prediction model for population dynamics of cotton pest (thrips tabaci linde) using multilayer-perceptron neural network[END_REF]. The Feed Forward neural network (FFNN) or multilayer perceptron (Fig. 5) is one of the mostly used and efficient network among other ANN prototypes [START_REF] Rezaeianzadeh | Flood flow forecasting using ANN, ANFIS and regression models[END_REF]. The output of the k th node of the hidden layer can be written as:

H k = f ( P j=1 w k,j X j + b k 1 ) (4) 
where w kj are the weights connecting the j th input and the k th hidden neuron, and b k 1 is the bias of the k th neuron. The activation function f could be sigmoid, linear, tangent hyperbolic or any other defined differentiable function. The output of the network is the estimated target variable, and its calculation depends on the outputs of previous hidden layer and other connection weights between the outputs nodes and the hidden nodes. It is mathematically expressed as follows:

O l = g( L l=1 w l,k H k + b l 2 ) ( 5 
)
where w lk are the weights connecting the k th hidden neuron with the l th output neuron, and b 2 l is the bias of the l th output neuron. The value of the activation function g is the predicted output of the network O l . As they are data driven models, ANNs use learning algorithms [START_REF] Hagan | Training feedforward networks with the marquardt algorithm[END_REF] to adjust the connections of the network in order to obtain the best operating model. This model is obtained when the error E total is minimized to a certain threshold:

E total = 1 N N i=1 ( 1 2 L l=1 (O l -Y l ) 2 ) ( 6 
)
where N is the total number of training samples, L is the number of outputs, (

1 2 L l=1 (O l -Y l ) 2 )
is the error for training sample N, O l and Y l are, respectively, the predicted and desired outputs at node l. Learning algorithm is the adaptive procedure through which the network modifies the weights repeatedly to approach the goal point with the lowest error [START_REF] Rezaeianzadeh | Flood flow forecasting using ANN, ANFIS and regression models[END_REF].

Fig. 6 shows the ANN based model used to perform estimation. The output of ANN is the predicted pre-intervention WFT risk level (P RE W F T (t + 1)). The final output of the model, the post-intervention WFT risk level (P OST W F T (t + 1)) is gained by multiplying the intervention coefficient γ(t) and (P RE W F T (t + 1)).

Following the recommendations of Negnevitsky [START_REF] Negnevitsky | Artificial neural networks[END_REF], the topology of ANN comprises one hidden layer. Aiming at avoiding over-training (more neurons) and under-fitting (less neurons), the number of hidden neurons is M = 2P + 1 following Kolmogorov's theorem [START_REF] Kolmogorov | On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition[END_REF], where P is the number of input variables. Because data is normalized between 0 and 1, the logistic sigmoid activation functions was chosen for the output (Eq. ( 7)).

f 1 ( P j=1 w k,j x j + b k 1 ) = 1 1 + e -( P j=1 w k,j xj +b k 1 ) (7) 
Regarding the hidden layer, and using the error and trial procedure, the logistic sigmoid provided better performance than linear, hyperbolic tangent sigmoid, rectified linear unit (ReLU) and leaky ReLU activation functions [START_REF] Wang | The influence of the activation function in a convolution neural network model of facial expression recognition[END_REF]. The weights were uniformly distributed following Glorot's initialization algorithm [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] to break symmetry when back propagating, and to avoid the problems of exploding and vanishing gradients. The gradient descent algorithm was utilized with an adaptive learning rate (Eq. ( 8)). We started by a relatively large learning rate to proceed rapidly toward the good zone, which was then progressively reduced until a small rate was achieved at the end for more precision. The optimized parameters of ANN were obtained when the global error was smaller than

10 -3 . η(iter) = η 0 √ iter ( 8 
)
where iter is the current learning epoch, η 0 is the initial rate (0.3), and η(iter) is the learning rate at epoch iter.

Adaptive Neuro-Fuzzy Inference System

ANFIS was introduced by Jang [START_REF] Jang | ANFIS: adaptive-network-based fuzzy inference system[END_REF] for system identification, estimation and contol, to overcome the drawbacks of ANNs and FL [START_REF] Sakunthala | A review on artificial intelligence techniques in electrical drives: neural networks, fuzzy logic, and genetic algorithm[END_REF]. ANFIS is used to model complex input-output relationships because it incorporates the knowledge representation of FL and learning ability of ANNs. The most important advantage of ANFIS is that when the training process is finalized, knowledge is explicitly constituted by the fuzzy rules (gray-box comportment). ANFIS uses a Takagi-Sugeno (or Sugeno) FIS [43] to estimate the output. The output MFs of a Sugeno FIS could be linear (first-order polynomial) or constant (zero-order polynomial). The fuzzy reasoning mechanism of a 2 input (X 1 and X 2 ) Sugeno model can be expressed as follows:

Rule 1 : If X 1 is A 1 and X 2 is B 1 , then y 1 = k 01 + k 11 X 1 + k 21 X 2 Rule 2 : If X 1 is A 2 and X 2 is B 2 , then y 2 = k 02 + k 12 X 1 + k 22 X 2
where A 1 , A 2 , B 1 and B 2 are the fuzzy sets of X 1 and X 2 , y 1 and y 2 are the linear output functions.

The coefficients {(k 01 , k 11 , k 21 ), (k 02 , k 12 , k 22 )} are the conclusion parameters of rules 1 and 2 respectively. Fig. 7 shows the architecture of ANFIS corresponding to the implementation of the above rules.

ANFIS consists of five layers in which layers 1 and 4 (squares) are adaptive (their parameters are tuneable) whereas the others are fixed (circles). The concept of ANFIS is described below. 

O 1,j = µ Aj (X 1 ) f or j = 1, 2 (9) 
O 1,j = µ Bj (X 2 ) f or j = 1, 2 (10) 
where A j (X 1 ) and B j (X 2 ) are the linguistic label associated with the nodes, µ Aj and µ Bj are the MFs. Parameters in this layer are called the nonlinear parameters of the model, or the premise parameters.

Layer 2: A fixed layer referred to as the rule layer. The output of each node is the firing strength of the rule described as the product ( i ) of all incoming signals.

O 2,i = w i = µ Aj (X 1 ) × µ Bj (X 2 ), i = 1, 2 (11) 
Layer 3: The firing strength of every rule i is calculated to the sum of firing strengths of all rules.

Consequently, this layer is known as the normalization layer (N i ).

O 3,i = wi = w i i w i = w i w 1 + w 2 , i = 1, 2 (12) 
Layer 4: This layer is known as the defuzzification layer whose nodes are adaptive in nature. The processing in this layer can be interpreted as the contribution of every rule to the overall output.

The node function of the i th node is:

O 4,i = wi y i = wi (k 0i + k 1i X 1 + k 2i X 2 ), i = 1, 2 (13) 
where wi is the output of layer 3, X 1 and X 2 are the inputs, and {k 0i , k 1i , k 2i } are the linear (consequent) parameters.

Layer 5: This is the final layer which consists of one node only. This node calculates the overall output by summing up ( ) all the incoming signals.

O 5,1 = y = i wi y i (14) = w1 y 1 + w2 y 2 (15) 
ANFIS employs a hybrid learning algorithm [START_REF] Jang | ANFIS: adaptive-network-based fuzzy inference system[END_REF][START_REF] Jang | Neuro-fuzzy modeling and control[END_REF] to tune its antecedent and consequent parameters.

In this study, the risk level of WFT was also evaluated by examining an ANFIS-based model (Fig. 8).

Initial partitioning of the input space was performed using the grid method. This approach is as follows: based on a predefined number of MF, the data is partitioned into fuzzy rectangular subspaces using axis-paralleled partitions. The grid method is recommended when the number of inputs is small (less than 6). It is due to the fact that the number of rules increase exponentially as the number of inputs increases, which requires a large computer memory to perform the learning. Regarding ANFIS, the Gaussian MF (Eq. ( 16))

µ A (x, c, σ) = e -(x-c) 2 2σ 2 (16) 
with c and σ being respectively the center and the width of the fuzzy set A, was found superior to all other types and it was consequently chosen to train the model. Based on the hybrid learning algorithm, ANFIS was trained until the training error was smaller than 10 -3 .

Evaluation of Models Performance

The goodness-of-fit for the two models was evaluated through three statistical indicators: the coefficient of determination (R 2 ), root mean square error (RM SE) and mean absolute error (M AE).

They indicate the accuracy of prediction by calculating the difference between measured and predicted values. They are defined as follows [START_REF] Olyaie | A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in united states[END_REF]:

R 2 = 1 - N n=1 (y n -ŷn ) 2 N n=1 (y n -ȳn ) 2 (17) 
RM SE = 1 N N n=1 (ŷ n -y n ) 2 (18) 
M AE = 1 N N n=1 |ŷ n -y n | (19) 
where ŷn and y n are respective predicted and measured WFT levels for the n th data entry, and ȳn is the average of y n .

Results

In order to prevent the problems caused by the varying scales which often lead to under-fitting (the model could not generalize the relationship between a set of inputs and a set of outputs during the training process), data were normalized between 0 and 1 using the maximum standardization method [START_REF] Anysz | The influence of input data standardization method on prediction accuracy of artificial neural networks[END_REF], to equalize the contribution of inputs to the prediction of the output. The training data is composed of 510 observations corresponding to the interpolated values and the testing data is constituted of 87 samples representing the real measured values.

Evaluation of WANN

The first task is to validate the neural network as it is considered the crux of the WANN model. The robustness of ANN can be regarded in Table 2 by means of high determination coefficients during training R 2 = 0.98 and testing R 2 = 0.96 phases. We can therefore rely on ANN to estimate WFT after intervention (P OST W F T (t + 1)). The input variable human intervention γ(t) is utilized as a weighting coefficient to P RE W F T (t + 1). The component "WANN" of Table 2 aims to demonstrate the influence of intervention of the prediction procedure. In that regard, we compute the indicators between actual thrips after intervention (Actual P OST W F T (t + 1)) and that predicted before (Predicted P RE W F T (t + 1)) and after intervention (Predicted P OST W F T (t + 1)). We observe that intervention provokes a slight enhancement of results (in terms of RMSE). However, they are almost identical and the influence of intervention is We therefore rely on ANFIS to estimate WFT after intervention (P OST W F T (t+1)). The variable human intervention γ(t) is utilized as a weighting coefficient to P RE W F T (t + 1). Table 3 displays the effect of intervention on the prediction procedure no significant change is perceived. This indicates that we can neglect human intervention in its current form. It is trivial that the results with or without intervention are identical.

Evaluation of WANFIS

WANN vs WANFIS

Based on prediction results in sections 3.1 and 3.2, we compared WANN and WANFIS. Fig. 11 displays the plot of actual (full line, black-*) and estimated daily WFT risk level of WANN (dotted line, green-) and WANFIS (dashed line, red-o).

The plot indicates high prediction accuracy when comparing the three curves. Even though it is difficult to reveal which model is better through visualization, or by making a one-to-one comparison for the estimated values, we notice that the curve corresponding to WANFIS overlaps more perfectly with real-data curve, disclosing consistency with the results of Tables 2 and3.

Fig. 12 presents the percentage of residuals (PE) between real and predicted values for each model (Eq. ( 20)).

P E(%) = (real -predicted) × 100 (20) 
The residues are small, varying between ±10% (acceptable range), upholding the high forecasting quality of both models. Results demonstrated that both are competitive. It is obvious that the The predictions generated by WANN and WANTS didn't show any statistically significant difference (Mann-Whitney U-test [START_REF] Nachar | a test for assessing whether two independent samples come from the same distribution[END_REF], Z=0.052, p=0.95). In other words, the medians of the two estimated populations were found equal. Besides, although the residues are small, the average percentage error 18 (APE) was evaluated to know if the models have the tendency to overestimate or underestimate (Eq. ( 21)).

AP E(%) = P E total number of observations in the test phase = P E 87

Table 4 tabulates the obtained results. The negative AP E = -0.2% indicates that on average, the WANN model had a tendency to overestimate. On the contrary, we observed that WANFIS possessed an underestimation tendency AP E = -0.4%. 

Discussion

These results were obtained upon data collected from in an experimental greenhouse, during a production period. The strengths of the models are that they are friendly-applicable by end-users, they rely on a small number of variables, and they help optimize the production and its cost (yield/pesticides). Also, they depend on real-time data, so they are self-adaptive to meteorological perturbations and seasonal variations. On the other hand, they possess some disadvantages. Like other learning models, a training data-set is required to optimize the model parameters. Collecting this data is not always possible by farmers unless some engineers are hired to do so. The achievement of study's objectives (potential of decreasing the use of pesticides and yield loss) is the most useful part for the end-user.

Moreover, the results found in this research are related to a project about designing a decision support system (DSS) for IPM in roses greenhouses. Based on the theoretical concepts used in this study, a supervision interface is being created. Hence, based on the displayed prediction, the end-user will take appropriate decisions. Since the system provides daily information, spraying pesticides could be replaced by other IPM strategies (biological, cultural, etc...), and we therefore expect a reduced pulverization of chemicals. Concerning human intervention, we saw that its effect was too small for both models WANN and WANFIS. This is attributed to the fact that intervention information is included in each sample of the training (interpolated) and testing (real) data because we are dealing with dynamic models. An alternative could be to reset the system to certain thresholds at the end of each intervention stage. Such decision is authorized when the greenhouses is in rest mode, i.e, no interest for evaluating the risk at a certain period. Those results express the importance and ability of applying ANN and ANFIS for pest risk assessment. Knowing that some diseases such as Mildew are caused due to WFT, then early detection could avoid the contamination.

Conclusion

The research documented in this paper corresponds to the employment of ANNs and ANFIS models in agriculture, precisely for integrated pest management. The objective of this study is to predict the next day's WFT risk level in roses greenhouse depending on today's internal temperature and humidity, human intervention, and WFT risk level. Human intervention was found useless in its current modeling form and should be properly considered. Drawing comparison between models WANN and WANFIS demonstrated promising results for both (R 2 = 0.96 and R 2 = 0.98 respectively) with higher accuracy for WANFIS. Being ANFIS-based, WANFIS is recommended because the complexities ruling the system's behaviors are explicable through the If-Then rules generated by ANFIS. In so doing, the farmer can understand and analyze the relations between the inputs and the output, and accordingly carry out relevant programs. Two of the main contributions this study brings are the development of a risk assessment model that relies on a small number of variables (low cost, less time, more efficiency), and that provides a daily, rather than weekly, risk assessment.
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 3 Figure 3: WFT individuals threshed on white papers
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 4 Figure 4: WFT weekly risk levels calculated from Eq. (1)
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 5 Figure 5: Typical architecture of an FFNN with one hidden layer
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 6 Figure 6: Architecture of the ANN-based model (WANN)
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 8 Figure 8: Architecture of the ANFIS-based model (WANFIS)
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 9 Fig.9shows the correlation between predicted and actual WFT level for testing dataset. The model is very accurate showing a strong correlation between the model's predictions and its actual results.

Figure 9 :

 9 Figure 9: Scatter plot of ANN of actual versus predicted P RE W F T (t + 1) for the testing phase
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 10 Fig.10shows the correlation between predicted and actual WFT level for testing data-sets. It's trivially noticed that ANFIS is very accurate showing a strong correlation between the model's predictions and its real values.

Figure 10 :

 10 Figure 10: Scatter plot of ANFIS of actual versus predicted P RE W F T (t + 1) for the testing phase
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 11 Figure 11: Actual and predicted WFT risk level after intervention
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 12 Figure 12: Daily residuals of WANN and WANFIS

Table 1 :

 1 Counting of WFT individuals on week 19 of the year 2013

	tr i	0	1	2	3	total
	n i	20	8	3	5	36

Table 2 :

 2 Goodness-of-fit indicators of ANN and WANN

	Model		ANN	WANN
	Target	P RE W F T (t + 1)	Actual P OST W F T (t + 1)
				Predicted
		Training	Testing	P RE W F T (t + 1)	P OST W F T (t + 1)
	R 2	0.98	0.96	0.96	0.96
	RMSE	0.10	0.13	0.13	0.12
	MAE	0.08	0.10	0.10	0.10
	In consideration of the testing phase, we can interpret that ANN explained 96% of variation between
	real and estimated values. In terms of RMSE and MAE, ANN illustrated a high prediction accuracy
	with RMSE=0.1 (3.3%) and MAE=0.08 (2.7%) for the training data, and RMSE=0.13 (4.3%) and
	MAE=0.1 (3.3%) when calculated for testing data.		

Table 3

 3 tabulates the measures of accuracy associated with ANFIS showing a high R 2 (Training: 0.99,

	Testing: 0.98). In terms of RMSE and MAE, ANFIS also revealed smaller error values indicating a
	vigorous performance. Such results justify the selection of P OST W F T (t) in the input vector.

Table 3 :

 3 Goodness-of-fit indicators of ANFIS and WANFIS

	Model		ANFIS	WANFIS
	Target	P RE W F T (t + 1)	Actual P OST W F T (t + 1)
				Predicted
		Training	Testing	P RE W F T (t + 1)	P OST W F T (t + 1)
	R 2	0.99	0.98	0.98	0.98
	RMSE	0.06	0.11	0.11	0.11
	MAE	0.05	0.08	0.08	0.08

Table 4 :

 4 Average percentage error for WANN and WANFISBased on what was interpreted above, it would more efficient to consider WANFIS because knowledge is extracted through the IF-THEN rules constructed by the system. This implies that the farmer can interpret the risk level, analyze the results, review decision making principles and conduct suitable strategies.

	Model	WANN WANFIS
	AP E(%)	-0.2%	0.4%
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