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Abstract
The graph parameter of pathwidth can be seen as a measure of the topological resemblance of a
graph to a path. A popular definition of pathwidth is given in terms of node search where we
are given a system of tunnels (represented by a graph) that is contaminated by some infectious
substance and we are looking for a search strategy that, at each step, either places a searcher on a
vertex or removes a searcher from a vertex and where an edge is cleaned when both endpoints are
simultaneously occupied by searchers. It was proved that the minimum number of searchers required
for a successful cleaning strategy is equal to the pathwidth of the graph plus one. Two desired
characteristics for a cleaning strategy is to be monotone (no recontamination occurs) and connected
(clean territories always remain connected). Under these two demands, the number of searchers is
equivalent to a variant of pathwidth called connected pathwidth. We prove that connected pathwidth
is fixed parameter tractable, in particular we design a 2O(k2) · n time algorithm that checks whether
the connected pathwidth of G is at most k. This resolves an open question by [Dereniowski, Osula,
and Rzążewski, Finding small-width connected path-decompositions in polynomial time. Theor.
Comput. Sci., 794:85–100, 2019 ]. For our algorithm, we enrich the typical sequence technique
that is able to deal with the connectivity demand. Typical sequences have been introduced in
[Bodlaender and Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of
graphs. J. Algorithms, 21(2):358–402, 1996 ] for the design of linear parameterized algorithms for
treewidth and pathwidth. While this technique has been later applied to other parameters, none of
its advancements was able to deal with the connectivity demand, as it is a “global” demand that
concerns an unbounded number of parts of the graph of unbounded size. The proposed extension is
based on an encoding of the connectivity property that is quite versatile and may be adapted so
to deliver linear parameterized algorithms for the connected variants of other width parameters as
well. An immediate consequence of our result is a 2O(k2) · n time algorithm for the monotone and
connected version of the edge search number.
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1 Introduction

Pathwidth. A path-decomposition of a graph G = (V,E) is a sequence Q = 〈B1, . . . , Bq〉 of
vertex sets, called bags of Q, such that
1.

⋃
i∈{1,...,q}Bi = V,

2. every edge e ∈ E is a subset of some member of Q, and
3. the trace of every vertex v ∈ V, that is the set {i | v ∈ Bi}, is a set of consecutive integers.
The width of a path-decomposition is max{|Bi| − 1 | i ∈ {1, . . . , q}} and the pathwidth of a
graph G, denoted by pw(G), is the minimum width of a path-decomposition of G.

The above definition appeared for the first time in [36]. Pathwidth can be seen as a
measure of the topological resemblance of a graph to a path. Pathwidth, along with its
tree-analogue treewidth, have been used as key combinatorial tools in the Graph Minors series
of Robertson and Seymour [37] and they are omnipresent in both structural and algorithmic
graph theory.

Deciding whether the pathwidth of a graph is at most k is an NP-complete problem [2].
This motivated the problem of the existence, or not, of a parameterized algorithm for this
problem, and algorithm running in f(k) ·nO(1) time algorithm. An affirmative answer to this
question was directly implied as a consequence of the algorithmic and combinatorial results
of the Graph Minors series and the fact that, for every k, the class of graphs with pathwidth
at most k is closed under taking of minors1. On the negative side, this implication was purely
existential. The challenge of constructing an f(k) · nO(1) time algorithm for pathwidth (as
well as for treewidth) was a consequence of the classic result of Bodlaender and Kloks in [8]
(see also [15, 30]). The main result in [8] implies a 2O(k3) · n time algorithm. This was later
improved to one running in 2O(k2) · n time by Fürer in [20]).

Graph searching. In a graph searching game, the opponents are a group of searchers and
an evading fugitive. The opponents move in turns in a graph. The objective of the searchers
is to deploy a strategy of moves that leads to the capture of the fugitive. At each step of
the node searching game, the searchers may either place a searcher at a vertex or remove a
searcher from a vertex. The fugitive resides in the edges of the graph and is lucky, invisible,
fast, and agile. The capture of the fugitive occurs when searchers occupy both endpoints of
the edge where he currently resides. A node searching strategy is a sequence of moves of the
searchers that can guarantee the eventual capture of the fugitive.2 The cost of a searching
strategy is the maximum number of searchers simultaneously present in the graph during
the deployment of the strategy. The node search number of a graph G, denoted by ns(G), is
defined as the minimum cost of a node searching strategy. Node searching was defined by
Kirousis and Papadimitriou in [29] who proved that the game is equivalent to its monotone
variant where search strategies are monotone in the sense that they prevent the fugitive from
pervading again areas from where he had been expelled. This result along with the results
in [27,28,31], imply that, for every graph G, ns(G) = pw(G) + 1.

The connectivity issue. In several applications of graph searching it is important to
guarantee secure communication channels between the searchers so that they can safely
exchange information. This issue was treated for the first time in the area of distributed

1 A graph H is a minor of a graph G if H can be obtained by some subgraph of G by contracting edges.
2 An equivalent setting of graph searching is to see G as a system of pipelines or corridors that is

contaminated by some poisonous gas or some highly infectious substance. The searchers can be seen as
cleaners that deploy a decontamination strategy [13, 19]. The fact that the fugitive is invisible, fast,
lucky, and agile permits us to see him as being omnipresent in any edge that has not yet been cleaned.
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Figure 1 A graph G of connected pathwidth 2 with a subgraph of connected pathwidth 3.

computing, in particular in [4], where the authors considered the problem of capturing an
intruder by mobile agents (acting for example as antivirus programs). As agents deploy
their cleaning strategy, they must guarantee that, at each moment of the search, the cleaned
territories remain connected, so to permit the safe exchange of information between the
coordinating agents.

The systematic study of connected graph searching was initiated in [3, 5]. When, in node
searching, we demand that the search strategies are monotone and connected, we define
monotone connected node search number, denoted by mcns(G). The graph decomposition
counterpart of this parameter was introduced by Dereniowski in [16]. He defined the
connected pathwidth of a connected graph, denoted by cpw(G), by considering connected
path-decompositions Q = {B1, . . . , Bq} where the following additional property is satisfied:

I For every i ∈ {1, . . . , q}, the subgraph of G induced by
⋃
h∈{1,...,i}Bh is connected.

As noticed in [16], for every connected graph G, mcns(G) = cpw(G) + 1 (see also [1]). Notice
that the above demand results to a break of symmetry: the fact that 〈B1, . . . , Bq〉 is a
connected path-decomposition does not imply that the same holds for 〈Bq, . . . , B1〉 (while
this is always the case for conventional path-decompositions). This sense of direction seems
to be the source of all combinatorial particularities (and challenges) of connected pathwidth.

Computing connected pathwidth. It is easy to see that checking whether cpw(G) ≤ k

is an NP-complete problem: if we define G∗ as the graph obtained from G after adding a
new vertex adjacent with all the vertices of G, then observe that pw(G) = cpw(G∗) − 1.
This motivates the question on the parameterized complexity of the problem. The first
progress in this direction was done recently in [17] by Dereniowski, Osula, and Rzążewski
who gave an f(k) · nO(k2) time algorithm. In [17, Conjecture 1], they conjectured that there
is a fixed parameter algorithm checking whether cpw(G) ≤ k. The general question on the
parameterized complexity of the connected variants of graph search was raised as an open
question by Fedor V. Fomin during the GRASTA 2017 workshop [18].

A somehow dissuasive fact towards a parameterized algorithm for connected pathwidth
is that connected pathwdith is not closed under minors and therefore it does not fit in the
powerful algorithmic framework of Graph Minors (which is the case with pathwidth). The
removal of an edge may increase the parameter. For instance, the connected pathwidth of
the graph in Figure 1 has connected pathwidth 2 while if we remove the edge {x, y} its
connected pathwidth increases to 3. On the positive side, connected pathwidth is closed
under contractions (see e.g., [1]), i.e, its value does not increase when we contract edges and,
moreover, the yes-instances of the problem have bounded pathwidth, therefore they also have
bounded treewidth. Based on these observations, the existence of a parameterized algorithm
would be implied if we can prove that, for any k, the set Zk of contraction-minimal3 graphs
with connected pathwidth more than k is finite: as contraction containment can be expressed

3 For instance, the graph G \ {x, y} from Figure 1 belongs in Z2.
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in MSO logic, one should just apply Courcelle’s theorem [14] to check whether some graph
of Zk is a contraction of G. The hurdle in this direction is that we have no idea whether Zk
is finite or not. The alternative pathway is to try to devise a linear parameterized algorithm
by applying the algorithmic techniques that are already known for pathwidth.

The typical sequence technique. The main result of [8] was an algorithm that, given
a path-decomposition Q of G of width at most k and an integer w, outputs, if exists, a
path-decomposition of G of width at most w, in 2O(k(w+log k)) · n time. In this algorithm
Bodlaender and Kloks introduced the celebrated typical sequence technique, a refined dynamic
programming technique that encodes partial path/tree decompositions as a system of suitably
compressed sequences of integers, able to encode all possible path-decompositions of width
at most w (see also [15,30]). This technique was later extended/adapted for the design of
parametrized algorithms for numerous graph parameters such as branchwidth [9], linear-
width [10], cutwidth [39], carving-width [38], modified cutwidth, and others [6,7,40]. In [6] this
technique was viewed as a result of un-nondeterminization: a stepwise evolution of a trivial
hypothetical non-deterministic algorithm towards a deterministic parameterized algorithm.
A considerable generalization of the characteristic sequence technique was proposed in the
PhD thesis of Soares [32] where this technique was implemented under the powerful meta-
algorithmic framework of q-branched Φ-width. Non-trivial extensions of the typical sequence
technique where proposed for devising parameterized algorithms for parameters on matroids
such as matroid pathwidth [23], matroid branchwidth [25], as well as all the parameters on
graphs or hypergraphs that can be expressed by them. Very recently Bodlaender, Jaffke,
and Telle in [7] suggested refinements of the typical sequence technique that enabled the
polynomial time computation of several width parameters on directed graphs. Finally,
Bojańczyk and Pilipczuk suggested an alternative approach to the typical sequence technique,
based on MSO transductions between decompositions [11].

Unfortunately, the above mentioned state of the art on the typical sequence technique is
unable to encompass connected pathwidth. A reason for this is that the connectivity demand
is a “global property” applying to every prefix of the path-decomposition which correspond
to an unbounded number of subgraphs of arbitrary size.

Our result. In this paper we resolve affirmatively the conjecture that checking whether
cpw(G) ≤ k is fixed parameter tractable. Our main result is the following.

I Theorem 1. One may construct an algorithm that given an n-vertex connected graph G,
a path-decomposition Q = 〈B1, . . . , Bq〉 of G of width at most k and an integer w, outputs
a connected path-decomposition of G of width at most w or reports correctly that such an
algorithm does not exist in 2O(k(w+log k)) · n time.

To design an algorithm checking whether cpw(G) ≤ k we first use the algorithms of [8]
and [20], to build, if exists, a path decomposition of G of width at most k, in 2O(k2) · n time.
In case of a negative answer we know than cpw(G) > k, otherwise we apply the algorithm
of Theorem 1. The overall running time is dominated by the algorithm of Fürer in [20]
which is 2O(k2) · n.

Our techniques. We now give a brief description of our techniques by focusing on the
novel issues that we introduce. This description demands some familiarity with the typical
sequence technique. Otherwise, the reader can go directly to the next section.
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Let Q = 〈B1, . . . , Bq〉 be a (nice) path-decomposition of G of width at most k. For every
i ∈ [q], we let Gi = (Gi, Bi) be the boundaried graph where Gi = G[

⋃
h∈{1,...,i}Bh]. We

follow standard dynamic programming over a path-decomposition that consists in computing
a representation of the set of partial solutions associated to Gi, which in our case are
connected path-decompositions of Gi of width at most w. The challenge is how to handle in
a compact way the connectivity requirement of a path-decomposition of a graph that can be
of arbitrarily large size.

A connected path-decomposition P = 〈A1, . . . , A`〉 of Gi is represented by means of a
(Gi,P)-encoding sequence S = 〈s1, . . . , s`〉. For every j ∈ [`], the element sj of the sequence S
is a triple (bd(sj), cc(sj),val(sj)) where: bd(si) = Aj ∩Bi; val(sj) = |Aj \Bi|; and cc(sj)
is the projection of the connected components of Gji = Gi[

⋃
h∈{1,...,j}Ah] onto the subset

of boundary vertices Bi ∩ V (Gji ). To compress a (Gi,P)-encoding sequence S, we identify a
subset bp(S) of indexes, called breakpoints, such that j ∈ bp(S) if bd(sj−1) 6= bd(sj) (type-1)
or cc(sj−1) 6= cc(sj) (type-2) or j is an index belonging to a typical sequence of the integer
sequence 〈val(sb), . . . ,val(sc−1)〉 where b, c ∈ [`] are consecutive type-1 or 2- breakpoints.
We define rep(S) as the induced subsequence S[bp(S)].

The novelty in this representation is the cc(·) component which is a near-partition of
the subset Bi ∩ V (Gji ) of boundary vertices. The critical observation is that for every
j ∈ [`− 1], cc(sj+1) is coarser than cc(sj). This, together with the known results on typical
sequences, allows us to prove that the size of rep(S) is O(kw) and that the number of
representative sequences is 2O(k(w+log k)). Finally, as in the typical sequence technique, we
define a domination relation over the set of representative sequences. The DP algorithm
over the path-decomposition Q consists then in computing a domination set Dw(Gi+1) of
the representative sequences of Gi+1 from a domination set Dw(Gi) of the representative
sequences of Gi.

The above scheme extends the current state of the art on typical sequences as it further
incorporates the encoding of the connectivity property. While this is indeed a “global
property”, it appears that its evolution with respect to the bags of the decomposition can be
controlled by the second component of our encoding and this is done in terms of a sequence
of a gradually coarsening partitions. This establishes a dynamic programming framework
that can potentially be applied on the connected versions of most of the parameters where
the typical sequence technique was used so far. Moreover, it may be the starting point of the
algorithmic study of parameters where other, alternative to connectivity, global properties
are imposed to the corresponding decompositions.

Consequences in connected graph searching. The original version of graph searching was
the edge searching variant, defined 4 by Parsons [33,34], where the only differences with node
searching is that a searcher can additionally slide along an edge and sliding is the only way to
clean an edge. The corresponding search number is called edge search number and is denoted
by es(G). If we additionally demand that the searching strategy is connected and monotone,
then we define the monotone connected edge search number denoted by mces(G). As proved

4 An equivalent model was proposed independently by Petrov [35]. The models of Parsons and Petrov
where different but also equivalent, as proved by Golovach in [21,22]. The model of Parsons was inspired
by an earlier paper by Breisch [12], titled “An intuitive approach to speleotopology”, where the aim
was to rescue an (unlucky) speleologist lost in a system of caves. Notice that “unluckiness” cancels the
speleologist’s will of being rescued as, from the searchers’ point of view, it imposes on him/her the status
of an “evading entity”. As a matter of fact, the connectivity issue appears even in the first inspiring
model of the search game. In a more realistic scenario, the searchers cannot “teleport” themselves to
non-adjacent territories of the caves while this was indeed permitted in the original setting of Parsons.

ESA 2020
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in [29], es(G) = pw(Gv), where Gv is the graph obtained if we subdivide twice each edge of
G. Applying the same reduction as in [29] for the monotone and connected setting, one can
prove that mces(G) = cpw(Gv). As we already mentioned, mcns(G) = cpw(Gv) + 1. These
two reductions imply that the result of Theorem 1 holds also for mcns and mces, i.e., the
search numbers for the monotone and connected versions of both node and edge searching.

2 Preliminaries and definitions

2.1 Basic concepts
Sets and near-partitions. For an integer `, we denote by [`] the set {1, . . . , `}. Let S be a
finite set. A near-partition Q of S is a family of subsets {X1, . . . , Xk} (with k ≤ |S|+ 1) of
subsets of S, called blocks, such that

⋃
i∈[k] Xi = S and for every 1 ≤ i < j ≤ k, Xi ∩Xj = ∅.

Observe that a near-partition may contain several copies of the empty set. A partition of
S is a near-partition with the additional constraint that if it contains the empty set, then
this is the unique block. Let Q be a near-partition of a set S and Q′ be a near-partition of a
set S′ such that S ⊆ S′. We say that Q is thinner than Q′, or that Q′ is coarser than Q,
which we denote Q v Q′, if for every block X of Q, there exists a block X ′ of Q′ such that
X ⊆ X ′. For a near-partition Q = {X1, . . . , X`} of S and a subset S′ ⊆ S, we define the
projection of Q onto S′ as the near-partition Q|S′ = {X1 ∩ S′, . . . , X` ∩ S′}. Observe that
if Q is a partition, then Q|S′ may not be a partition: if several blocks of Q are subsets of
S \ S′, then Q|S′ contains several copies of the emptyset.

Sequences. Let S be a set. A sequence of elements of S, denoted by α = 〈a1, . . . , a`〉, is
a subset of S equipped with a total ordering: for 1 6 i < j 6 `, ai occurs before aj in the
sequence α. The length of a sequence is the number of elements that it contains. Let X ⊆ [`]
be a subset of indexes of α. We define the subsequence of α induced by X as the sequence
α[X] on the subset {ai | i ∈ X} such that, for i, j ∈ X, ai occurs before aj in α[X] if and
only if i < j.

The duplication of the element aj , with j ∈ [`], in the sequence α = 〈a, . . . , a`〉 yields the
sequence α′ = 〈a1, . . . , aj , aj , . . . , a`〉 of length ` + 1. A sequence β is an extension of the
sequence α if it is either α or it results from a series of duplications on α. We define the set
of extensions of α as: Ext(α) = {α∗ | α∗ is an extension of α}.

Let α = 〈a1, . . . , a`〉 be a sequence and α∗ = 〈a1, . . . , ap〉 be an extension of α. If p ≤ `+k,
then α∗ results from a series of at most k duplications and we say that α∗ is a (≤ k)-extension
of α. With the definition of an extension, every element of α∗ is a copy of some element of
α. We define the extension surjection as a surjective function δα∗→α : [p]→ [`] such that if
δα∗→α(j) = i then a∗j = ai. An extension surjection δα∗→α is a certificate that α∗ ∈ Ext(α).
Finally, we observe that if α∗ ∈ Ext(α), then α is an induced subsequence of α∗. Moreover,
if α∗ ∈ Ext(α) and β ∈ Ext(α∗), then β is an extension of α.

Graphs and boundaried graphs. Given a graph G = (V,E) and a vertex set S ⊆ V (G),
we denote by G[S] the subgraph of G that is induced by the vertices of S, i.e., the graph
(S, {e ∈ E | e ⊆ S}). Also, if x ∈ V , we define G \ x = G[V \ {x}]. The neighborhood of a
vertex v in G is the set of vertices that are adjacent to v in G and is denoted by NG(v).

A boundaried graph is a pair G = (G,B) such that G is a graph over a vertex set V
and B ⊆ V is a subset of distinguished vertices, called boundary vertices. We say that a
boundaried graph G = (G,B) is connected if either G is connected and B = ∅ or, in case
B 6= ∅, every connected component C of G contains some boundary vertex, that is C ∩B 6= ∅.
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Figure 2 The black bullets forms the typical sequence Tseq(α) = 〈4, 7, 3, 9, 1, 8, 3, 6〉 of the
sequence α = 〈4,6, 5, 7, 3, 5,7, 9, 4, 6, 3, 1, 4, 7,8, 5, 6, 3,4, 4, 5, 6〉 of black and gray diamonds.

The definition of a connected path-decomposition also naturally extends to boundaried
graphs as follows.

I Definition 2. Let P = 〈A1, . . . , A`〉 be a path-decomposition of the boundaried graph
G = (G,B). Then P is connected if, for every i ∈ [`], the boundaried graph (Gi, Vi ∩B) is
connected, where Vi =

⋃
h∈[i] Ah and Gi = G[Vi].

2.2 Integer sequences
Let us recall the notion of typical sequences introduced by Bodlaender and Kloks [8] (see
also [15,30]).

I Definition 3. Let α = 〈a1, . . . , a`〉 be an integer sequence. The typical sequence Tseq(α)
is obtained after iterating the following operations, until none is possible anymore:

if for some i ∈ [`− 1], ai = ai+1, then remove ai+1 from α;
if there exists i, j ∈ [`] such that i 6 j − 2 and ∀h, i < h < j, ai ≤ ah ≤ aj or ∀h,
i < h < j, ai ≥ ah ≥ aj, then remove the subsequence 〈ai+1, . . . , aj−1〉 from α.

As a typical sequence Tseq(α) = 〈b1, . . . , bi, . . . , br〉 is a subsequence of α, it follows that,
for every i ∈ [r], there exists ji ∈ [`] such that bi = aji

. Herefater every such index ji is
called a tip of the sequence α.

If α and β are two integer sequences of same length `, we say that α ≤ β if for every
j ∈ [`], aj ≤ bj .

I Definition 4. Let α and β be two integer sequences. Then α � β if there are α∗ ∈ Ext(α)
and β∗ ∈ Ext(β) such that α∗ ≤ β∗. Whenever α � β and β � α, we say that α and β are
equivalent which is denoted by α ≡ β.

We extend the definition of the ≤-relation and �-relation on integer sequences to sequences
of integer sequences. Let P = 〈L1, . . . , , Lr〉 and Q = 〈K1, . . . ,Kr〉 be two sequences of integer
sequences such that for every i ∈ [r], Li and Ki have the same length. We say that P ≤ Q if
for every i ∈ [r], Li ≤ Ki. The set of extensions of P is Ext(P) = {〈L′1, . . . , L′r〉 | i ∈ [r], L′i ∈
Ext(Li)}. Finally we say that P � Q if there exist P′ ∈ Ext(P) and Q′ ∈ Ext(Q) such that
P′ ≤ Q′. If P � Q and Q � P, then we say that P ≡ Q. The relation ≡ is an equivalence
relation.

2.3 Boundaried sequences
We now define the main notion that will allow us to represent and manipulate (connected)
path-decompositions of a boundaried graph G = (G,B) (see Subsection 3.1).

ESA 2020
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I Definition 5 (B-boundaried sequence). Let B be a finite set. A B-boundaried sequence is
a sequence S = 〈s1, . . . , s`〉 such that for every j ∈ [`], sj = (bd(sj), cc(sj),val(sj)) is defined
as follows:

bd(sj) ⊆ B with the property that for every x ∈ B, the indices j ∈ [l] such that x ∈ bd(sj)
are consecutive;
cc(sj) is a near-partition of

⋃
i≤j bd(si) ⊆ B with the property that for every j < `,

cc(sj) v cc(sj+1);
val(sj) is a positive integer.

The width of S is defined as width(S) = maxj∈`(|bd(sj)|+ val(sj)).

I Definition 6 (Connected B-boundaried sequence). Let S = 〈s1, . . . , s`〉 be a B-boundaried
sequence for some finite set B. We say that S is connected if for every i ∈ [`], cc(si) is a
partition of

⋃
i≤j bd(si) ⊆ B.

Observe that if S = 〈s1, . . . , s`〉 is a connected B-boundaried sequence and if there exists
some i ∈ [`] such that cc(si) = {∅}, then, for every j ≤ i, bd(sj) = ∅ and cc(sj) = {∅}.

I Definition 7 (Breakpoints). Let S = 〈s1, . . . , sj , . . . , s`〉 be a B-boundaried sequence for
some finite set B. Then the index j, with 1 ≤ j ≤ `, is a breakpoint of:

type-1 if j = 1 or bd(sj) 6= bd(sj−1) or j = `;
type-2 if it is not a type-1 breakpoint and cc(sj) 6= cc(sj−1);
type-3 if it is not a type-1 nor a type-2 and j is a tip of the integer sequence 〈val(slj ), . . . ,
val(srj−1)〉 where lj and rj are respectively the largest and smallest type-1 or type-2
breakpoints such that lj < j < rj.

Let bp(S) be the set of breakpoints of S and bpt(S) be the set of type-t breakpoints of S, for
t ∈ {1, 2, 3}. The representative sequence rep(S) of S is defined as S[bp(S)].
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Figure 3 The part 〈si−1, . . . sk〉 of a B-boundaried sequence S for some set B ⊇ {x, y, z}. A
bullet • at some index j represents an element of

⋃
h<j

bd(sh). Observe that at index k, x is indeed
represented by a black bullet. For the index i, we have bd(si) = {x, y, z}, cc(si) = {{x, y}, {z, •}}
and val(si) = 2. At every position j, only named elements belong to bd(sj). The red squares mark
the type-1 breakpoints: at position i, element z is new, while at position k, element x is forgotten.
The blue diamond at index j marks a type-2 breakpoint which corresponds to the merge of two
parts of cc(si+4) into a single part. Finally, the grey bullets type-3 breakpoints corresponding to
tips of the integer sequences 〈val(si), . . .val(sj−1)〉 and 〈val(sj), . . .val(sk−1)〉.

Figure 3 illustrates the notions of B-boundaried sequence and breakpoints. Observe that
rep(S) can be computed from the B-boundaried sequence S as in Definition 3 and is uniquely
defined. The set of representative B-boundaried sequences of width at most w is defined as

Repw(B) = {rep(S) | S is a B-boundaried sequence of width ≤ w}.

I Definition 8 (B-boundary model). Let S = 〈s1, . . . , sj , . . . , s`〉 be a B-boundaried sequence.
For every j ∈ [`], we set ṡj = (bd(sj), cc(sj), t(sj)) with t(sj) = 1 if j ∈ bp1(S), t(sj) = 2 if
j ∈ bp2(S) and t(sj) = 0 otherwise. The B-boundary model of S, denoted by model(S), is
the subsequence of Ṡ = 〈ṡ1, . . . , ṡj , . . . , ṡ`〉 induced by bp1(S) ∪ bp2(S).
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I Lemma 9. Let S be a B-boundaried sequence. If S∗ ∈ Ext(S), then model(S∗) = model(S).

As in [8, 24], we will bound the number of representatives of B-boundaried sequences.
For doing so, we bound the number of B-boundaried models and then use [8, Lemma 3.5]
which gives an upper bound on the number of typical sequences. Taking into account the fact
that there are O(|B|) breakpoints and |B|O(k) different coarsening scenarios for the encoded
near-partitions, we prove the following bound.

I Lemma 10. Let B be a set of size k. Then, |Repw(B)| = 2O(k(w+log k).

Notice that the notion of a B-boundary model corresponds to the one of interval model
in [8]. Besides the B-boundary model of a sequence S, we introduce the profile of S, which
corresponds to the concept of list representation in [8].

I Definition 11 (Profile). Let S be a B-boundaried sequence of length ` and let 1 = j1 <

· · · < ji < · · · < jr = ` be the subset of indices of [`] that belong to bp1(S) ∪ bp2(S). Then
we set profile(S) = 〈L1, . . . , Lr〉 with, for i ∈ [r], Lj = 〈val(sji

), . . . ,val(sji+1−1)〉.

We introduce the domination relation over B-boundaried sequences. This allows us to
compare B-boundaried sequences having the same model by means of their B-profiles.

I Definition 12 (Domination relation). Let S = 〈s1, . . . , sj , . . . , s`〉 and T = 〈t1, . . . , tj , . . . , t`〉
be two B-boundaried sequences such that model(S) = model(T). If profile(S) ≤ profile(T), then
we write S ≤ T. And, we say that S dominates T, denoted by S � T, if profile(S) � profile(T).
If we have profile(S) � profile(T) and profile(T) � profile(S), then we say that S and T are
equivalent, which is denoted by S ≡ T.

I Lemma 13. Let S be a B-boundaried sequence. Then,
1. rep(S) ≡ S,
2. if S∗ ∈ Ext(S), then S∗ ≡ S,
3. S � T if and only if rep(S) � rep(T).
4. If T is a B-boundaried sequence such that S � T, then there exist an extension S∗ of S

and an extension T∗ of T such that S∗ ≤ T∗.
5. The relation � is transitive, and ≡ is an equivalence relation (refering to boundary

sequences).

2.4 Operations on B-boundaried sequences
Given a finite set B, we define two operations on B-boundaried sequences that will be later
used in the DP algorithm. The projection of a B-boundaried sequence S onto B′ ( B aims
at changing the status of a boundary element from B \B′ to the status of a non-boundary
element. The second operation deals with the insertion in a B-boundaried sequence of a new
boundary element x with respect to a subset X ⊆ B.

2.4.1 Projection of B-boundaried sequences
I Definition 14 (Projection). Let S = 〈s1, . . . , si, . . . , s`〉 be a B-boundaried sequence. For
a subset B′ ⊆ B, the projection of S onto B′ is the B′-boundaried sequence S|B′ =
〈s1|B′ , . . . , si|B′ , . . . , s`|B′〉 such that for every i ∈ [`]:

bd(si|B′) = bd(si) ∩B′;
cc(si|B′) = cc(si)|B′ ;
val(si|B′) = val(si) + |bd(si) \B′|.
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We observe that though the B-boundaried sequence S is connected, its projection S|B′
onto B′ ⊆ B may not be connected. This is the case if for some j ∈ [`], the partition cc(sj)
contains several blocks and at least one of them is a subset of B \ B′. Notice that the
projection operation does not change the width of a sequence.

I Lemma 15. Let B be a finite set and B′ ( B. If S∗ is an extension of a B-boundaried
sequence S, then S∗|B′ is an extension of S|B′ .

I Lemma 16. Let B be a finite set and B′ ⊆ B. If S and T are B-boundaried sequences
such that S ≤ T, then S|B′ ≤ T|B′ .

Using Lemma 15 and Lemma 16, we prove the following:

I Lemma 17. Let B be a finite set and B′ ⊆ B. If S and T are B-boundaried sequences
such that and S � T, then S|B′ � T|B′ .

2.4.2 Insertion into a B-boundaried sequence
Let S = 〈s1, . . . , s`〉 be a B-boundaried sequence and let X be a subset of B. An insertion
position is a pair of indices (fx, lx) such that 1 ≤ fx ≤ lx ≤ `. An insertion position is valid
with respect to X in S if X ⊆

⋃
fx≤j≤lx bd(sj).

I Definition 18. Let S = 〈s1, . . . , s`〉 be a B-boundaried sequence and (fx, lx) be a valid
insertion position with respect to X ⊆ B. Then Sx = Ins(S, x,X, fx, lx) = 〈sx1 , . . . , sx` 〉 is the
(B ∪ {x})-boundaried sequence such that for every j ∈ [`]:

if j < fx, then bd(sxj ) = bd(sj); cc(sxj ) = cc(sj) and val(sxj ) = val(sj).
if fx ≤ j ≤ lx, then bd(sxj ) = bd(sj) ∪ {x}; cc(sxj ) is obtained by adding a new block {x}
to cc(sj) and then merging that new block with all the blocks of cc(sj) that contain an
element of X (if any); val(sxj ) = val(sj).
and otherwise, bd(sxj ) = bd(sj); cc(sxj ) is obtained by adding a new block {x} to cc(sj)
and then merging that new block with all the blocks of cc(sj) that contain an element of
X (if any); val(sxj ) = val(sj).

We can show that if T is an extension of S, then, to every valid insertion position (fx, lx)
with respect to some subset X ⊆ B in S, one can associate a valid insertion position (f∗x , l∗x)
with respect to X in T. The reverse is not true as illustrated by Figure 4.

S
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

T t5 t11t10t1 t2 t3 t4 t6 t7 t8 t9 t12 t13

δT→S(·)

x

Figure 4 Let T be a 2-extension of the B-boundaried sequence S. Suppose that (5, 10) is a
valid insertion position with respect to some set X ⊆ B in T. Observe that as 4 = δT→S(5) and
9 = δT→S(10), (4, 9) is also a valid insertion position with respect to some for X ⊆ B in S. However,
Ins(T, x,X, 5, 10) is not a 2-extension of Ins(S, x,X, 4, 9).

However the next two lemmas provides an alternative by means of 2-extensions of S. The
idea of the proof of Lemma 20 is illustrated by Figure 5.
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I Lemma 19. Let B and B′ be finite sets with B = B′ \ {x} for some x ∈ B′. Let S and
T be B-boundaried sequences such that S ≤ T. If (fx, lx) is a valid insertion position with
respect to a subset X ⊆ B in T, then (fx, lx) is a valid insertion position with respect to X
in S and Ins(S, x,X, fx, lx) ≤ Ins(T, x,X, fx, lx).

I Lemma 20. Let B and B′ be finite sets with B = B′ \{x} for some x ∈ B′. Let S and T be
B-boundaried sequences such that S � T. If (f∗x , l∗x) is a valid insertion position with respect
to a subset X ⊆ B in T, then there is a valid insertion position (f ′x, l′x) in a (≤ 2)-extension
R of S such that Ins(R, x,X, f ′x, l′x) � Ins(T, x,X, f∗x , l∗x).

S
fx lx

R
f ′ f ′x l′x l′

T
f∗ f∗x l∗x l∗

δT→S(·)

δR→S(·)

δT→R(·)
x

x

Figure 5 Let the B-boundaried sequence T be an extension of S that is certified by the surjective
function δT→S(·) such that f∗x 6= f∗, l∗x 6= l∗ and f∗ = min{h ∈ [r] | δT→S(h) = fx}, l∗ = max{h ∈
[r] | δT→S(h) = lx}, δT→S(f∗x ) = fx and δT→S(l∗x) = lx. The B-boundaried sequence R is a 2-
extension of S certified by the surjective function δR→S(·) such that δR→S(f ′) = fx, δR→S(f ′x) = fx,
δR→S(l∗x) = lx and δR→S(l′) = lx. The fact that T is an extension of R can be certified by the surjective
function δT→R(·) such that δT→R(f∗) = f ′, δT→R(f∗x ) = f ′x, δT→T(l∗x) = l′x and δT→R(l∗) = l′.

3 Computing the connected pathwidth

A (connected) path-decomposition P = 〈A1, . . . , A`〉 of a graph G is nice if |A1| = 1 and
∀i ∈ [p], |Ai−1 M Ai| = 1. A bag Ai, for 1 < 1 ≤ `, is called an introduce bag if Ai ( Ai−1 and
a forget bag otherwise. As we will show, connected B-boundaried sequences are combinatorial
objects designed in order to encode connected path-decompositions. Our algorithm is based
on two routines. Forget Routine processes the forget bags by performing a projection
operation on the B-boundaried sequences associated to those bags, while Insertion Routine
handles the insertion bags by performing an insertion operation in the associated boundaried
sequences.

3.1 Encoding a connected path-decomposition
I Definition 21 ((G,P)-encoding sequence). Let P = 〈A1, . . . , A`〉 be a path-decomposition
of the boundaried graph G = (G,B). A B-boundaried sequence S = 〈s1, . . . , sj , . . . , s`〉 is a
(G,P)-encoding sequence, if for every j ∈ [`]:

bd(sj) = Aj ∩B: the set of boundary vertices of (G,B) belonging to the bag Aj;
cc(sj) = {V (C) ∩B | C is a connected component of Gj};
val(sj) = |Aj \B|: the number of non-boundary vertices in the bag Aj.

It is worth to observe that cc(sj) is, in general, not a partition of Aj (see Figure 3).
Also, notice that if Gj is connected and B ∩ Vj = ∅, then cc(sj) = {∅}. Notice that if P is a
connected path-decomposition, then S is a connected B-boundaried sequence.
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I Definition 22. Let G = (G,B) be a connected boundaried graph and S a B-boundaried
sequence. We say that S is realizable in G if there is an extension S∗ of S that is the
(G,P)-encoding sequence of some connected path-decomposition P of G.

Let us observe that if a B-boundaried sequence S is realizable, then S is connected. The
set of representative B-boundaried sequences of a connected boundaried graph G = (G,B) of
width ≤ w is defined as:

Repw(G) = {rep(S) | S of width ≤ w is realizable in G = (G,B)}.

To compute the connected pathwidth of a graph, rather than computing Repw(G), we com-
pute a subset Dw(G) ⊆ Repw(G), called domination set, such that for every representative
B-boundaried sequence S ∈ Repw(G), there exists a representative B-boundaried sequence
R ∈ Dw(G) where R � S. Observe that a connected boundaried graph G = (G,B) has
connected pathwidth at most w if and only if Dw+1(G) 6= ∅.

3.2 Forget Routine
Let G = (G,B) be a boundaried graph. If x ∈ B is a boundary vertex, we denote by
Bx = B \ {x}. We define Gx = (G,Bx), that is, while the graph G is left unchanged, we
remove x from the set of boundary vertices. Forget Routine is described in Algorithm 1. Its
correctness is proved in two steps. We first establish the completeness of the algorithm that is:
for every connected path-decomposition P of Gx, there exists some B-boundaried sequence
S ∈ Dw(G) such that rep(S|B\{x}) � rep(T) where T is the (Gx,P)-encoding sequence. For
the soundness of the routine we prove that for every B-boundaried sequence S ∈ Dw(G),
rep(S|B\{x}) ∈ Dw(Gx) if S|B\{x} is connected. The proofs of completeness and soundness
rely both on Lemma 17. The time complexity is dominated by the bound on the number of
representatives, given by Lemma 10.

Algorithm 1 Forget Routine.
Input: A boundaried graph G = (G,B), a vertex x ∈ B, and Dw(G).
Output: Dw(Gx), a domination set of Repw(Gx).

1 Dw(Gx)← ∅;
2 foreach S ∈ Dw(G) do
3 if S|B\{x} is connected, then add rep(S|B\{x}) to Dw(Gx) ;
4 end
5 return Dw(Gx).

I Theorem 23. Algorithm 1 computes Dw(Gx) in 2O(k(w+log k))-time, where k = |B|.

3.3 Insertion Routine
Let G = (G,B) be a boundaried graph with G = (V,E). For a subset X ⊆ B, we set
Gx = (V ∪ {x}, E ∪ {xy | y ∈ X}) and Gx = (Gx, Bx) where Bx = B ∪ {x}. Algorithm 2 is
describing Insertion Routine (notations of Figure 5 are used in the pseudo-code). To prove
its correctness, we proceed in two steps. We first establish the completeness of the algorithm:
for every connected path-decomposition Px of Gx, the (Gx,Px)-encoding sequence T x is
dominated by some Bx-boundaried sequence Sx that can be computed from a B-boundaried
sequence S belonging to Dw(G). Then we argue about the soundness of Insertion Routine
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Algorithm 2 Insertion Routine.
Input: A boundaried graph G = (G,B), a subset X ( B, and Dw(G).
Output: Dw(Gx), a domination set of Repw(Gx).

1 Dw(Gx)← ∅;
2 foreach S = 〈s1, . . . , s`〉 ∈ Dw(G) do
3 foreach fx, lx ∈ [`] such that X ⊆

⋃
fx≤j≤lx

bd(sj) do
4 foreach (≤ 2)-extension R of S duplicating none, one or both of sfx and slx do
5 let `′ be the length of R;
6 set f ′x = max{j ∈ [`′] | δR→S(j) = fx} and l′x = min{j ∈ [`′] | δR→S(j) = lx};
7 set Sx = Ins(R, x,X, f ′x, l′x);
8 (observe that by construction (f ′x, l′x) is valid with respect to X in R);
9 if width(Sx) ≤ w, then add rep(Sx) to Dw(Gx);

10 end
11 end
12 end
13 return Dw(Gx).

that is: if Sx is generated from a B-boundaried S ∈ Dw(G), then rep(Sx) belongs to Dw(Gx).
The proofs of completeness and soundness rely both on Lemma 19, and Lemma 20. As for
Forget Routine, the time complexity follows from Lemma 10.

I Theorem 24. Algorithm 2 computes Dw(Gx) in 2O(k(w+log k))-time, where k = |B|.

3.4 The dynamic programming algorithm
We are now in position to prove Theorem 1. We are given a nice path-decompositon
Q = 〈B1, . . . , Bq〉 of G of width at most k and for each i ∈ [q], we consider the boundaried
graphs Gi = (G[Vi], Bi), where Vi =

⋃
1≤h≤iBh. We have a way to compute Dw(Gi+1) from

Dw(Gi), in 2O(k2) · n time, using the algorithms of Theorem 23 or Theorem 24 depending
on whether Bi is an insertion or a forget bag. We next describe the set Dw+1(G1). For
this, we take the representative set Repw+1(G1) that consists for the following four possible
connected B1-boundaried sequences:

S1 = 〈({x}, {{x}}, 0)〉,
S2 = 〈(∅, {∅}, 0), ({x}, {{x}}, 0)〉,
S3 = 〈(∅, {∅}, 0), ({x}, {{x}}, 0), (∅, {{x}}, 0)〉, and
S4 = 〈({x}, {{x}}, 0), (∅, {{x}}, 0)〉.

As already noticed cpw(G) ≤ k if and only if Dw+1(Gq) 6= ∅. This completes proof of the
decision version of Theorem 1. In [8, Section 6] Bodlaender and Kloks explained how to turn
their decision algorithm for pathwidth and treewidth to one that is able to construct, in case
of a positive answer, the corresponding decomposition. It is straightforward to see that the
modification of [8, Section 6] that transforms the decision algorithm for pathwidth to one
that also constructs the corresponding path-decomposition also applies to our algorithm for
connected pathwidth. This completes the proof of Theorem 1.

If we now use the result of Fürer [20] for constructing a path-decomposition of width
at most k in 2O(k2) · n time and taking into account that pw(G) ≤ cpw(G), we have the
following.

I Theorem 25. One may construct an algorithm that, given an n-connected graph G and a
non-negative integer k, either outputs a connected path-decomposition of G of width at most
k or correctly reports that such a decomposition does not exist in 2O(k2) · n time.
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