Mamadou Moustapha Kanté
email: mamadou.kante@uca.fr

Christophe Paul
email: christophe.paul@lirmm.fr

Dimitrios M Thilikos

A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

Keywords: 2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics of computing Graph decompositions, Parameterized algorithms, Typical sequences, Pathwidth, Graph searching Digital Object Identifier 10.4230/LIPIcs.ESA.2020.64

The graph parameter of pathwidth can be seen as a measure of the topological resemblance of a graph to a path. A popular definition of pathwidth is given in terms of node search where we are given a system of tunnels (represented by a graph) that is contaminated by some infectious substance and we are looking for a search strategy that, at each step, either places a searcher on a vertex or removes a searcher from a vertex and where an edge is cleaned when both endpoints are simultaneously occupied by searchers. It was proved that the minimum number of searchers required for a successful cleaning strategy is equal to the pathwidth of the graph plus one. Two desired characteristics for a cleaning strategy is to be monotone (no recontamination occurs) and connected (clean territories always remain connected). Under these two demands, the number of searchers is equivalent to a variant of pathwidth called connected pathwidth. We prove that connected pathwidth is fixed parameter tractable, in particular we design a 2 O(k 2) • n time algorithm that checks whether the connected pathwidth of G is at most k. This resolves an open question by [Dereniowski, Osula, and Rzążewski, Finding small-width connected path-decompositions in polynomial time. Theor. Comput. Sci., 794:85-100, 2019]. For our algorithm, we enrich the typical sequence technique that is able to deal with the connectivity demand. Typical sequences have been introduced in [Bodlaender and Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2): 1996] for the design of linear parameterized algorithms for treewidth and pathwidth. While this technique has been later applied to other parameters, none of its advancements was able to deal with the connectivity demand, as it is a "global" demand that concerns an unbounded number of parts of the graph of unbounded size. The proposed extension is based on an encoding of the connectivity property that is quite versatile and may be adapted so to deliver linear parameterized algorithms for the connected variants of other width parameters as well. An immediate consequence of our result is a 2 O(k 2) • n time algorithm for the monotone and connected version of the edge search number.

Introduction

Pathwidth. A path-decomposition of a graph G = (V, E) is a sequence Q = B 1 , . . . , B q of vertex sets, called bags of Q, such that 1. i∈{1,...,q} B i = V, 2. every edge e ∈ E is a subset of some member of Q, and 3. the trace of every vertex v ∈ V, that is the set {i | v ∈ B i }, is a set of consecutive integers.

The width of a path-decomposition is max{|B i | -1 | i ∈ {1, . . . , q}} and the pathwidth of a graph G, denoted by pw(G), is the minimum width of a path-decomposition of G.

The above definition appeared for the first time in [START_REF] Robertson | Graph minors. I. excluding a forest[END_REF]. Pathwidth can be seen as a measure of the topological resemblance of a graph to a path. Pathwidth, along with its tree-analogue treewidth, have been used as key combinatorial tools in the Graph Minors series of Robertson and Seymour [START_REF] Robertson | Graph minors. XX. wagner's conjecture[END_REF] and they are omnipresent in both structural and algorithmic graph theory.

Deciding whether the pathwidth of a graph is at most k is an NP-complete problem [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF]. This motivated the problem of the existence, or not, of a parameterized algorithm for this problem, and algorithm running in f (k) • n O (1) time algorithm. An affirmative answer to this question was directly implied as a consequence of the algorithmic and combinatorial results of the Graph Minors series and the fact that, for every k, the class of graphs with pathwidth at most k is closed under taking of minors 1 . On the negative side, this implication was purely existential. The challenge of constructing an f (k) • n O (1) time algorithm for pathwidth (as well as for treewidth) was a consequence of the classic result of Bodlaender and Kloks in [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF] (see also [START_REF] Courcelle | Equivalent definitions of recognizability for sets of graphs of bounded tree-width[END_REF][START_REF] Lagergren | Finding minimal forbidden minors using a finite congruence[END_REF]). The main result in [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF] implies a 2 O(k 3) • n time algorithm. This was later improved to one running in 2 O(k 2) • n time by Fürer in [START_REF] Fürer | Faster computation of path-width[END_REF]).

Graph searching. In a graph searching game, the opponents are a group of searchers and an evading fugitive. The opponents move in turns in a graph. The objective of the searchers is to deploy a strategy of moves that leads to the capture of the fugitive. At each step of the node searching game, the searchers may either place a searcher at a vertex or remove a searcher from a vertex. The fugitive resides in the edges of the graph and is lucky, invisible, fast, and agile. The capture of the fugitive occurs when searchers occupy both endpoints of the edge where he currently resides. A node searching strategy is a sequence of moves of the searchers that can guarantee the eventual capture of the fugitive. 2 The cost of a searching strategy is the maximum number of searchers simultaneously present in the graph during the deployment of the strategy. The node search number of a graph G, denoted by ns(G), is defined as the minimum cost of a node searching strategy. Node searching was defined by Kirousis and Papadimitriou in [START_REF] Lefteris | Searching and pebbling[END_REF] who proved that the game is equivalent to its monotone variant where search strategies are monotone in the sense that they prevent the fugitive from pervading again areas from where he had been expelled. This result along with the results in [START_REF] Kinnersley | The vertex separation number of a graph equals its path-width[END_REF][START_REF] Lefteris | Interval graphs and seatching[END_REF][START_REF] Möhring | Graph problems related to gate matrix layout and PLA folding[END_REF], imply that, for every graph G, ns(G) = pw(G) + 1.

The connectivity issue.

In several applications of graph searching it is important to guarantee secure communication channels between the searchers so that they can safely exchange information. This issue was treated for the first time in the area of distributed 1 A graph H is a minor of a graph G if H can be obtained by some subgraph of G by contracting edges. 2 An equivalent setting of graph searching is to see G as a system of pipelines or corridors that is contaminated by some poisonous gas or some highly infectious substance. The searchers can be seen as cleaners that deploy a decontamination strategy [START_REF] Chartrand | Graphical measurement[END_REF][START_REF] Fedor | An annotated bibliography on guaranteed graph searching[END_REF]. The fact that the fugitive is invisible, fast, lucky, and agile permits us to see him as being omnipresent in any edge that has not yet been cleaned. computing, in particular in [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF], where the authors considered the problem of capturing an intruder by mobile agents (acting for example as antivirus programs). As agents deploy their cleaning strategy, they must guarantee that, at each moment of the search, the cleaned territories remain connected, so to permit the safe exchange of information between the coordinating agents.

The systematic study of connected graph searching was initiated in [START_REF] Barrière | Connected graph searching[END_REF][START_REF] Barrière | Searching is not jumping[END_REF]. When, in node searching, we demand that the search strategies are monotone and connected, we define monotone connected node search number, denoted by mcns(G). The graph decomposition counterpart of this parameter was introduced by Dereniowski in [START_REF] Dereniowski | From pathwidth to connected pathwidth[END_REF]. He defined the connected pathwidth of a connected graph, denoted by cpw(G), by considering connected path-decompositions Q = {B 1 , . . . , B q } where the following additional property is satisfied:

For every i ∈ {1, . . . , q}, the subgraph of G induced by h∈{1,...,i} B h is connected.

As noticed in [START_REF] Dereniowski | From pathwidth to connected pathwidth[END_REF], for every connected graph G, mcns(G) = cpw(G) + 1 (see also [START_REF] Adler | Connected search for a lazy robber[END_REF]). Notice that the above demand results to a break of symmetry: the fact that B 1 , . . . , B q is a connected path-decomposition does not imply that the same holds for B q , . . . , B 1 (while this is always the case for conventional path-decompositions). This sense of direction seems to be the source of all combinatorial particularities (and challenges) of connected pathwidth.

Computing connected pathwidth.

It is easy to see that checking whether cpw(G) ≤ k is an NP-complete problem: if we define G * as the graph obtained from G after adding a new vertex adjacent with all the vertices of G, then observe that pw(G) = cpw(G *) -1. This motivates the question on the parameterized complexity of the problem. The first progress in this direction was done recently in [START_REF] Dereniowski | Finding small-width connected path decompositions in polynomial time[END_REF] by Dereniowski, Osula, and Rzążewski who gave an f (k) • n O(k 2) time algorithm. In [START_REF] Dereniowski | Finding small-width connected path decompositions in polynomial time[END_REF]Conjecture 1], they conjectured that there is a fixed parameter algorithm checking whether cpw(G) ≤ k. The general question on the parameterized complexity of the connected variants of graph search was raised as an open question by Fedor V. Fomin during the GRASTA 2017 workshop [START_REF] Fedor | Complexity of connected search when the number of searchers is small[END_REF].

A somehow dissuasive fact towards a parameterized algorithm for connected pathwidth is that connected pathwdith is not closed under minors and therefore it does not fit in the powerful algorithmic framework of Graph Minors (which is the case with pathwidth). The removal of an edge may increase the parameter. For instance, the connected pathwidth of the graph in Figure 1 has connected pathwidth 2 while if we remove the edge {x, y} its connected pathwidth increases to 3. On the positive side, connected pathwidth is closed under contractions (see e.g., [START_REF] Adler | Connected search for a lazy robber[END_REF]), i.e, its value does not increase when we contract edges and, moreover, the yes-instances of the problem have bounded pathwidth, therefore they also have bounded treewidth. Based on these observations, the existence of a parameterized algorithm would be implied if we can prove that, for any k, the set Z k of contraction-minimal 3 graphs with connected pathwidth more than k is finite: as contraction containment can be expressed in MSO logic, one should just apply Courcelle's theorem [START_REF] Courcelle | The monadic second-order logic of graphs. I. recognizable sets of finite graphs[END_REF] to check whether some graph of Z k is a contraction of G. The hurdle in this direction is that we have no idea whether Z k is finite or not. The alternative pathway is to try to devise a linear parameterized algorithm by applying the algorithmic techniques that are already known for pathwidth.

The typical sequence technique. The main result of [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF] was an algorithm that, given a path-decomposition Q of G of width at most k and an integer w, outputs, if exists, a path-decomposition of G of width at most w, in 2 O(k(w+log k)) • n time. In this algorithm Bodlaender and Kloks introduced the celebrated typical sequence technique, a refined dynamic programming technique that encodes partial path/tree decompositions as a system of suitably compressed sequences of integers, able to encode all possible path-decompositions of width at most w (see also [START_REF] Courcelle | Equivalent definitions of recognizability for sets of graphs of bounded tree-width[END_REF][START_REF] Lagergren | Finding minimal forbidden minors using a finite congruence[END_REF]). This technique was later extended/adapted for the design of parametrized algorithms for numerous graph parameters such as branchwidth [START_REF] Hans | Constructive linear time algorithms for branchwidth[END_REF], linearwidth [START_REF] Hans | Computing small search numbers in linear time[END_REF], cutwidth [START_REF] Thilikos | Cutwidth I: A linear time fixed parameter algorithm[END_REF], carving-width [START_REF] Thilikos | linear time algorithms for small cutwidth and carving-width[END_REF], modified cutwidth, and others [START_REF] Hans | Derivation of algorithms for cutwidth and related graph layout parameters[END_REF][START_REF] Hans | Typical sequences revisited -computing width parameters of graphs[END_REF][START_REF] Thilikos | Cutwidth II: algorithms for partial w-trees of bounded degree[END_REF]. In [START_REF] Hans | Derivation of algorithms for cutwidth and related graph layout parameters[END_REF] this technique was viewed as a result of un-nondeterminization: a stepwise evolution of a trivial hypothetical non-deterministic algorithm towards a deterministic parameterized algorithm. A considerable generalization of the characteristic sequence technique was proposed in the PhD thesis of Soares [START_REF] Pardo | Pursuit-Evasion, Decompositions and Convexity on Graphs[END_REF] where this technique was implemented under the powerful metaalgorithmic framework of q-branched Φ-width. Non-trivial extensions of the typical sequence technique where proposed for devising parameterized algorithms for parameters on matroids such as matroid pathwidth [START_REF] Jeong | Constructive algorithm for path-width of matroids[END_REF], matroid branchwidth [START_REF] Jeong | Finding branch-decompositions of matroids, hypergraphs, and more[END_REF], as well as all the parameters on graphs or hypergraphs that can be expressed by them. Very recently Bodlaender, Jaffke, and Telle in [START_REF] Hans | Typical sequences revisited -computing width parameters of graphs[END_REF] suggested refinements of the typical sequence technique that enabled the polynomial time computation of several width parameters on directed graphs. Finally, Bojańczyk and Pilipczuk suggested an alternative approach to the typical sequence technique, based on MSO transductions between decompositions [START_REF] Bojańczyk | Optimizing tree decompositions in MSO[END_REF].

Unfortunately, the above mentioned state of the art on the typical sequence technique is unable to encompass connected pathwidth. A reason for this is that the connectivity demand is a "global property" applying to every prefix of the path-decomposition which correspond to an unbounded number of subgraphs of arbitrary size.

Our result. In this paper we resolve affirmatively the conjecture that checking whether cpw(G) ≤ k is fixed parameter tractable. Our main result is the following.

Theorem 1. One may construct an algorithm that given an n-vertex connected graph G, a path-decomposition

Q = B 1 , . .

. , B q of G of width at most k and an integer w, outputs a connected path-decomposition of G of width at most w or reports correctly that such an algorithm does not exist in

2 O(k(w+log k)) • n time.
To design an algorithm checking whether cpw(G) ≤ k we first use the algorithms of [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF] and [START_REF] Fürer | Faster computation of path-width[END_REF], to build, if exists, a path decomposition of G of width at most k, in 2 O(k 2) • n time. In case of a negative answer we know than cpw(G) > k, otherwise we apply the algorithm of Theorem 1. The overall running time is dominated by the algorithm of Fürer in [START_REF] Fürer | Faster computation of path-width[END_REF] which is 2 O(k 2) • n.

Our techniques. We now give a brief description of our techniques by focusing on the novel issues that we introduce. This description demands some familiarity with the typical sequence technique. Otherwise, the reader can go directly to the next section.

Let Q = B 1 , . . . , B q be a (nice) path-decomposition of G of width at most k. For every i ∈ [q], we let G i = (G i , B i) be the boundaried graph where G i = G[h∈{1,...,i} B h]. We follow standard dynamic programming over a path-decomposition that consists in computing a representation of the set of partial solutions associated to G i , which in our case are connected path-decompositions of G i of width at most w. The challenge is how to handle in a compact way the connectivity requirement of a path-decomposition of a graph that can be of arbitrarily large size.

A connected path-decomposition P = A 1 , . . . , A of G i is represented by means of a (G i , P)-encoding sequence S = s 1 , . . . , s . For every j ∈ [], the element s j of the sequence S is a triple (bd(s j), cc(s j), val(s j)) where: bd

(s i) = A j ∩ B i ; val(s j) = |A j \ B i |; and cc(s j) is the projection of the connected components of G j i = G i [h∈{1,...,j} A h] onto the subset of boundary vertices B i ∩ V (G j i).
To compress a (G i , P)-encoding sequence S, we identify a subset bp(S) of indexes, called breakpoints, such that j ∈ bp(S) if bd(s j-1) = bd(s j) (type-1) or cc(s j-1) = cc(s j) (type-2) or j is an index belonging to a typical sequence of the integer sequence val(s b), . . . , val(s c-1) where b, c ∈ [] are consecutive type-1 or 2-breakpoints. We define rep(S) as the induced subsequence S[bp(S)].

The novelty in this representation is the cc(•) component which is a near-partition of the subset B i ∩ V (G j i) of boundary vertices. The critical observation is that for every j ∈ [-1], cc(s j+1) is coarser than cc(s j). This, together with the known results on typical sequences, allows us to prove that the size of rep(S) is O(kw) and that the number of representative sequences is 2 O(k(w+log k)) . Finally, as in the typical sequence technique, we define a domination relation over the set of representative sequences. The DP algorithm over the path-decomposition Q consists then in computing a domination set D w (G i+1) of the representative sequences of G i+1 from a domination set D w (G i) of the representative sequences of G i .

The above scheme extends the current state of the art on typical sequences as it further incorporates the encoding of the connectivity property. While this is indeed a "global property", it appears that its evolution with respect to the bags of the decomposition can be controlled by the second component of our encoding and this is done in terms of a sequence of a gradually coarsening partitions. This establishes a dynamic programming framework that can potentially be applied on the connected versions of most of the parameters where the typical sequence technique was used so far. Moreover, it may be the starting point of the algorithmic study of parameters where other, alternative to connectivity, global properties are imposed to the corresponding decompositions.

Consequences in connected graph searching. The original version of graph searching was the edge searching variant, defined 4 by Parsons [START_REF] Parsons | Pursuit-evasion in a graph[END_REF][START_REF] Parsons | The search number of a connected graph[END_REF], where the only differences with node searching is that a searcher can additionally slide along an edge and sliding is the only way to clean an edge. The corresponding search number is called edge search number and is denoted by es(G). If we additionally demand that the searching strategy is connected and monotone, then we define the monotone connected edge search number denoted by mces(G). As proved 4 An equivalent model was proposed independently by Petrov [35]. The models of Parsons and Petrov where different but also equivalent, as proved by Golovach in [START_REF] Golovach | Equivalence of two formalizations of a search problem on a graph (Russian)[END_REF][START_REF] Golovach | A topological invariant in pursuit problems, (Об одном топологическом инварианте в задачах преследования). Differentsialânye Uravneniya (Differential Equations)[END_REF]. The model of Parsons was inspired by an earlier paper by Breisch [START_REF] Breisch | An intuitive approach to speleotopology[END_REF], titled "An intuitive approach to speleotopology", where the aim was to rescue an (unlucky) speleologist lost in a system of caves. Notice that "unluckiness" cancels the speleologist's will of being rescued as, from the searchers' point of view, it imposes on him/her the status of an "evading entity". As a matter of fact, the connectivity issue appears even in the first inspiring model of the search game. In a more realistic scenario, the searchers cannot "teleport" themselves to non-adjacent territories of the caves while this was indeed permitted in the original setting of Parsons.

E S A 2 0 2 0 64:6

A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth in [START_REF] Lefteris | Searching and pebbling[END_REF], es(G) = pw(G v), where G v is the graph obtained if we subdivide twice each edge of G. Applying the same reduction as in [START_REF] Lefteris | Searching and pebbling[END_REF] for the monotone and connected setting, one can prove that mces(G) = cpw(G v). As we already mentioned, mcns(G) = cpw(G v) + 1. These two reductions imply that the result of Theorem 1 holds also for mcns and mces, i.e., the search numbers for the monotone and connected versions of both node and edge searching.

≤ i < j ≤ k, X i ∩ X j = ∅.
Observe that a near-partition may contain several copies of the empty set. A partition of S is a near-partition with the additional constraint that if it contains the empty set, then this is the unique block. Let Q be a near-partition of a set S and Q be a near-partition of a set S such that S ⊆ S . We say that Q is thinner than Q , or that Q is coarser than Q, which we denote Q Q , if for every block X of Q, there exists a block X of Q such that X ⊆ X . For a near-partition Q = {X 1 , . . . , X } of S and a subset S ⊆ S, we define the projection of Q onto S as the near-partition

Q |S = {X 1 ∩ S , . . . , X ∩ S }. Observe that if Q is a partition, then Q |S may not be a partition: if several blocks of Q are subsets of S \ S , then Q |S contains several copies of the emptyset.
Sequences. Let S be a set. A sequence of elements of S, denoted by α = a 1 , . . . , a , is a subset of S equipped with a total ordering: for 1 i < j , a i occurs before a j in the sequence α. The length of a sequence is the number of elements that it contains. Let X ⊆ [] be a subset of indexes of α. We define the subsequence of α induced by X as the sequence α[X] on the subset {a i | i ∈ X} such that, for i, j ∈ X, a i occurs before a j in α[X] if and only if i < j.

The duplication of the element a j , with j ∈ [], in the sequence α = a, . . . , a yields the sequence α = a 1 , . . . , a j , a j , . . . , a of length + 1. A sequence β is an extension of the sequence α if it is either α or it results from a series of duplications on α. We define the set of extensions of α as: Ext(α) = {α * | α * is an extension of α}.

Let α = a 1 , . . . , a be a sequence and α * = a 1 , . . . , a p be an extension of α. If p ≤ +k, then α * results from a series of at most k duplications and we say that α * is a (≤ k)-extension of α. With the definition of an extension, every element of α * is a copy of some element of α. We define the extension surjection as a surjective function δ α * →α : [p] → [] such that if δ α * →α (j) = i then a * j = a i . An extension surjection δ α * →α is a certificate that α * ∈ Ext(α). Finally, we observe that if α * ∈ Ext(α), then α is an induced subsequence of α * . Moreover, if α * ∈ Ext(α) and β ∈ Ext(α *), then β is an extension of α.

Graphs and boundaried graphs. Given a graph G = (V, E) and a vertex set S ⊆ V (G), we denote by G[S] the subgraph of G that is induced by the vertices of S, i.e., the graph (S, {e ∈

E | e ⊆ S}). Also, if x ∈ V , we define G \ x = G[V \ {x}].
The neighborhood of a vertex v in G is the set of vertices that are adjacent to v in G and is denoted by N G (v).

A boundaried graph is a pair G = (G, B) such that G is a graph over a vertex set V and B ⊆ V is a subset of distinguished vertices, called boundary vertices. We say that a boundaried graph G = (G, B) is connected if either G is connected and B = ∅ or, in case B = ∅, every connected component C of G contains some boundary vertex, that is C ∩ B = ∅. The definition of a connected path-decomposition also naturally extends to boundaried graphs as follows.

Definition 2. Let

P = A 1 , .

. . , A be a path-decomposition of the boundaried graph

G = (G, B). Then P is connected if, for every i ∈ [], the boundaried graph (G i , V i ∩ B) is connected, where V i = h∈[i] A h and G i = G[V i].

Integer sequences

Let us recall the notion of typical sequences introduced by Bodlaender and Kloks [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF] (see also [START_REF] Courcelle | Equivalent definitions of recognizability for sets of graphs of bounded tree-width[END_REF][START_REF] Lagergren | Finding minimal forbidden minors using a finite congruence[END_REF]). Definition 3. Let α = a 1 , . . . , a be an integer sequence. The typical sequence Tseq(α) is obtained after iterating the following operations, until none is possible anymore: if for some i ∈ [-1], a i = a i+1 , then remove a i+1 from α; if there exists i, j ∈ [] such that i j -2 and ∀h, i < h < j, a i ≤ a h ≤ a j or ∀h, i < h < j, a i ≥ a h ≥ a j , then remove the subsequence a i+1 , . . . , a j-1 from α.

As a typical sequence Tseq(α) = b 1 , . . . , b i , . . . , b r is a subsequence of α, it follows that, for every i ∈ [r], there exists j i ∈ [] such that b i = a ji . Herefater every such index j i is called a tip of the sequence α.

If α and β are two integer sequences of same length , we say that α ≤ β if for every j ∈ [], a j ≤ b j . Definition 4. Let α and β be two integer sequences. Then α β if there are α * ∈ Ext(α) and β * ∈ Ext(β) such that α * ≤ β * . Whenever α β and β α, we say that α and β are equivalent which is denoted by α ≡ β.

We extend the definition of the ≤-relation and -relation on integer sequences to sequences of integer sequences. Let P = L 1 , . . . , , L r and Q = K 1 , . . . , K r be two sequences of integer sequences such that for every i ∈ [r], L i and K i have the same length. We say that

P ≤ Q if for every i ∈ [r], L i ≤ K i . The set of extensions of P is Ext(P) = { L 1 , . . . , L r | i ∈ [r], L i ∈ Ext(L i)}.
Finally we say that P Q if there exist P ∈ Ext(P) and Q ∈ Ext(Q) such that P ≤ Q . If P Q and Q P, then we say that P ≡ Q. The relation ≡ is an equivalence relation.

Boundaried sequences

We now define the main notion that will allow us to represent and manipulate (connected) path-decompositions of a boundaried graph G = (G, B) (see Subsection 3.1).

E S A 2 0 2 0 64:8

A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth Definition 5 (B-boundaried sequence). Let B be a finite set. A B-boundaried sequence is a sequence S = s 1 , . . . , s such that for every j ∈ [], s j = (bd(s j), cc(s j), val(s j)) is defined as follows:

bd(s j) ⊆ B with the property that for every x ∈ B, the indices j ∈ [l] such that x ∈ bd(s j) are consecutive; cc(s j) is a near-partition of i≤j bd(s i) ⊆ B with the property that for every j < , cc(s j) cc(s j+1); val(s j) is a positive integer. The width of S is defined as width(S) = max j∈ (|bd(s j)| + val(s j)).

Definition 6 (Connected B-boundaried sequence). Let S = s 1 , . . . , s be a B-boundaried sequence for some finite set B. We say that S is connected if for every

i ∈ [], cc(s i) is a partition of i≤j bd(s i) ⊆ B.
Observe that if S = s 1 , . . . , s is a connected B-boundaried sequence and if there exists some i ∈ [] such that cc(s i) = {∅}, then, for every j ≤ i, bd(s j) = ∅ and cc(s j) = {∅}. Definition 7 (Breakpoints). Let S = s 1 , . . . , s j , . . . , s be a B-boundaried sequence for some finite set B. Then the index j, with 1 ≤ j ≤ , is a breakpoint of:

type-1 if j = 1 or bd(s j) = bd(s j-1) or j = ; type-2 if it is not a type-1 breakpoint and cc(s j) = cc(s j-1); type-3 if it is not a type-1 nor a type-2 and j is a tip of the integer sequence val(s lj), . . . , val(s rj -1) where l j and r j are respectively the largest and smallest type-1 or type-2 breakpoints such that l j < j < r j . Let bp(S) be the set of breakpoints of S and bp t (S) be the set of type-t breakpoints of S, for t ∈ {1, 2, 3}. A bullet • at some index j represents an element of h<j bd(s h). Observe that at index k, x is indeed represented by a black bullet. For the index i, we have bd(si) = {x, y, z}, cc(si) = {{x, y}, {z, •}} and val(si) = 2. At every position j, only named elements belong to bd(sj). The red squares mark the type-1 breakpoints: at position i, element z is new, while at position k, element x is forgotten. The blue diamond at index j marks a type-2 breakpoint which corresponds to the merge of two parts of cc(si+4) into a single part. Finally, the grey bullets type-3 breakpoints corresponding to tips of the integer sequences val(si), . . . val(sj-1) and val(sj), . . . val(s k-1) . Definition 8 (B-boundary model). Let S = s 1 , . . . , s j , . . . , s be a B-boundaried sequence. For every j ∈ [], we set ṡj = (bd(s j), cc(s j), t(s j)) with t(s j) = 1 if j ∈ bp 1 (S), t(s j) = 2 if j ∈ bp 2 (S) and t(s j) = 0 otherwise. The B-boundary model of S, denoted by model(S), is the subsequence of Ṡ = ṡ1 , . . . , ṡj , . . . , ṡ induced by bp 1 (S) ∪ bp 2 (S). As in [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF][START_REF] Jeong | The "art of trellis decoding" is fixed-parameter tractable[END_REF], we will bound the number of representatives of B-boundaried sequences. For doing so, we bound the number of B-boundaried models and then use [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF]Lemma 3.5] which gives an upper bound on the number of typical sequences. Taking into account the fact that there are O(|B|) breakpoints and |B| O(k) different coarsening scenarios for the encoded near-partitions, we prove the following bound. Notice that the notion of a B-boundary model corresponds to the one of interval model in [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF]. Besides the B-boundary model of a sequence S, we introduce the profile of S, which corresponds to the concept of list representation in [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF].

Definition 11 (Profile). Let S be a B-boundaried sequence of length and let

1 = j 1 < • • • < j i < • • • < j r = be the subset of indices of [] that belong to bp 1 (S) ∪ bp 2 (S). Then we set profile(S) = L 1 , . . . , L r with, for i ∈ [r], L j = val(s ji), . . . , val(s ji+1-1) .
We introduce the domination relation over B-boundaried sequences. This allows us to compare B-boundaried sequences having the same model by means of their B-profiles.

Definition 12 (Domination relation). Let S = s 1 , . . . , s j , . . . , s and T = t 1 , . . . , t j , . . . , t be two B-boundaried sequences such that model(S) = model(T). If profile(S) ≤ profile(T), then we write S ≤ T. And, we say that S dominates T, denoted by S T, if profile(S) profile(T). If we have profile(S) profile(T) and profile(T) profile(S), then we say that S and T are equivalent, which is denoted by S ≡ T. Lemma 13. Let S be a B-boundaried sequence. Then, 1. rep(S) ≡ S, 2. if S * ∈ Ext(S), then S * ≡ S,

S T if and only if rep(S) rep(T).

4. If T is a B-boundaried sequence such that S T, then there exist an extension S * of S and an extension T * of T such that S * ≤ T * . 5. The relation is transitive, and ≡ is an equivalence relation (refering to boundary sequences).

Operations on B-boundaried sequences

Given a finite set B, we define two operations on B-boundaried sequences that will be later used in the DP algorithm. The projection of a B-boundaried sequence S onto B B aims at changing the status of a boundary element from B \ B to the status of a non-boundary element. The second operation deals with the insertion in a B-boundaried sequence of a new boundary element x with respect to a subset X ⊆ B. We observe that though the B-boundaried sequence S is connected, its projection S |B onto B ⊆ B may not be connected. This is the case if for some j ∈ [], the partition cc(s j) contains several blocks and at least one of them is a subset of B \ B . Notice that the projection operation does not change the width of a sequence.

Projection of B-boundaried sequences

Insertion into a B-boundaried sequence

Let S = s 1 , . . . , s be a B-boundaried sequence and let X be a subset of B. An insertion position is a pair of indices (f x , l x) such that 1 ≤ f x ≤ l x ≤ . An insertion position is valid with respect to X in S if X ⊆ fx≤j≤lx bd(s j).

Definition 18. Let S = s 1 , . . . , s be a B-boundaried sequence and (f x , l x) be a valid insertion position with respect to X ⊆ B. Then S x = Ins(S, x, X, f x , l x) = s x 1 , . . . , s x is the (B ∪ {x})-boundaried sequence such that for every j ∈ []:

if j < f x , then bd(s x j) = bd(s j); cc(s x j) = cc(s j) and val(s x j) = val(s j). if f x ≤ j ≤ l x , then bd(s x j) = bd(s j) ∪ {x}; cc(s x j) is obtained by adding a new block {x} to cc(s j) and then merging that new block with all the blocks of cc(s j) that contain an element of X (if any); val(s x j) = val(s j). and otherwise, bd(s x j) = bd(s j); cc(s x j) is obtained by adding a new block {x} to cc(s j) and then merging that new block with all the blocks of cc(s j) that contain an element of X (if any); val(s x j) = val(s j).

We can show that if T is an extension of S, then, to every valid insertion position (f x , l x) with respect to some subset X ⊆ B in S, one can associate a valid insertion position (f * x , l * x) with respect to X in T. The reverse is not true as illustrated by Figure 4. δ T→S (•)

S

x Figure 4 Let T be a 2-extension of the B-boundaried sequence S. Suppose that (5, 10) is a valid insertion position with respect to some set X ⊆ B in T. Observe that as 4 = δ T→S (5) and 9 = δ T→S [START_REF] Hans | Computing small search numbers in linear time[END_REF], [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF][START_REF] Hans | Constructive linear time algorithms for branchwidth[END_REF] is also a valid insertion position with respect to some for X ⊆ B in S. However, Ins(T, x, X, 5, 10) is not a 2-extension of Ins(S, x, X, 4, 9).

However the next two lemmas provides an alternative by means of 2-extensions of S. The idea of the proof of Lemma 20 is illustrated by Figure 5.

Lemma 19.

Let B and B be finite sets with B = B \ {x} for some x ∈ B . Let S and T be B-boundaried sequences such that S ≤ T. If (f x , l x) is a valid insertion position with respect to a subset X ⊆ B in T, then (f x , l x) is a valid insertion position with respect to X in S and Ins(S, x, X, f x , l x) ≤ Ins(T, x, X, f x , l x). Lemma 20. Let B and B be finite sets with B = B \ {x} for some x ∈ B . Let S and T be B-boundaried sequences such that S T. If (f * x , l * x) is a valid insertion position with respect to a subset X ⊆ B in T, then there is a valid insertion position (f

x , l x) in a (≤ 2)-extension R of S such that Ins(R, x, X, f x , l x) Ins(T, x, X, f * x , l * x). S fx lx R f f x l x l T f * f * x * x l * δ T→S (•) δ R→S (•) δ T→R (•) x x Figure 5
Let the B-boundaried sequence T be an extension of S that is certified by the surjective function δ

T→S (•) such that f * x = f * , l * x = l * and f * = min{h ∈ [r] | δ T→S (h) = fx}, l * = max{h ∈ [r] | δ T→S (h) = lx}, δ T→S (f * x) = fx and δ T→S (l * x) = lx. The B-boundaried sequence R is a 2- extension of S certified by the surjective function δ R→S (•) such that δ R→S (f) = fx, δ R→S (f x) = fx, δ R→S (l * x) = lx and δ R→S (l) = lx. The fact that T is an extension of R can be certified by the surjective function δ T→R (•) such that δ T→R (f *) = f , δ T→R (f * x) = f x , δ T→T (l * x) = l x and δ T→R (l *) = l .

Computing the connected pathwidth

A (connected) path-decomposition

P = A 1 , . . . , A of a graph G is nice if |A 1 | = 1 and ∀i ∈ [p], |A i-1 A i | = 1. A bag A i , for 1 < 1 ≤ , is called an introduce bag if A i A i-1
and a forget bag otherwise. As we will show, connected B-boundaried sequences are combinatorial objects designed in order to encode connected path-decompositions. Our algorithm is based on two routines. Forget Routine processes the forget bags by performing a projection operation on the B-boundaried sequences associated to those bags, while Insertion Routine handles the insertion bags by performing an insertion operation in the associated boundaried sequences. It is worth to observe that cc(s j) is, in general, not a partition of A j (see Figure 3). Also, notice that if G j is connected and B ∩ V j = ∅, then cc(s j) = {∅}. Notice that if P is a connected path-decomposition, then S is a connected B-boundaried sequence. that is: if S x is generated from a B-boundaried ∈ D w (G), then rep(S x) belongs to D w (G x). The proofs of completeness and soundness rely both on Lemma 19, and Lemma 20. As for Forget Routine, the time complexity follows from Lemma 10.

Encoding a connected path-decomposition

The dynamic programming algorithm

We are now in position to prove Theorem 1. We are given a nice path-decompositon Q = B 1 , . . . , B q of G of width at most k and for each i ∈ [q], we consider the boundaried graphs G i = (G[V i], B i), where V i = 1≤h≤i B h . We have a way to compute D w (G i+1) from D w (G i), in 2 O(k 2) • n time, using the algorithms of Theorem 23 or Theorem 24 depending on whether B i is an insertion or a forget bag. We next describe the set D w+1 (G 1). For this, we take the representative set Rep w+1 (G 1) that consists for the following four possible connected B 1 -boundaried sequences: S 1 = ({x}, {{x}}, 0) , S 2 = (∅, {∅}, 0), ({x}, {{x}}, 0) , S 3 = (∅, {∅}, 0), ({x}, {{x}}, 0), (∅, {{x}}, 0) , and S 4 = ({x}, {{x}}, 0), (∅, {{x}}, 0) . As already noticed cpw(G) ≤ k if and only if D w+1 (G q) = ∅. This completes proof of the decision version of Theorem 1. In [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF]Section 6] Bodlaender and Kloks explained how to turn their decision algorithm for pathwidth and treewidth to one that is able to construct, in case of a positive answer, the corresponding decomposition. It is straightforward to see that the modification of [START_REF] Hans | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF]Section 6] that transforms the decision algorithm for pathwidth to one that also constructs the corresponding path-decomposition also applies to our algorithm for connected pathwidth. This completes the proof of Theorem 1.

If we now use the result of Fürer [START_REF] Fürer | Faster computation of path-width[END_REF] for constructing a path-decomposition of width at most k in 2 O(k 2) • n time and taking into account that pw(G) ≤ cpw(G), we have the following.

Theorem 25. One may construct an algorithm that, given an n-connected graph G and a non-negative integer k, either outputs a connected path-decomposition of G of width at most k or correctly reports that such a decomposition does not exist in 2 O(k 2) • n time.

Figure 1

 1 Figure 1 A graph G of connected pathwidth 2 with a subgraph of connected pathwidth 3.

Figure 2

 2 Figure 2 The black bullets forms the typical sequence Tseq(α) = 4, 7, 3, 9, 1, 8, 3, 6 of the sequence α = 4,6, 5, 7, 3, 5,7, 9, 4, 6, 3, 1, 4, 7,8, 5, 6, 3,4, 4, 5, 6 of black and gray diamonds.

Figure 3

 3 Figure 3The part si-1, . . . s k of a B-boundaried sequence S for some set B ⊇ {x, y, z}. A bullet • at some index j represents an element of h<j bd(s h). Observe that at index k, x is indeed represented by a black bullet. For the index i, we have bd(si) = {x, y, z}, cc(si) = {{x, y}, {z, •}} and val(si) = 2. At every position j, only named elements belong to bd(sj). The red squares mark the type-1 breakpoints: at position i, element z is new, while at position k, element x is forgotten. The blue diamond at index j marks a type-2 breakpoint which corresponds to the merge of two parts of cc(si+4) into a single part. Finally, the grey bullets type-3 breakpoints corresponding to tips of the integer sequences val(si), . . . val(sj-1) and val(sj), . . . val(s k-1) .

Figure 3

 3 Figure 3 illustrates the notions of B-boundaried sequence and breakpoints. Observe that rep(S) can be computed from the B-boundaried sequence S as in Definition 3 and is uniquely defined. The set of representative B-boundaried sequences of width at most w is defined as Rep w (B) = {rep(S) | S is a B-boundaried sequence of width ≤ w}.

Lemma 9 .

 9 Let S be a B-boundaried sequence. If S * ∈ Ext(S), then model(S *) = model(S).

Lemma 10 .

 10 Let B be a set of size k. Then, |Rep w (B)| = 2 O(k(w+log k) .

Lemma 15 .Lemma 16 .

 1516 Let B be a finite set and B B. If S * is an extension of a B-boundaried sequence S, then S * |B is an extension of S |B . Let B be a finite set and B ⊆ B. If S and T are B-boundaried sequences such that S ≤ T, then S |B ≤ T |B . Using Lemma 15 and Lemma 16, we prove the following: Lemma 17. Let B be a finite set and B ⊆ B. If S and T are B-boundaried sequences such that and S T, then S |B T |B .

Definition 21 (

 21 (G, P)-encoding sequence). Let P = A 1 , . . . , A be a path-decomposition of the boundaried graph G = (G, B). A B-boundaried sequence S = s 1 , . . . , s j , . . . , s is a (G, P)-encoding sequence, if for every j ∈ []:bd(s j) = A j ∩ B: the set of boundary vertices of (G, B) belonging to the bagA j ; cc(s j) = {V (C) ∩ B | C is a connected component of G j };val(s j) = |A j \ B|: the number of non-boundary vertices in the bag A j .

Theorem 24 .

 24 Algorithm 2 computes D w (G x) in 2 O(k(w+log k)) -time, where k = |B|.

2 Preliminaries and definitions 2.1 Basic concepts Sets and near-partitions.

 For an integer , we denote by [] the set {1, . . . , }. Let S be a finite set. A near-partition Q of S is a family of subsets {X 1 , . . . , X k } (with k ≤ |S| + 1) of subsets of S, called blocks, such that i∈[k] X i = S and for every 1

Definition 14 (

 14 Projection). Let S = s 1 , . . . , s i , . . . , s be a B-boundaried sequence. For a subset B ⊆ B, the projection of S onto B is the B -boundaried sequence S |B = s 1|B , . . . , s i|B , . . . , s |B such that for every i ∈ []: bd(s i|B) = bd(s

i) ∩ B ; cc(s i|B) = cc(s i) |B ; val(s i|B) = val(s i) + |bd(s i) \ B |.

E S A

2 0 2 0 64:10 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

For instance, the graph G \ {x, y} from Figure1belongs in Z2.

ESIGMA (ANR-17-CE23-0010). -CE40-0028) and ESIGMA (ANR-17-CE23-0010).

Definition 22. Let G = (G, B) be a connected boundaried graph and S a B-boundaried sequence. We say that S is realizable in G if there is an extension S * of S that is the (G, P)-encoding sequence of some connected path-decomposition P of G.

Let us observe that if a B-boundaried sequence S is realizable, then S is connected. The set of representative B-boundaried sequences of a connected boundaried graph G = (G, B) of width ≤ w is defined as:

To compute the connected pathwidth of a graph, rather than computing Rep w (G), we compute a subset D w (G) ⊆ Rep w (G), called domination set, such that for every representative B-boundaried sequence S ∈ Rep w (G), there exists a representative B-boundaried sequence R ∈ D w (G) where R S. Observe that a connected boundaried graph G = (G, B) has connected pathwidth at most w if and only if D w+1 (G) = ∅.

Forget Routine

Let G = (G, B) be a boundaried graph. If x ∈ B is a boundary vertex, we denote by B x = B \ {x}. We define G x = (G, B x), that is, while the graph G is left unchanged, we remove x from the set of boundary vertices. Forget Routine is described in Algorithm 1. Its correctness is proved in two steps. We first establish the completeness of the algorithm that is: for every connected path-decomposition P of G x , there exists some B-boundaried sequence S ∈ D w (G) such that rep(S |B\{x}) rep(T) where T is the (G x , P)-encoding sequence. For the soundness of the routine we prove that for every B-boundaried sequence S ∈ D w (G), rep(S |B\{x}) ∈ D w (G x) if S |B\{x} is connected. The proofs of completeness and soundness rely both on Lemma 17. The time complexity is dominated by the bound on the number of representatives, given by Lemma 10.

Insertion Routine

Let G = (G, B) be a boundaried graph with G = (V, E). For a subset X ⊆ B, we set

describing Insertion Routine (notations of Figure 5 are used in the pseudo-code). To prove its correctness, we proceed in two steps. We first establish the completeness of the algorithm: for every connected path-decomposition P x of G x , the (G x , P x)-encoding sequence T x is dominated by some B x -boundaried sequence S x that can be computed from a B-boundaried sequence S belonging to D w (G). Then we argue about the soundness of Insertion Routine