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Abstract: We analyse uncertainties associated with the main features of the annual cycle of West
African rainfall (amplitude, timing, duration) in 15 CMIP5 simulations over the Sahelian and Guinean
regions with satellite daily precipitation estimates. The annual cycle of indices based on daily rainfall
such as the frequency and the intensity of wet days, the consecutive dry (CDD) and wet (CWD) days,
the 95th percentile of daily rainfall (R95), have been assessed. Over both regions, satellite datasets
provide more consistent results on the annual cycle of monthly precipitation than on higher-frequency
rainfall indices, especially over the Guinean region. By contrast, CMIP5 simulations display much
higher uncertainties in both the mean precipitation climatology and higher-frequency indices. Over
both regions, most of them overestimate the frequency of wet days. Over the Guinean region,
the difficulty of models to represent the bimodality of the annual cycle of precipitation involves
systematic biases in the frequency of wet days. Likewise, we found strong uncertainties in the
simulation of the CWD and the CDD over both areas. Finally, models generally provide too early
(late) onset dates over the Sahel (the Guinean region) and overestimate rainfall during the early and
late monsoon phases. These errors are strongly coupled with errors in the latitudinal position of the
ITCZ and do not compensate at the annual scale or when considering West Africa as a whole.

Keywords: West Africa; rainfall; annual cycle; CMIP5 models; onset; cessation; extremes; uncertainties

1. Introduction

The annual cycle of monsoon precipitation is a primary feature of West African Climate (e.g., [1–3]).
In this region, rainfall mainly falls from April to October, with major differences between the wetter
Guinean region where precipitation displays two annual peaks (in June and in September) and the
more arid Sahelian region, where it displays a single peak centered on August. At longer time scales,
observations emphasises alternating periods of extreme rainfall events and dry conditions which
have led to a succession of flood/drought years in the last several decades [4–7]. In this region,
observations underline the importance of mesoscale convective events [8] which account for a large
amount of annual cumulative rainfall [9,10]. At the same time, dry spell events are also relatively
frequent in West Africa during the monsoon [11,12] and were particularly severe during the drought
decades of the 70’s and 80’s [13]. Changes in the annual cycle of monsoon precipitation have also been
identified, with a notable trend toward more rainfall during the second part of the monsoon in the
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last 30 years [14–17]. These important traits of precipitation (frequent heavy-rain events combined
with dry spells) have wide implications for social and economic sectors which are strongly linked to
agricultural and water resources in West Africa [18]. Furthermore, given the high vulnerability of this
region, any climatic changes in monsoon precipitation (either its amount, annual cycle, intensity or
intra-seasonal distribution) is likely to affect many socio-economic developments [19–23]. According
to the Intergovernmental Panel on Climate Change report [24], climate change induced by increasing
anthropogenic greenhouse gas (GHG) concentrations is expected to delay the onset of Sahelian
precipitation [25], to intensify the hydrological cycle, and to increase the occurrence of extreme
precipitation events [6,7,26–30]. This implies that West African countries will be affected by global
warming in many ways and will face important adaptation challenges.

However, studies based on the Coupled Model Inter-comparison Project (CMIP) phase 3 and 5
show that the representation of the West African Monsoon (WAM) mean state, as well as its response to
global warming, are both highly model-dependent [31]. As a consequence, model-based projections of
the WAM and of the Sahelian climate are highly uncertain [32]. It is therefore important and valuable
to more precisely characterize these uncertainties in climate models. Several studies have investigated
the CMIP5 representation of West African precipitation trends and climatology. For instance, Vizy [33]
found large biases in simulation of the onset and demise of the monsoon and the monsoon-mean
temperature and precipitation amount in five CMIP5 models. A more recent study by Zebaze [34]
examined the simulations of seasonal mean precipitation and temperature and their historical trends
for a multi-model mean (MMM) of 28 CMIP5 models. They found that the CMIP5 MMM fails to
capture the sign or magnitude of observed precipitation trends, which was partially due to their strong
spatial heterogeneity. These studies mainly focus on seasonal signals and do not investigate the ability
of CMIP5 simulations to show sub-seasonal variability in precipitation nor its annual cycle.

In this paper, we address the representation of daily precipitation, as well as wet and dry spells
across West Africa in an ensemble of CMIP5 models by comparing them with three observational data
sets. Our aim with this evaluation of the uncertainties in these key features of the annual cycle of West
African precipitation is to provide a better understanding of biases in climate models and to create
benchmarks for comparison with the new generation of CMIP models (CMIP6, [35]). The paper is
organized as follows: in Section 2 we present the CMIP5 models, the satellite data used for model
evaluation as well as the methodology. Results and discussions are presented in Section 3 and finally,
conclusions are given in Section 4.

2. Data and Methods

In this study, all analyses are carried out on daily precipitation retrieved from 15 CMIP5 historical
simulations provided by 11 institutions (Table 1, those simulations were chosen so as to cover
as much as possible the spread obtained when using more simulations, e.g., [36])) and different
satellite-based estimates. In order to partially account for uncertainties in existing observations
dataset [37], three widely-used observationally-based estimates are used. These are (i) the Climate
Hazards Group Infrared Precipitation with Station data (CHIRPS), which is a blend of Climate Hazards
Group Precipitation climatology, satellite infrared measurements and direct rain gauge measurements
(which are sparse over West Africa) and is available from 1981 to present at a 0.5◦ × 0.5◦ resolution [38],
(ii) the Global Precipitation Climatology Project 1 Degree Daily (GPCP 1DD), available from 1996
to present with a 1◦ × 1◦ resolution [39] and (iii) the Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) 3B42v7 research derived daily product , available from
1998 to present at a 0.25◦ × 0.25◦ resolution [40].
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Table 1. Basic information for the 15 Coupled Model Inter-comparison Project Phase 5 (CMIP5) models used in this study (resolution refers to the grid size of the
atmospheric component of the model (resolution refers to the grid size of the atmospheric component of the model).

Modelling Center Institution Model Name Resolution

Beijing Climate Center, China Meteorological Administration BCC BCC-CSM1-1-M 1.125◦ × 1.125◦

Canadian Centre for Climate Modelling and Analysis CCCma CanESM2 2.79◦ × 2.81◦

Centre National de Recherches Météorologiques/Centre Europeen de Recherche et Formation Avancees en
Calcul Scientifique

CNRM-CERFACS CNRM-CM5 1.40◦ × 1.40◦

National Center for Atmospheric Research NCAR CCSM4 0.94◦ × 1.25◦

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate
Change Centre of Excellence

CSIRO-QCCCE CSIRO-Mk3.6.0 1.86◦ × 1.87◦

EC-EARTH consortium EC-EARTH EC-EARTH 1.12◦ × 1.12◦

Met Office Hadley Centre(additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas
Espaciais)

MOHC HadGEM2-ES 1.25◦ × 1.85◦

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 1.89◦ × 3.75◦

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-MR 1.27◦ × 2.50◦

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute(The
University of Tokyo), and National Institute for Environmental Studies

MIROC MIROC-ESM 2.79◦ × 2.81◦

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology

MIROC MIROC4h 0.56◦ × 1.41◦

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology

MIROC MIROC5 1.40◦ × 1.41◦

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-LR 1.86◦ × 1.87◦

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-MR 1.86◦ × 1.87◦

Meteorological Research Institute MRI MRI-CGCM3 1.12◦ × 1.12◦
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The different simulations as well as the three satellite estimates are all provided on different
grids, whose sizes vary from less than 1◦ to more than 3◦ (see Table 1). Therefore, for the comparison
presented below, all the datasets have been regridded to a spatial resolution of 2.5◦ × 2.5◦ using
conservative (bilinear) interpolation technique for satellite data (models’ outputs). This relatively
coarse resolution roughly matches the grid of the lower-resolution simulations. Some results are quite
sensitive to the grid size, and this will be illustrated for a 0.5◦ × 0.5◦ resolution grid.

Due to the datasets availability (CHIRPS starts from 1981 and most of CMIP5 historical simulations
end in 2004), analyses are focused over the period from 1985 to 2004. The Sahelian and the Guinean
regions (boxes on Figure 1) are analysed separately and annual cycles of spatial averaged of total daily
rainfall metrics over these two regions have been computed.

As in Sylla [41], rainfall indices defined by the Expert Team on Climate Change Detection and
Indices (ETCCDI [42]), are used to document the variability of daily precipitation, including highly
precipitating events:

• The frequency of daily precipitation events is the number of days with precipitation higher than
1 mm;

• The Simple daily intensity index is the mean intensity of daily precipitation events;
• The Consecutive Dry Days (CDD) index is the number of consecutive dry sequences of more than

5 days (dry spells). A dry day is defined as a day with precipitation less than 1 mm;
• The Consecutive Wet Days (CWD) index is the number of consecutive wet sequences (or wet

spells) lasting more than 5 days. A wet day is defined as a day with precipitation higher than
1 mm;

• The 95th percentile of daily precipitation events (R95) is the value above which 5% of the daily
precipitation events (days with precipitation higher than 1 mm) are found;

• Total precipitation with respect to the R95p (R95ptot) is the fraction of precipitation accounted for
by the very wet days (daily rainfall above R95).

These indices are calculated for each grid point, using the full length of each dataset, and then
averaged over each month and each domain.

As recalled in the introduction, the Sahelian and Guinean regions display quite distinct rainfall
regimes [41,43,44]. The Sahel is characterized by a single rainy season occurring from June to September,
while the rainfall regime over the Gulf of Guinea presents a bimodal structure with one peak in June
during the northward migration of the Inter-Tropical Convergence Zone (ITCZ) and another one in
September during the southward retreat of the ITCZ. Here, the ITCZ position and width are determined
over a West African domain extending from 0 to 20◦ N and 20◦ W to 25◦ E following the method of
d’Orgeval [45]. The method can be summarized as follows:

First, grid points where precipitation exceeds Pt = 2 mm/day are retained (we did not find any
noticeable change with Pt = 1, 3 and 4 mm/day) . This threshold value allows to capture a fairly large
monsoon band for all the simulations. The threshold is subtracted to the precipitation exceeding
it. This provides a mapping of the ITCZ. Then if n is the number of grid points above 2 mm/day;
i, the index of one point; Pi, the precipitation at the grid point i; and loni and lati the coordinates
(longitude and latitude, respectively) of i; the latitudinal position of the center of the ITCZ is computed
as follows:

LatC =
∑n

i=1(Pi − Pt) ∗ lati

∑n
i=1(Pi − Pt)

The width of the ITCZ is considered as the standard deviation of the distribution in latitude:

W =

√
∑n

i=1(Pi − Pt) ∗ (lati − LatC)2

∑n
i=1(Pi − Pt)
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In order to characterize the timing of the monsoon season and its length, the method of
Liebmann [3] is used to determine its onset and cessation dates over the Sahel and the Guinean
region. The method can be summarized as follows:

First, we determine the start of the climatological water season. At each grid point this is found by
first calculating two quantities: (i) the long-term annual-mean and daily average is computed for each
day of the year. Starting from 1st January, the sum of the difference between the climatological daily
average (Mi) and the climatological annual-mean (M̄) gives the climatological accumulated anomaly
(C). The day when the minimum of C is reached is defined as the start of the climatological water
season (noted Ds) and day of the maximum marks the end (De).

C =
31Dec

∑
i=1Jan

Mi − M̄

The onset for each year and each grid point is then determined and compared to their
climatological values. For each year of record, beginning 50 days prior to the start of the climatological
water season and ending at its end, daily precipitation (RRj) minus the long-term annual-mean
daily average (M̄) is summed. This sum is called the anomalous accumulation (A). The day after
which the value of A reaches its absolute minimum is the onset date since, from that day onward for
this particular year, accumulated precipitation exceeds what would be expected from climatology.
Conversely, the day on which A reaches the maximum is the cessation date of the wet season.

A =
De+50

∑
j=Ds−50

RRj − M̄

Figure 1. Climatological annual-mean rainfall (mm/year) averaged over 1985–2004 over West
Africa (using CHIRPS data). The black boxes highlight the two-considered subregions (Sahel and
Guinean region).

3. Results

3.1. The Annual Cycle of Mean Precipitation, Intensity and Frequency of Wet Days

This section focuses on the annual cycle of precipitation amount, frequency and intensity of wet
days. Figure 2 provides an inter-comparison of CMIP5 results with observational datasets (CHIRPS,
TRMM and GPCP). First the annual cycle of monthly-mean precipitation is analysed. Figure 2a
indicates that CHIRPS, TRMM and GPCP provide a very close depiction of this cycle over the Sahel,
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while models capture reasonably well the broad temporal structure of the annual cycle though with a
very large spread of the amplitude from less than 2 to more than 8 mm/day in August.

Figure 2. Annual cycle of rainfall (a,b), frequency (c,d) and intensity of wet days (e,f) over the Sahel
(left) and Guinean region (right) from CHIRPS (black), TRMM (blue), GPCP (green) and 15 CMIP5
models and their ensemble mean (cyan). The shaded area indicate the spread between the three
satellite estimates.

During the core of the monsoon (July–September), over the Sahel, only two models (CSIRO-Mk3
and MIROC5) present a substantial positive biases compared to satellite datasets (2 mm/day), while
most of the other models underestimate the magnitude of rainfall with peaks as low as 2 mm/day
(consistently with Roehrig [36]). In August, MPI-ESM-MR, MPI-ESM-LR, EC-EARTH, MIROC4h and
MIROC-ESM perform relatively well compared to observations with peaks between 6 and 7 mm/day.
The Multi-Models Mean (MMM) performs better than several models but still underestimates the core
monsoon rainfall.

Over the Guinean region, the observational datasets also agree quite well even though the “little
dry season” [46] is slightly more marked in TRMM and GPCP than in CHIRPS. In contrast, the annual
cycles in CMIP5 models display a variety of shapes (Figure 2b). A large spread among models is
present and most models overestimate the magnitude of precipitation during the monsoon. The MMM
fails to reproduce the bimodal character of precipitation. Only CNRM-CM5, MIROC5 and MIROC4h
capture the bimodal structure of this cycle but with bias in the timing. For instance, the CNRM-CM5
first peak (9 mm/day) occurs in June as observed, while the second one (10 mm/day) is observed in
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August instead of September. MIROC4h similarly displays its first peak in June (9 mm/day) and the
second one in October (5.5 mm/day). The second peak in MIROC5 (12.5 mm/day) is observed at the
right time (September) but the first one (12 mm/day) occurs one month later, in July.

In general, models which underestimate/overestimate precipitation during the core monsoon do
so throughout the monsoon season. However, outside of the monsoon period, when there is hardly
any rain observed, almost all models simulate precipitation, i.e., they systematically overestimate
precipitation, even those models which underestimate it during the monsoon (e.g., in March in
the Sahel).

Focussing now on the annual cycle of the frequency of wet days, satellite datasets agree reasonably
well over the Sahel. The maximum frequency occurs during the core monsoon season in August, and
it is lower in TRMM and GPCP than in CHIRPS (by 10%). A higher frequency is observed in CHIRPS
over the Guinean region too, but there satellite datasets display a large spread in Spring (April–May),
reaching about 20%. Interestingly, the annual cycle of the frequency of wet days displays a well-defined
bimodal structure in GPCP and CHIRPS, while this characteristic is much less pronounced in TRMM.
CMIP5 simulations capture roughly the structure of these annual cycles (Figure 2c,d). In August,
over the Sahel, CSIRO-Mk3 and EC-EARTH display the largest biases, of respectively +5 and +3 days
compared to observed data.

Over the Guinean region, the bimodal structure associated with the frequency of wet days is
lacking in CMIP5 models, most of them simulate a relatively constant or slightly increasing frequency
from May to October. Indeed, it is raining almost every day in several models, with biases then
reaching about 50% compared to the mean wet day frequency from observational dataset.

Finally, over both regions, models largely overestimate the frequency of wet days prior to and
following the monsoon season (up to 50% in May over the Sahel), which means that it rain more
frequently in simulations throughout the annual cycle. CMIP5 models are known to precipitate
globally too frequently with too little precipitation (e.g., [47]) and ref. [36] showed this was also true in
JAS for the West African region. This overestimation may be related to well known issues with the
representation of the diurnal cycle of convective precipitation in models (e.g., [36,48]) when convective
inhibition is not preventing the onset of convection [48].

Shifting now to the annual cycle of the intensity of wet days, observational datasets are again
very close to each other over the Sahel. Models generally simulate a peak in August over the
Sahel (Figure 2e), but with strong uncertainties in the amplitude. MIROC4h and MIROC5 are the
only two models displaying a higher intensity than satellite datasets. BCC-CSM1, CCSM4GHG,
CNRM-CM5, IPSL-CM5A-LR, IPSL-CM5A-MR and MRI-CGCM3 show a significant underestimation
with peaks ranging from 2 to 4 mm/day (i.e., an underestimation between 200 and 500% compared to
observational datasets).

The situation is quite similar over the Guinean region, where satellite datasets display slight
spread. Slight uncertainties are noted in observational datasets especially from January to May (with
a difference reaching 40% between CHIRPS and TRMM in April). Furthermore, they display slight
distinct structures of the annual cycle of wet days intensity. Observational datasets show a less marked
bimodal structure which is much better represented in GPCP and TRMM in June and September.
CHIRPS shows its first peak in July and the second one in September whereas TRMM displays peaks
in April and June. Note that, in these two datasets, the intensity does not fluctuate much from June
to September. There is also a wide spread among models on the representation of the intensity of
wet days, but with a dominantly positive bias on the amplitude of the signal (Figure 2f). In terms of
temporal evolution, most models display a unimodal structure of the intensity of wet days except for
models whose displayed a bimodal structure of the mean precipitation. Given the uncertainties in
observational datasets, it is not possible to conclude as to which models perform better over this region.

Finally, it is noticeable that over both regions and in observational datasets as well as in models,
the annual cycles of the intensity and of the frequency of wet days are both very strongly correlated
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with the annual cycle of the mean precipitation (see Table A2), which implies in particular that model
biases in the annual cycles of these variables are linked.

In summary, one can retain that the annual cycle of wet days intensity is in general poorly
represented in models over the two areas, with particularly large uncertainties regarding the
magnitude. Over the Sahel models’ uncertainties in the annual cycle of precipitation are related
to both the uncertainties in the frequency and intensity of wet days. On the other hand, biases in the
representation of the bimodal structure over the Guinean region appears to be more closely related to
the representation of the intensity than the frequency of wet days in models.

It is important to note that with a finer grid resolution (0.5◦ × 0.5◦; see Figure A1), the frequency
(resp. intensity) of wet days decreases (increases) in observational datasets while the associated
uncertainties increase with more differences in the frequency and intensity of wet days among those
datasets (e.g., the spread in intensity roughly doubles). By contrast there are no considerable changes
noted in CMIP5 models, which leads to a subtantial increase in model biases (e.g., it reaches about
100% of the frequency of wet days).

Quantitative diagnostics within Taylor diagrams confirm these findings (Figure 3, where CHIRPS
is the “reference” in that it is the dataset to which other satellite and model datasets are compared).
For the annual cycle of precipitation and frequency of wet days over the Sahel, TRMM and GPCP are
very strongly correlated (>0.99) with CHIRPS and have a normalized standard deviation close to 1
(slightly lower than 1 for the precipitation and slightly higher than 1 for the frequency), consistently
with the fact that TRMM and GPCP indicate a lower frequency of wet days over that area. For the
annual cycle of the intensity of wet days, TRMM and GPCP display strong correlation (between 0.95
and 0.99) and have a normalized standard deviation close to 1 (slightly > 1 for GPCP and = 1 for
TRMM), again consistent with the slightly higher values of that index in GPCP and TRMM noted in
Figure 2e.

In line with the results presented in Figure 2b,d,f, over the Guinean region, the correlation of
TRMM and GPCP with CHIRPS is stronger on the annual cycle of the mean precipitation and the
frequency the intensity. The normalized standard deviation is slightly less than 1 on the annual cycle
of precipitation and frequency of wet days, as TRMM and GPCP indicate a lower frequency of wet
days than CHIRPS (Figure 2d).

In models, except BCC-CSM1 and MRI-CGCM3, the annual cycles of the mean precipitation, of
the frequency and intensity of wet days correlate well with CHIRPS over the Sahel, confirming the
fact that in this area, models are in general able to qualitatively capture the unimodal structure of the
annual evolution of precipitation (Figure 3a). However, the distribution of values is scattered along
the standard deviation axis, which indicate how the uncertainties in the amplitude of precipitation
are important in CMIP5 models over the Sahel. For some models (MPI-ESM-MR, MIROC-ESM,
CNRM-CM5, MPI-ESM-LR, EC-EARTH, MIROC4h, CanESM2), and for the MMM, the normalized
standard deviation is close to 1 but some others models display very strong (1.55 for CSIRO-Mk3)
or weak values (<0.50 for BCC-CSM1 and MRI-CGCM3). Figure 3a also reveals that over the Sahel,
uncertainties in total precipitation come from both uncertainties on the intensity and the frequency of
wet days. Over the Guinean region, Figure 3b shows much weaker correlations compared to the Sahel.
This is partly due to the poor representation of the bimodal structure of precipitation in the CMIP5
models over this region. Regarding the normalized standard deviations values, the distribution appears
less scattered compared to the Sahel region in agreement with previous conclusions from Figure 3a,b.
In contrast with the Sahel region, Figure 3b also indicates that over the Guinean region, the uncertainties
in daily total precipitation dominantly involve those in the frequency of wet days. Most models fail to
reproduce the frequency of wet days, which also contributes to the poor representation of the bimodal
structure of precipitation in that area.

In summary, over both the Sahel and Guinean regions, TRMM, GPCP and CHIRPS datasets
provide very consistent results on the annual cycle of precipitation but less so on the frequency of wet
days. Conversely, uncertainties are noted on the intensity of wet days over both areas, but especially
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over the Guinean region. On the other hand, CMIP5 models present very high uncertainties in the
seasonal cycle of precipitation. Separate analysis of the frequency and intensity of the wet days reveal
that over the Sahel, the uncertainties are important on both the amplitude of frequency and intensity
of wet days. It also reveals that over the Guinean region, the difficulty of models to represent the
bimodal structure of the mean precipitation is dominated by biases in the representation of the annual
cycle of the frequency of wet days. Finally, it is difficult to conclude regarding the simulation of the
temporal structure of the annual cycle of the intensity of wet days over the Guinean region, because of
uncertainties in observational datasets.

Figure 3. Taylor diagrams of the annual cycle of daily mean rainfall (mm/day), intensity and frequency
of wet days from 1985 to 2004 over the Sahel (a) and the Guinean region (b) for TRMM, GPCP and
15 CMIP5 models compared to CHIRPS. The values have been computed using the monthly-mean of
each index averaged over the period 1985–2004.

3.2. The Annual Cycle of Extreme Precipitation Indices

In this section, we focus on the annual cycle of extreme precipitation indices (presented in
Section 2) provided by satellite datasets and CMIP5 models (Figure 4).

First, Figure 4a shows that over the Sahel, the structure of the annual cycle of CWD is very similar
in the three satellite datasets, but TRMM and GPCP provide less wet spells than CHIRPS. Over the
Guinean region, more important differences are noted in observational datasets (Figure 4b) with again
less CWD in TRMM and GPCP and a large spread in April-May. Here, satellite datasets display a
bimodal structure (although less pronounced in TRMM) but with different dates of maxima: the first
maximum occurs in June according to GPCP and TRMM, one month later than with CHIRPS while
the second maximum occurs in October according to GPCP and CHIRPS, once month later than
with TRMM.

Over the Sahel, most models (MIROC-ESM, MPI-ESM-MR, MPI-ESM-LR, IPSL-CM5A-MR,
IPSL-CM5A-LR, HadGEM2, EC-EARTH, CCSM4GHG and CSIRO-Mk3) simulate a CWD peak in
August as observed but with strong uncertainties in the amplitude. Several models fail to represent
the observed unimodal structure. For instance in EC-EARTH, CanESM2, CNRM-CM5, CCSM4GHG
and MIROC5 present a multi-peak structure of the annual cycle of CWD. A few models performs
relatively well for CDD in the Sahel (Figure 4c). However, it is important to note that when a model
overestimates CDD, it often underestimates CWD and vice versa (this is even more pronounced with
the finer 0.5 × 0.5 grid: e.g., MRI-CGCM3 model, which performs the best on wet spells and the worst
on dry spells; note also the IPSL simulations which provide a reasonable representation of CDD, but
largely underestimate the mean precipitation Figure A2a,c).
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Figure 4. Annual cycle of wet spells (a,b), dry spells (c,d), 95th percentile (e,f) and the fraction of
precipitation accounted for by the very wet days (g,h) over the Sahel (Left) and the Guinean region
(right) from 1985 to 2004 in CHIRPS (black), Tropical Rainfall Measuring Mission (TRMM) (blue), GPCP
(green) and 15 models CMIP5 and their ensemble mean (cyan).

Over the Guinea region, very high uncertainties are also noted in models (Figure 4b). Most of the
models represent multi peaks structure for CWD and, even more than in the Sahel, they all largely
overestimate the magnitude of the CWD (by more than 100% in April-May). For satellite datases,
mirroring previously noted differences in CWD, CDD are more numerous in TRMM and GPCP than
in CHIRPS while their annual structure are relativity close. In particular, the three datasets indicate
an increase of CDD during the little dry season over the Guinean region (Figure 4d). Models are
unable to capture this peak of CDD observed from July to August (Figure 4d). Finally, the model biases
noted on CDD are relatively lower than those obtained on CWD over both regions, and appear to be
relatively less important over the Guinea region than over the Sahel. Therefore, beyond uncertainties
in observational datasets, CWD appear to be too much numerous in almost all models over the
two regions.

For the 95th percentile of daily precipitation, uncertainties are overall stronger than for the
previous indices in observational datasets as well as in CMIP5 models. It takes values around
16 mm/day for CHIRPS and 22 mm/day for GPCP and TRMM in August over the Sahel. Only
a few models (MIROC5, MIROC4h and MPI simulations) perform quite well during the monsoon
though they performance decrease when considering a finer resolution (Figure A2e).
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Over the Guinean region, as noted for the intensity (Figure 2b), differences between datasets are
larger prior to the little dry season. Despite these large differences among datasets, it appears that over
both regions, numerous models underestimate the 95th percentile, i.e., they simulate more wet days
and CWD, but the intensity and extrema of precipitation are much less than observed.

Finally, the annual cycle of of the fraction of precipitation accounted by the very wet days R95ptot
is shown in Figure 4g,h. Its structure, with a minimum during the monsoon season (around 30%),
is relatively well captured by most models compared to the previous indices (this is not unexpected
as this index does not involve model biases in the simulation of precipitation). The main differences
are underestimations of this index in April–May over the Sahel, and during “the little dry” season in
the Guinean region. Overall, this fraction is relatively small, which suggests that model errors in the
highest precipitation values cannot explain a large part of the errors in the mean precipitation.

It is important to note that with a finer grid resolution (0.5◦ × 0.5◦; Figure A2) a considerable
decrease (increase) is observed on CWD (CDD, 95th percentile and R95pTOT) in observational
datasets accompanied with strong uncertainties over the two regions. By contrast in CMIP5 models
no noticeable change is observed so that model biases considerably increase (even when taking
uncertainties in observational datasets).

Using the Taylor diagrams, these findings have been further quantified (Figure 5). TRMM and
GPCP are very strongly correlated (r > 0.95) with CHIRPS and have standard deviations close to
or equal 1 on the annual cycle of CDD over the two regions. As expected from Figure 4a,b for
CWD, the correlations between either TRMM or GPCP with CHIRPS and the normalized standard
deviation are weaker. For CDD, CMIP5 models are weakly correlated with CHIRPS over the Guinean
region where the normalized standard deviation is closer to 1, meaning that uncertainties in the
annual structure of that index is less important than over the Sahel. On the other hand, for the CWD,
distributions along both correlation and standard deviation axes appear highly scattered, pointing
to the strong uncertainties qualitatively noted over both regions and on both the temporal evolution
and the occurrence of CWD (Figure 4a,b). Regarding now the 95th percentile and R95PTOT indices,
their correlations with CHIRPS are higher (r > 0.90) over both regions, which points to a reasonable
simulation of the temporal evolution of these indices and contrast with their poor skill in terms of
standard deviation.

3.3. Timing and Length of the Monsoon Season

As emphasized above, the models do not provide a proper depiction of the annual cycle of
precipitation and it is important to characterize these differences in more detail. To do so, the start and
end dates of the wet season are determined using the Liebmann method [3].

Figure 6 shows the daily accumulated precipitation anomalies, the onset, the cessation and half of
the cumulative precipitation dates from observations and CMIP5 simulations and their MMM over the
Sahel and the Guinean region. The evaluation is performed with CHIRPS and CMIP5 models for the
period 1985–2004, and over 2000–2010 for TRMM and GPCP reference datasets.

Over the Sahel, the mean onset and cessation dates are close in the observational datasets
(around 1 June for the onset and 9 October for the cessation), with differences of less than three
days. The standard deviation of both dates is on average +/− 7 days for these observational datasets.

In CMIP5 models, except for MPI and IPSL simulations, the onset occur earlier than in
observational datasets, by up to several weeks (from 1 May for CCSM4 to 21 May for HadGEM-ES)
while cessation dates are closer to observed, even though sometimes a bit late in a few models
(e.g., 20 October for BCC-CSM1). Conversely in MPI and IPSL models, the monsoon onset occurs later
(from 8 to 20 June) and the cessation is also slightly later in the year for MPI. Likewise, the onset is
too early in the MMM while the cessation is closed to observed. Finally, rainfall is not distributed
uniformly during the monsoon: it rains more during the second half of the monsoon according to
CHIRPS and TRMM. This characteristic is at least partly captured by most models (Figure 6b).
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Figure 5. Taylor diagrams of wet spells (cyan), dry spells (purple), 95th percentile (orange) and the
fraction of precipitation accounted for by the very wet days (brown) from 1985 to 2004 in the Sahel (a,c)
and the Guinean region (b,d) on TRMM, GPCP and 15 CMIP5 models compared to CHIRPS. The values
have been computed using the monthly-mean of each index averaged over the period 1985–2004.

Over the Guinean region, there is relatively less agreement in the onset and cessation dates
obtained from observational datasets (differences reach 10 days); they respectively occur around the
first half of April and in late October. These dates correspond to the start of the first season and the
end of the second season, which are both separated by the little dry season. In our case this dry phase
is not very pronounced, this is why we can use this method (keeping in mind that it can’t provide
the intermediate onset and cessation dates over this region). Half of the annual cumulative rainfall is
recorded around 20 July, which is close to the middle of the monsoon season and indicates that there is
about as much rainfall during the first and second half of the monsoon season.

For CMIP5 models, the onset occurs either later (60% of models), from 15 April to 24 June or
close to observed (40%), while, as previously found over the Sahel, cessation dates are relatively closer
to observed. In most models, half of the annual cumulative rainfall is recorded during the first half
of the wet season, a date which varies from 15 July (CSIRO-Mk3) to 11 August (IPSL-CM5A-MR).
The exact values of these dates can be found in Table A1. Finally, there is a slight length asymmetry
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between the second (shorter) and third (longer) quartile in most models, in qualitative agreement
with observations.

(a)

(b)
Figure 6. Daily accumulated-anomalies of precipitation (left panel) from observations (bold lines) and
CMIP5 models simulations and their multi-model mean (MMM) over the Sahel (a) and the Guinean
region (b); averaged over 1985–2004 for CHIRPS and models and over 2000–2010 for TRMM and GPCP.
The box plots (right panel) show the onset (minimum), the cessation (maximum), the date at which
half of the total cumulative precipitation is recorded (median), as well as the first and third quartiles.

More spatial details are provided by maps of onset and cessation dates over West Africa
(Figures 7, A5 and A6). Observational datasets highlight the northward migration of the monsoon.
The earlier onset dates occur in the southern part of the domain around late March/early April,
consistently with the results of Dunning [2] and Thorncroft [49] over the Guinean coast. Further north,
from 10 to 15◦ N and 10◦ W to 10◦ E, the onset dates increase from 4 May to 15 June. In Senegal,
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close to the coast, onset dates also display a South-West/East-North gradient and the later onset dates
occur in north-west Senegal by up to end of June. These results are fully consistent with Liebmann [3]
and Dunning [2]. Various methods can be used to determine onset dates (e.g., Fitztpatrick [50],
Bombardi [51]) and they lead to different results. For instance, our onset dates are typically earlier
than in Marteau [52], by up to a month in some areas (this difference is in the same range as found by
Bombardi [51], their Figure 5).

The southward progression from 17◦ to 7◦ N of the cessation dates with a slight West-North
East-South tilt, is well defined in observational datasets. Consistently with Liebmann [3], the earlier
dates found close to the southernmost coast of West Africa correspond to the end of the first wet season.
In this area, the method becomes of limited value as it does not inform on the cessation date of the
second wet season (cf. Liebmann [3], their Figure 7b).

The MMM is able to well reproduce the northward shift of the onset dates and the southward
progression of cessation dates, including their distinct tilts (Figure 7). By contrast, only a few models
(MPI simulations, EC-EARTH and MIROC-ESM) are able to capture these spatial structures (Figure A5).
These models display a reasonable pattern over Western Sahel, with in particular later onset dates.
Consistently with Figure 6, the MMM display too late onset dates (by up to one month over north-west
Senegal) and an eastward shift of its earlier dates compared to CHIRPS. The standard deviation
is minimum over Central Sahel where it however still amount to more than 10 days. By contrast,
most models are able to capture the southward of the cessation dates over West Africa with typical
differences around seven days. The MMM is relatively close to observations, except South of 7◦ N.
More generally, models compare much better to observations over West Africa with weaker standard
deviation (Figure 7f).
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Figure 7. Mean onset and cessation dates in CHIRPS (a,b) and MMM (d,e) as well as the associated
standard deviation in models (c,f).

In summary, observational datasets show a good agreement in their determination of the onset
and cessation dates of the rainy season over the two regions. These results are very consistent with
the results of Liebmann [3] as well as those of Dunning [2] who found good correlations (around 0.88
to 0.91) of the onset and cessation dates provided by satellite datasets over Africa using this method.
CMIP5 models often provide too early/late onset and/or too late cessation dates over the two regions
meaning that most models overestimate the precipitation during the early and late monsoon, a result
which is also consistent with Seth [53].The MMM provide a reasonable pattern of onset and cessation
dates over the Sahel and an eastward shift of onset dates over the Guinean region.

3.4. Annual-Mean Precipitation over the Sahelian and Guinean Regions

Over West Africa, errors in the simulation of the latitudinal position of the ITCZ is a primary
source of precipitation biases (e.g., [54]), and can be associated with compensating errors between the
Sahel and Guinean regions. For instance, if the ITCZ is located too much to the South, it can lead to an
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underestimation of precipitation amounts over the Sahel and potentially to an overestimation over the
Guinean zone. This issue is investigated in more details here, via an analysis of the ITCZ latitude and
width using a 0.5◦ × 0.5◦ grid resolution.

Figure 8a illustrates the monthly-mean latitude centre of the ITCZ band over west Africa and
Figure 8b its June to September (JAS) mean latitude and the width for observational datasets and
CMIP5 outputs. During the full monsoon (JAS), CHIRPS and TRMM indicate a similar position around
9◦ N, while it is shifted southward (by about 1◦) with GPCP. This difference is also obvious for the
JAS-mean of that metric, while the width is about 5◦ in all observations. In most CMIP5 simulations,
the ITCZ position is too far to the south (6–8◦ N) during the core of monsoon and too far to the north
during January–March. Only two models, MIROC5 and MIROC4h, display a position of the ITCZ close
to observed datasets during the core of the monsoon and only one, CSIRO-Mk3 shows a northward
biais of the ITCZ latitude from January to December (More details can be found in Figure A3 showing
time-latitude Hovmöller diagram of precipitation).
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Figure 8. Monthly mean of the latitude of the centre of the Inter-Tropical Convergence Zone (ITCZ)
band over West Africa (a) and the JAS mean of the latitude of the centre and the width of the ITCZ (b).
r in legend indicate the correlation between the monthly mean precipitation and latitude of the centre
of the ITCZ. For each box plot, the distance from minimum to maximum represent the width and the
median is the ITCZ position.

The differences between the observed and simulated width of the ITCZ band are relatively weak.
Thus, biases in the latitude and width of the ITCZ may appear relatively small in most models (given
their grid size). However, we find that monthly-mean precipitation over the Sahel, the Guinean
region and the west Africa are all very strongly correlated to the monthly-mean ITCZ latitude in both
models and observations. Thus, models who display a southernmost shift of the ITCZ underestimate
precipitation amount over the Sahel.

Most models underestimate rainfall amounts over the Sahel. The strong correlation between JAS
biases in the ITCZ location and Sahel precipitation (R = 0.92 see Figure A7) shows that this negative
precipitation bias is associated with models that place the ITCZ too far to the south. Previous studies
have shown that CMIP5 models also have a southward bias in the Saharan heat low (SHL) which is
associated with less precipitation across the Sahel [55], and that changes in global energy transport can
alter Sahel precipitation and shift both the ITCZ and SHL [56]. This result is also consistent with results
from Roehrig [36] where a southward bias in the ITCZ in CMIP5 historical simulations (compared



Atmosphere 2020, 11, 216 16 of 28

to AMIP simulations) was associated with a positive SST bias in the Guinean Gulf. Our results are
close to those of Monerie [57] who find that most CMIP3 models place the ITCZ too far to the south
compared to the observational dataset CRU (Climatic Research Unit). With this dataset, the ITCZ
position in August is around 9◦ N, i.e., it is also similar to our estimations

We can also separate the impact of latitudinal ITCZ biases from biases in its amplitude by
comparing the precipitation bias in both the Sahelian and Guinean regions and seeing if there is a
corresponding shift in bias between the regions. Table 2 compares the annual mean precipitation and
the biases (differences are computed with respect to CHIRPS) over both regions and over “West Africa”
(defined here as the ensemble of the two regions).

Table 2. Annual cumulative precipitation (mm/year) and precipitation difference (in mm/year and
percentage) between CHIRPS and GPCP, TRMM, CMIP5 model’s simulations and their multi-model
mean over the Sahel, Guinean region and West Africa averaged over the period 1985–2004 for CHIRPS
and models and over the period 2000–2010 for GPCP and TRMM.

Sahel Guinean Region West Africa

CHIRPS 667 1488 837

GPCP +75 (+11%) −55 (−4%) +48 (+6%)

TRMM +33 (+5%) −84 (−6%) +9 (+1%)

BCC-CSM1-1-M −426 (−64%) −273 (−18%) −394 (−47%)

CanESM2 −23 (−3%) +87 (+6%) 0 (0%)

CCSM4 −64 (−10%) +105 (+7%) −29 (−3%)

CNRM-CM5 +25 (+4%) +411 (+28%) +105 (+13%)

CSIRO-Mk3-6-0 +590 (+88%) +285 (+19%) +527 (+63%)

EC-EARTH +194 (+29%) +114 (+8%) +177 (+21%)

HadGEM2-ES −351 (−53%) −271 (−18%) −334 (−40%)

IPSL-CM5A-LR −343 (−51%) +83 (+6%) −255 (−30%)

IPSL-CM5A-MR −379 (−57%) −37 (−2%) −308 (−37%)

MIROC-ESM −49 (−7%) +502 (+34%) +65 (+8%)

MIROC4h +227 (+34%) +554 (+37%) +295 (+35%)

MIROC5 +498 (+75%) +943 (+63%) +590 (+70%)

MPI-ESM-LR −68 (-10%) +98 (+7%) −34 (4%)

MPI-ESM-MR −8 (−1%) +76 (+5%) +9 (+1%)

MRI-CGCM3 −400 (−60%) −344 (−23%) −388 (−46%)

ensmean −30 (−4%) +153 (+10%) +8 (+1%)

In agreement with previous results, the differences between the observational datasets are weak.
TRMM and GPCP indicate slightly more precipitation over the Sahel (+33 mm and +75 mm respectively)
and slightly less over the Guinean region (−84 mm and −55 mm respectively), leading to slightly
more precipitation over West Africa (+9 mm and +48 mm respectively). The differences remain below
10% except between CHIRPS and GPCP over the Sahel (+11%), but they indicate compensations
between the Sahel and the Guinean region which narrow the range of differences when considering
West Africa as a whole. Table 2 also indicates that, it rains about twice more in the Guinean region
compared to the Sahel. Differences are more important in CMIP5 models, and vary from −426 mm
(BCC-CSM1-1-M) to +590 mm (CSIRO-Mk3) over the Sahel. Despite this additional unrealistic source
of precipitation, on an annual-mean basis, more models display a negative bias over the Sahel (which
represents −1 to −64% of CHIRPS annual rainfall). Conversely over the Guinean region, models’
biases are dominantly positive and represent +5 to +63% (+76 mm to +943 mm) of CHIRPS annual
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rainfall excepted for MRI-CGCM3 (−400 mm), HadGEM2-ES (−271 mm), BCC-CSM1-1-M (−273 mm)
and IPSL-CM5A-MR (−37 mm). However, on a model-by-model basis, we do not find many cases
of underestimation over the Sahel combined with an overestimation over the Guinean region (see
also Figures A4 and A7). Rather, in 66% of the models, it rains either too much or not enough over
both regions, which points to a primary bias in the simulation of the West African rainfall (rather than
biases in its latitudinal distribution), where about half of the models overestimates precipitation and
the other half underestimates it.

4. Conclusions and Perspectives

This study highlights how CMIP5 models represent the annual cycle of rainfall characteristics
over West Africa, focusing on the timing of the monsoon season (onset, cessation), the frequency
and intensity of daily rainfall, and indices for extreme precipitation such as the 95th percentile of
precipitation and consecutive wet and dry days, in addition to monthly-mean rainfall. These analyses
have been conducted for both the Sahel and the Guinean regions which display distinct annual cycles
and precipitation climatologies. A subset of 15 historical CMIP5 simulations has been evaluated using
three observational datasets (CHIRPS, TRMM and GPCP) over a 24-year period for CHIRPS and
11-year period for TRMM and GPCP).

Over both regions, CHIRPS, TRMM, and GPCP are found to agree in their depiction of the
annual cycle of the mean precipitation and, to a lesser extent, of the frequency of wet days. However,
they provide quite distinct structures of the annual cycle of the intensity of wet days, especially over
the Guinean region. This lack of agreement in satellite datasets also concerns the 95th percentile of
precipitation or the CWD. This result suggests that further analyses of in-situ precipitation data are
needed so as to provide more advanced and valuable observational diagnostics for future model
evaluation. Indeed, the magnitude of extreme daily precipitation provided by these satellite datasets
can fluctuate by up to 100% during the core monsoon in the Sahel, and distinct structures of the annual
cycle of this index are found over the Guinean region with these datasets. Despite their limitations,
these datasets were nevertheless quite useful for evaluating several aspects of the annual cycle of
precipitation and precipitation indices in CMIP5 models, mainly because numerous biases in models
were much larger than the spread obtained with satellite datasets.

The performances of the models in simulating the structure of the annual cycle are better over
the Sahel than the Guinean region. They are generally able to reproduce the August peak, whereas
for the Guinean region only three models display a bimodal structure but with offset dates of their
maxima. In terms of amplitude, strong uncertainties in both areas (relatively more pronounced in
the Sahel) have been found in the mean precipitation annual cycle, and for most models, these biases
generally do not compensate each other when considering precipitation over West Africa, with 66% of
the models raining either too much or not enough over both regions. The analysis of intensity and
frequency of wet days reveals that over the Guinean area, the uncertainty on total daily precipitation
strongly involves the uncertainty associated with the frequency of wet days, whereas in the Sahel,
both uncertainties in intensity and frequency are equally important. It must be noted however that
models tend to always reproduce higher frequencies than observed, even when they underestimate the
mean precipitation amount (indeed, it rains 40–50% more in models than in satellite datasets over the
Guinean region and this bias obtained for a 2.5◦ × 2.5◦ grid substantially increases at finer resolution).

We found strong uncertainties in the representation of the wet and dry spells (CWD and CDD)
over both study areas. Conversely for R95 and R95PTOT, the uncertainties in the annual structure of
theses indices in CMIP5 models appear somewhat weaker in Taylor diagrams, but the magnitude of
the R95 is largely underestimated in most models. However, as the contribution of extreme rainfall to
the total precipitation is relatively limited (less than 30% during the core monsoon season according
to satellite data), the strong uncertainties found on the annual cycle of the intensity and frequency of
wet days seem to be associated with errors on either the intensity and frequency of the low and/or
moderate daily rainfall events rather than the extreme daily events. We also found that the annual
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cycles of precipitation and several precipitation indices are generally very highly correlated (e.g., R95)
in both satellite datasets and models. This results points to the importance of a good simulation of the
climatological annual cycle of precipitation, and also suggests that its improvement requires advances
in the representation of both the intensity and frequency of daily rainfall in models.

Finally, biases in the latitude of the ITCZ were shown to be connected to biases in precipitation
across West African in the annual mean. In JAS, these ITCZ biases are strongly connected to
precipitation biases in the Sahel, but not for the Guinean area. This suggests that better representing
regional and global controls on the ITCZ can help reproduce biases in Sahel precipitation characteristics.

This study has highlighted the complexity of the representation of daily rainfall characteristics in
climate models and how it translates into large biases at regional scale, which are likely to feedback on
the monsoon dynamics [58]. From a smaller scale perspective, we found that, from one precipitation
index to another, and according to the area, the uncertainties change dramatically. The magnitude of
the uncertainties also varies with the considered spatial scale for some indices. Typically, it further
increases at smaller scales. It is therefore important for each metric to identify the nature of these
uncertainties for impacts studies. Finally, we argue that further studies are necessary in order to
understand whether and how these precipitation biases are translated into future projections with
climate models over West Africa, in particular shifts in the monsoon season, and changes in mean and
extreme precipitation amounts. The methodology and results presented here will prove useful for
upcoming CMIP6 analyses.
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Abbreviations

The following abbreviations are used in this manuscript:

WAM West African Monsoon
AEJ African Easterly Jet
AEWs African easterly waves
ITCZ Inter-tropical Convergence Zone
MJO Madden Julian Oscillation
IPCC Intergovernmental Panel on Climate Change
RCP Representative Concentration Pathways
CMIP5 Coupled Model Intercomparison Project phase 5
GHG Greenhouse Gas
ETCCDI Expert Team on Climate Change Detection and Indices
SDII Simple daily intensity index
CDD Consecutive Dry Days
CWD Consecutive Wet Days
CHIRPS Climate Hazards Group Infrared Precipitation with Station
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Appendix A

Figure A1. Same as Figure 2 but with a finer grid resolution: 0.5◦ × 0.5◦ .
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Figure A2. Same as Figure 4 but with a finer grid resolution: 0.5◦ × 0.5◦ .
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Figure A3. Hovmuller diagrams of monthly precipitation averaged over 20W-25E for CHIRPS , TRMM
and GPCP (first line) and 15 CMIP5 outputs.
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Figure A4. CMIP5 models bias with CHIRPS on Hovmuller diagrams.
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Figure A5. Mean onset dates over West Africa in CHIRPS, TRMM, GPCP and CMIP5 models outputs.
The grey shaded area represent ignored domain.

Figure A6. Mean cessation dates over West Africa in CHIRPS, TRMM, GPCP and CMIP5 models
outputs. The grey shaded area represent ignored domain.



Atmosphere 2020, 11, 216 24 of 28

−4 −3 −2 −1 0 1 2 3
JAS mean precipitation bias (mm/day)

-2.5°N

-2.0°N

-1.5°N

-1.0°N

-0.5°N

0.0°N

0.5°N

1.0°N corr = 0.92

Sahel

MPI-ESM-MR

MPI-ESM-LR

MIROC-ESM

IPSL-CM5A-MR

CCSM4

CANESM2

EC-EARTH

CNRM-CM5

CSIRO-MK3-6-0

HADGEM2-ES

MIROC4H

MIROC5

MRI-CGCM3

BCC-CSM1-1-M

IPSL-CM5A-LR

−2 −1 0 1 2 3 4 5
JAS mean precipitation bias (mm/day)

-2.5°N

-2.0°N

-1.5°N

-1.0°N

-0.5°N

0.0°N

0.5°N

1.0°N corr = 0.35

Guinean region

Figure A7. Relation between the bias of July-September-mean precipitation and the bias of
July-September-mean ITCZ position.

Table A1. Mean onset and cessation dates (in day of the year) in CHIRPS, GPCP, TRMM and CMIP5
model’s simulations and their MMM over the Sahel and Guinean region averaged over 1985–2004 for
CHIRPS and models and over 2000–2010 for GPCP and TRMM.

Sahel Guinean Region

Datasets Onset Cessation Onset Cessation

CHIRPS 152 280 105 299

GPCP 150 283 97 303

TRMM 152 283 101 297

MMM 142 283 125 277

BCC-CSM1-1-M 140 294 153 282

CanESM2 125 276 108 293

CCSM4 121 281 107 294

CNRM-CM5 140 286 121 293

CSIRO-Mk3-6-0 141 291 105 306

EC-EARTH 128 282 99 293

HadGEM2-ES 141 265 141 265

IPSL-CM5A-LR 165 285 165 285

IPSL-CM5A-MR 171 284 174 282

MIROC-ESM 131 278 93 288

MIROC4h 134 280 107 301

MIROC5 140 286 97 305

MPI-ESM-LR 158 288 134 296

MPI-ESM-MR 160 290 134 298

MRI-CGCM3 135 277 141 272
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Table A2. Correlations between the annual cycle of mean precipitation and the frequency of daily precipitation events (RFREQ), the mean intensity of daily precipitation
events (RSDII), the cumulative dry (RCDD) and wet (RCWD) days, the 95th percentile of daily precipitation events (RR95) and the contribution of very wet days (above
R95) to total precipitation (RR95PTOT) for the Sahel (left) and Guinean region (right) in observations and models. For p-values higher than 0.01, the correlation is
written in italic. All correlation higher than 0.95 are in bold.

Sahel Guinean Region

Datasets FREQ SDII CDD CWD R95 R95PTOT FREQ SDII CDD CWD R95 R95PTOT

CHIRPS 0.97 0.99 − 0.95 0.99 1.00 −0.85 0.88 0.96 −0.88 0.87 0.99 −0.83

GPCP 0.98 0.98 −0.94 0.98 1.00 −0.93 0.97 0.98 −0.95 0.96 0.99 −0.91

TRMM 0.99 0.97 −0.88 0.97 1.00 −0.91 0.98 0.95 −0.96 0.90 0.99 −0.94

BCC-CSM1-1-M 1.00 0.87 − 0.63 0.98 1.00 −0.94 0.91 0.98 −0.90 0.81 0.95 −0.49

CanESM2 0.96 0.99 −0.86 0.90 1.00 0.28 0.91 0.99 −0.93 0.88 0.97 −0.71

CCSM4 0.98 0.96 −0.84 0.98 1.00 −0.89 0.98 0.99 −0.97 0.93 1.00 −0.85

CNRM-CM5 0.98 0.99 −0.95 0.98 1.00 −0.80 0.92 0.99 −0.92 0.81 0.98 −0.60

CSIRO-Mk3-6-0 0.99 0.99 −0.96 0.99 0.99 −0.90 0.96 1.00 −0.97 0.91 0.99 −0.84

EC-EARTH 0.98 0.99 −0.90 0.98 1.00 −0.85 0.98 1.00 −0.97 0.92 1.00 −0.88

HadGEM2-ES 0.97 0.97 −0.94 0.96 1.00 −0.79 0.91 0.99 −0.90 0.82 1.00 −0.79

IPSL-CM5A-LR 0.97 0.98 −0.92 0.96 0.99 0.33 0.90 0.99 −0.91 0.73 0.99 −0.76

IPSL-CM5A-MR 0.98 0.32 −0.94 0.97 1.00 0.32 0.93 0.99 −0.93 0.77 0.98 −0.75

MIROC4h 0.97 0.99 −0.68 0.98 1.00 −0.84 0.99 0.97 −0.99 0.97 0.99 −0.92

MIROC5 0.92 1.00 −0.95 0.89 1.00 −0.76 0.89 0.99 −0.91 0.83 0.98 −0.75

MIROC-ESM 0.97 0.98 −0.39 0.93 0.99 −0.86 0.98 1.00 −0.94 0.94 0.99 −0.86

MPI-ESM-LR 0.99 0.97 −0.88 0.99 1.00 −0.86 0.97 0.99 −0.95 0.98 0.99 0.38

MPI-ESM-MR 0.98 0.96 −0.84 0.99 1.00 0.25 0.98 0.99 −0.96 0.99 0.99 −0.87

MRI-CGCM3 1.00 0.88 −0.20 0.99 1.00 0.94 0.99 0.99 −0.96 0.99 1.00 −0.88
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16. Taylor, C.M.; Belušić, D.; Guichard, F.; Parker, D.J.; Vischel, T.; Bock, O.; Harris, P.P.; Janicot, S.; Klein, C.;
Panthou, G. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 2017,
544, 475–478. doi:10.1038/nature22069.

17. Descroix, L.; Guichard, F.; Grippa, M.; Lambert, L.A.; Panthou, G.; Mahé, G.; Gal, L.; Dardel, C.; Quantin, G.;
Kergoat, L.; et al. Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review. Water
2018, 10, 748. doi:10.3390/w10060748.

18. Molua, E.L. Turning up the heat on African agriculture: The impact of climate change on Cameroon’s
agriculture. Afr. J. Agric. Resour. Econ. 2008, 2, 45–64.

19. New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.;
Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west
Africa. J. Geophys. Res. Atmos. 2006, 111. doi:10.1029/2005JD006289.

20. Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science
2011, 333, 616–620. doi:10.1126/science.1204531.

https://doi.org/10.1002/9781118391297.ch1
https://doi.org/10.1002/2016JD025428
https://doi.org/10.1175/JCLI-D-11-00157.1
https://doi.org/10.1002/joc.3370120703
https://doi.org/10.1002/qj.49712253213
https://doi.org/10.1002/joc.3984
https://doi.org/10.1016/j.wace.2013.07.005
https://doi.org/10.1175/BAMS-87-8-1057
https://doi.org/10.1016/j.jhydrol.2008.11.030
https://doi.org/10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2009.03.007
https://doi.org/10.1684/sec.2012.0335
https://doi.org/10.1175/1520-0442(1992)005<0532:EAODSF>2.0.CO;2
https://doi.org/10.1038/s41467-018-05633-3
https://doi.org/10.1002/joc.4309
https://doi.org/10.1038/nature22069
https://doi.org/10.3390/w10060748
https://doi.org/10.1029/2005JD006289
https://doi.org/10.1126/science.1204531


Atmosphere 2020, 11, 216 27 of 28

21. Anyamba, A.; Small, J.L.; Britch, S.C.; Tucker, C.J.; Pak, E.W.; Reynolds, C.A.; Crutchfield, J.; Linthicum, K.J.
Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak
Patterns. PLoS ONE 2014, 9, e92538. doi:10.1371/journal.pone.0092538.

22. Sané, O.D.; Gaye, A.T.; Diakhaté, M.; Aziadekey, M. Social Vulnerability Assessment to Flood in Medina
Gounass Dakar. J. Geogr. Inf. Syst. 2015, 07, 415. doi:10.4236/jgis.2015.74033.

23. Sané, O.D.; Gaye, A.T.; Diakhaté, M.; Aziadekey, M. Critical Factors of Vulnerability That Enable Medina
Gounass (Dakar/Senegal) to Adapt against Seasonal Flood Events. J. Geogr. Inf. Syst. 2016, 8, 457–469.
doi:10.4236/jgis.2016.84038.

24. Groupe d’experts intergouvernemental sur l’évolution du climat.; Pachauri, R.K.; Meyer, L.A. Changements
climatiques 2014: rapport de synthèse : contribution des Groupes de travail I, II et III au cinquième Rapport d’évaluation
du Groupe d’experts intergouvernemental sur l’évolution du climat; GIEC: Genève, Switzerland, 2015; OCLC:
948289514.

25. Biasutti, M.; Sobel, A.H. Delayed Sahel rainfall and global seasonal cycle in a warmer climate.
Geophys. Res. Lett. 2009, 36. doi:10.1029/2009GL041303.

26. Allan, R.P.; Soden, B.J. Atmospheric Warming and the Amplification of Precipitation Extremes. Science 2008,
321, 1481–1484. doi:10.1126/science.1160787.

27. Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.;
Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains.
Clim. Res. 2012, 52, 7–29. doi:10.3354/cr01018.

28. Giorgi, F.; Coppola, E.; Raffaele, F.; Diro, G.T.; Fuentes-Franco, R.; Giuliani, G.; Mamgain, A.; Llopart, M.P.;
Mariotti, L.; Torma, C. Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections.
Clim. Chang. 2014, 125, 39–51. doi:10.1007/s10584-014-1117-0.

29. Asrar, G.R.; Hurrell, J.W. (Eds.) Climate Science for Serving Society; Springer: Dordrecht, The Netherlands,
2013. doi:10.1007/978-94-007-6692-1.

30. Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5
multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013,
118, 1716–1733. doi:10.1002/jgrd.50203.

31. Roehrig, R. Intraseasonal Variability of the West African Monsoon: Characterization and Modelling. Ph.D.
Thesis, Université Paris-Est, Champs-sur-Marne, France, 2010.

32. Monerie, P.A.; Sanchez-Gomez, E.; Boé, J. On the range of future Sahel precipitation projections and
the selection of a sub-sample of CMIP5 models for impact studies. Clim. Dyn. 2017, 48, 2751–2770.
doi:10.1007/s00382-016-3236-y.

33. Vizy, E.K.; Cook, K.H.; Crétat, J.; Neupane, N. Projections of a Wetter Sahel in the Twenty-First Century from
Global and Regional Models. J. Clim. 2013, 26, 4664–4687. doi:10.1175/JCLI-D-12-00533.1.

34. Zebaze, S.; Jain, S.; Salunke, P.; Shafiq, S.; Mishra, S.K. Assessment of CMIP5 multimodel mean for the
historical climate of Africa. Atmos. Sci. Lett. 2019, 20, e926. doi:10.1002/asl.926.

35. Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev.
2016, 9, 1937–1958. doi:10.5194/gmd-9-1937-2016.

36. Roehrig, R.; Bouniol, D.; Guichard, F.; Hourdin, F.; Redelsperger, J.L. The Present and Future of the West
African Monsoon: A Process-Oriented Assessment of CMIP5 Simulations along the AMMA Transect. J. Clim.
2013, 26, 6471–6505. doi:10.1175/JCLI-D-12-00505.1.

37. Maidment, R.I.; Grimes, D.; Allan, R.P.; Tarnavsky, E.; Stringer, M.; Hewison, T.; Roebeling, R.; Black,
E. The 30 year TAMSAT African Rainfall Climatology And Time series (TARCAT) data set. J. Geophys.
Res. Atmos. 2014, 119, 10619–10644. doi:10.1002/2014JD021927.

38. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.;
Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for
monitoring extremes. Sci. Data 2015, 2, 150066. doi:10.1038/sdata.2015.66.

39. Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J.
Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrometeorol.
2001, 2, 36–50. doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

https://doi.org/10.1371/journal.pone.0092538
https://doi.org/10.4236/jgis.2015.74033
https://doi.org/10.4236/jgis.2016.84038
https://doi.org/10.1029/2009GL041303
https://doi.org/10.1126/science.1160787
https://doi.org/10.3354/cr01018
https://doi.org/10.1007/s10584-014-1117-0
https://doi.org/10.1007/978-94-007-6692-1
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1007/s00382-016-3236-y
https://doi.org/10.1175/JCLI-D-12-00533.1
https://doi.org/10.1002/asl.926
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/JCLI-D-12-00505.1
https://doi.org/10.1002/2014JD021927
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2


Atmosphere 2020, 11, 216 28 of 28

40. Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F.
The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. doi:10.1175/JHM560.1.

41. Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected Changes in the Annual Cycle
of High-Intensity Precipitation Events over West Africa for the Late Twenty-First Century. J. Clim. 2015,
28, 6475–6488. doi:10.1175/JCLI-D-14-00854.1.

42. Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices
for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.
Clim. Chang. 2011, 2, 851–870. doi:10.1002/wcc.147.

43. Giannini, A.; Saravanan, R.; Chang, P. Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time
Scales. Science 2003, 302, 1027–1030. doi:10.1126/science.1089357.

44. Janicot, S.; Caniaux, G.; Chauvin, F.; Coëtlogon, G.d.; Fontaine, B.; Hall, N.; Kiladis, G.; Lafore, J.P.;
Lavaysse, C.; Lavender, S.L.; et al. Intraseasonal variability of the West African monsoon. Atmos. Sci. Lett.
2011, 12, 58–66. doi:10.1002/asl.280.

45. d’Orgeval, T.; Polcher, J.; Li, L. Uncertainties in modelling future hydrological change over West Africa.
Clim. Dyn. 2006, 26, 93–108. doi:10.1007/s00382-005-0079-3.

46. Adejuwon, J.O.; Odekunle, T.O. Variability and the Severity of the “Little Dry Season” in Southwestern
Nigeria. J. Clim. 2006, 19, 483–493. doi:10.1175/JCLI3642.1.

47. Stephens, G.L.; L’Ecuyer, T.; Forbes, R.; Gettelmen, A.; Golaz, J.C.; Bodas-Salcedo, A.; Suzuki, K.;
Gabriel, P.; Haynes, J. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 2010,
115. doi:10.1029/2010JD014532.

48. Guichard, F.; Petch, J.; Redelsperger, J.L.; Bechtold, P.; Chaboureau, J.P.; Cheinet, S.; Grabowski, W.;
Grenier, H.; Jones, C.; Köhler, M.; et al. Modelling the diurnal cycle of deep precipitating convection over
land with cloud-resolving models and single-column models. Q. J. R. Meteorol. Soc. 2004, 130, 3139–3172.
doi:10.1256/qj.03.145.

49. Thorncroft, C.D.; Nguyen, H.; Zhang, C.; Peyrillé, P. Annual cycle of the West African monsoon:
Regional circulations and associated water vapour transport. Q. J. R. Meteorol. Soc. 2011, 137, 129–147.
doi:10.1002/qj.728.

50. Fitzpatrick, R.G.J.; Bain, C.L.; Knippertz, P.; Marsham, J.H.; Parker, D.J. The West African Monsoon Onset:
A Concise Comparison of Definitions. J. Clim. 2015, 28, 8673–8694. doi:10.1175/JCLI-D-15-0265.1.

51. Bombardi, R.J.; Moron, V.; Goodnight, J.S. Detection, variability, and predictability of monsoon onset and
withdrawal dates: A review. Int. J. Clim. 2019. doi:10.1002/joc.6264.

52. Marteau, R.; Moron, V.; Philippon, N. Spatial Coherence of Monsoon Onset over Western and Central Sahel
(1950–2000). J. Clim. 2009, 22, 1313–1324. doi:10.1175/2008JCLI2383.1.

53. Seth, A.; Rauscher, S.A.; Biasutti, M.; Giannini, A.; Camargo, S.J.; Rojas, M. CMIP5 Projected
Changes in the Annual Cycle of Precipitation in Monsoon Regions. J. Clim. 2013, 26, 7328–7351.
doi:10.1175/JCLI-D-12-00726.1.

54. Diallo, F.B.; Hourdin, F.; Rio, C.; Traore, A.K.; Mellul, L.; Guichard, F.; Kergoat, L. The Surface Energy Budget
Computed at the Grid-Scale of a Climate Model Challenged by Station Data in West Africa. J. Adv. Model.
Earth Syst. 2017, 9, 2710–2738. doi:10.1002/2017MS001081.

55. Dixon, R.D.; Daloz, A.S.; Vimont, D.J.; Biasutti, M. Saharan Heat Low Biases in CMIP5 Models. J. Clim. 2016,
30, 2867–2884. doi:10.1175/JCLI-D-16-0134.1.

56. Dixon, R.D.; Vimont, D.J.; Daloz, A.S. The relationship between tropical precipitation biases and the Saharan
heat low bias in CMIP5 models. Clim. Dyn. 2018, 50, 3729–3744. doi:10.1007/s00382-017-3838-z.

57. Monerie, P.A.; Roucou, P.; Fontaine, B. Mid-century effects of Climate Change on African monsoon dynamics
using the A1B emission scenario. Int. J. Clim. 2013, 33, 881–896. doi:10.1002/joc.3476.

58. Biasutti, M.; Voigt, A.; Boos, W.R.; Braconnot, P.; Hargreaves, J.C.; Harrison, S.P.; Kang, S.M.; Mapes, B.E.;
Scheff, J.; Schumacher, C.; et al. Global energetics and local physics as drivers of past, present and future
monsoons. Nat. Geosci. 2018, 11, 392–400. doi:10.1038/s41561-018-0137-1.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1175/JHM560.1
https://doi.org/10.1175/JCLI-D-14-00854.1
https://doi.org/10.1002/wcc.147
https://doi.org/10.1126/science.1089357
https://doi.org/10.1002/asl.280
https://doi.org/10.1007/s00382-005-0079-3
https://doi.org/10.1175/JCLI3642.1
https://doi.org/10.1029/2010JD014532
https://doi.org/10.1256/qj.03.145
https://doi.org/10.1002/qj.728
https://doi.org/10.1175/JCLI-D-15-0265.1
https://doi.org/10.1002/joc.6264
https://doi.org/10.1175/2008JCLI2383.1
https://doi.org/10.1175/JCLI-D-12-00726.1
https://doi.org/10.1002/2017MS001081
https://doi.org/10.1175/JCLI-D-16-0134.1
https://doi.org/10.1007/s00382-017-3838-z
https://doi.org/10.1002/joc.3476
https://doi.org/10.1038/s41561-018-0137-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data and Methods
	Results
	The Annual Cycle of Mean Precipitation, Intensity and Frequency of Wet Days
	The Annual Cycle of Extreme Precipitation Indices
	Timing and Length of the Monsoon Season
	Annual-Mean Precipitation over the Sahelian and Guinean Regions

	Conclusions and Perspectives
	
	References

