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Non-destructive magnetic controls are increasing in the industrial field1. In this domain, the 

expectation for simulation tools able to anticipate the magnetic signature, improve the 

understanding and avoid fastidious and uncertain experimental pre-characterizations is high. 

Among different methods, the magnetic Barkhausen noise (MBN) control is the most 

popular2,3. MBN raw signal is stochastic, not reproducible and complex to exploit. MBNenergy, 

which is obtained by integrating the square of the MBN voltage signal with respect to the time 

axis is a much more stable indicator3. Although the so-called MBNenergy is not, strictly speaking, 

an energy, it is connected to the domain wall motion and their kinetic energy. By plotting 

MBNenergy as a function of H (the tangent surface excitation field) hysteresis cycles are 

observed. After rescaling MBNenergy on B (the induction field), B(H) and  MBNenergy(H) hysteresis 

cycles look similar for high magnetocrystalline anisotropy energy material, i.e. when the 

domain wall contribution is large over the rotation during the magnetization process. In this 

study, the multiscale model4 is used to simulate an anhysteretic behavior limited to the 

domain wall contribution. By using, this anhysteretic contribution in the Jiles-Atherton model 

and running an inverse procedure5,6, a MBN envelop very close to the experimental ones can 

be observed. By modulating the amplitude of an alternating, high frequency signal using this 

envelop, an accurate simulation of the raw Barkhausen noise is obtained.  
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