
HAL Id: hal-03002722
https://hal.science/hal-03002722v1

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based analysis support for dependable complex
systems in CHESS

Alberto Debiasi, Felicien Ihirwe, Pierluigi Pierini, Silvia Mazzini, Stefano
Tonetta

To cite this version:
Alberto Debiasi, Felicien Ihirwe, Pierluigi Pierini, Silvia Mazzini, Stefano Tonetta. Model-based analy-
sis support for dependable complex systems in CHESS. 9th International Conference on Model-Driven
Engineering and Software Development, Feb 2021, Vienna (Online), Austria. �hal-03002722�

https://hal.science/hal-03002722v1
https://hal.archives-ouvertes.fr


Model-based analysis support for dependable complex systems in CHESS

Felicien Ihirwe1, Silvia Mazzini1, Pierluigi Pierini1, Stefano Tonetta2 and Alberto Debiasi2
1Innovation Technology Service Lab, Intecs Solution Spa, Pisa, Italy

2Embedded Systems Unit, Fondazione Bruno Kessler (FBK), Povo, Italy
{felicien.ihirwe,silvia.mazzini,pierluigi.pierini}@intecs.it, {adebiasi,tonettas}@fbk.eu

Keywords: CHESS, model driven engineering, complex systems, dependability analysis

Abstract: The challenges related to dependable complex systems are heterogeneous and involve different aspects of the
system. On one hand, the decision-making processes need to take into account many options. On the other
hand, the design of the system logical architecture must consider various dependability concerns such as safety,
reliability, and security. Moreover, in case of high-assurance systems, the analysis of such concerns must be
performed with rigorous methods. In this paper, we present the new development of CHESS, a cross-domain,
model-driven, component-based and open-source tool for the development of high-integrity systems. We focus
on the new recently distributed version of CHESS, which supports extended model-based development and
analyses for safety and security concerns. Finally, we present contributions of CHESS to several international
research projects.

1 INTRODUCTION

The ever increasing complexity and dependability
issues of systems in various domains, such as trans-
portation, space, energy, health, and industrial pro-
duction, requires effective design and development
methods. The complexity and heterogeneity of com-
ponents requires modeling approaches that spans dif-
ferent technical disciplines and prove effective in the
end-to-end engineering of the products. This im-
ply taking into account various requirements such as
quality, performance, cost, safety, security, and reli-
ability. Model-based design technologies enable the
user to perform beforehand different assurance related
activities such as physical architecture exploration,
system’s behavioral analysis, early verification, and
validation.

CHESS (Cicchetti et al., 2012) toolset offers a
cross-domain modeling and analysis of high-integrity
systems providing an integrated framework that helps
the modeler (user) to automate different development
phases: from the requirements definition, to the archi-
tectural modeling of the system’s software and hard-
ware, up to its deployment to hardware platform (Ci-
cchetti et al., 2012). CHESS follows a component-
based approach where the user decouple different
functional parts of the system as components that can
be modeled, analyzed, verified, stored, reused indi-
vidually, and be integrated to meet the system’s com-

mon goal. CHESS supports, among other, schedu-
lability and dependability analysis across the entire
projects life cycle. The results of the analysis are
back-propagated to the model itself so that the mod-
eler can review and fine-tune the model to satisfy
real-time and dependability requirements (Puri et al.,
2020).

CHESS recently became a full-fledged open-
source project, hosted by The Eclipse Foundation
(https://www.eclipse.org/chess/). The code is de-
veloped by various contributors following an open-
source approach with public projects for issue track-
ing, code repository branches, and continuous inte-
gration. This paper presents the latest development
of CHESS to address software’s security and safety
analysis of the system exploiting the CHESS error
model to represent faults and attacks. Analysis is
completed by the integration with back-end tools such
as xSAP (Bittner et al., 2016) and Mobius (Court-
ney et al., 2009) for the minimal cut sets analysis and
Monte-Carlo simulation.

We report on various projects that used CHESS to
provide evidence for the assurance of complex sys-
tems and on the functionalities that have been added
for such purpose. So far CHESS has been applied
in domains such as Avionics (Godard and Nelissen,
2016), Automotive (Bressan et al., 2018), Space (Pace
et al., 2014), Telecommunication (Mazzini, 2015),
and Petroleum (Gallina et al., 2014)(Montecchi and

https://www.eclipse.org/chess/


Gallina, 2017).
The rest of the paper is arranged into six sections.

Sections 2 provides an introduction to the CHESS tool
building blocks and methodology, Section 3 presents
the new major features released under CHESS 1.0.0,
Section 4 presents some practical applications on dif-
ferent projects, Section 5 discusses the related work
with respect to CHESS approach. In Section 6 we
present the envisioned future extension on CHESS
and finally Section 7 concludes the paper.

2 CHESS IN A NUTSHELL

The CHESS modeling tool was released under the
Eclipse PolarSys project1 and recently it was moved
from the incubation status to the first major release.
CHESSML is an integrated modelling language pro-
filed from OMG standard languages: UML, SysML
and MARTE under the Papyrus modeling environ-
ment (Papyrus, 2020). Figure 1 shows the high-level
architecture of CHESS infrastructure. Not all the fea-
tures from all the three languages were used, CHESS
only exploits specific subsets of the them that suits
its perspective. There are different tools, plugins, and
languages that were integrated into CHESS to sup-
port model validation, model checking, realtime and
dependability analysis.

Figure 1: CHESS high level structure

In this section, we are going to look at different
core aspects of CHESS methodology, development
features, and implementation mechanisms. We will
also look in depth at different analysis mechanisms
that are being performed in CHESS and how they link
together to enhance system correctness.

1https://projects.eclipse.org/projects/polarsys.chess

2.1 Component-based methodology

CHESSML language supports a component-based
development methodology. Emphasis is given to
separation of concerns between the functional and
the non-functional dimensions, such as safety, secu-
rity, reliability, performance, and robustness (Mazzini
et al., 2015).

In CHESS, components at design level encompass
functional concerns only (i.e., they are devoid of any
constructs pertaining to tasking and specific compu-
tational model). The specification of non-functional
attributes is then used for the automated generation
of the container, enforcing the realization of the non-
functional attributes declared for the component to be
wrapped.

This CHESS component-based approach enforces
two main aspects of modeling: “Compositionality”
and “Composability”. Compositionality implies that
all the properties of the whole system are determined
as the collection of the properties of the constituting
components and its execution environment. Compos-
ability is achieved when the individual components’
properties are preserved from its definition, develop-
ment, and deployment on the target platform (Mazz-
ini et al., 2015). These two component’s properties
are conceived through the whole development process
to support the “composition with guarantee” property,
which in turn, gets verified through analysis results.

The CHESS methodology follows the “Correct-
ness by Construction” practice which enforces (1) the
use of formal and precise tools and notations for the
development and the verification of all product items;
(2) say things only once to avoid contradictions and
repetitions; (3) the design of software components
that are easy to verify, by e.g., using safer language
subsets, and to implement, by using appropriate cod-
ing styles and design patterns. (Panunzio and Var-
danega, 2014).

2.2 Multi-view modeling approach

The CHESS tool provides a set of design views
to uphold the ”separation of concern”, the ”correct-
ness by construction” and the other methodological
principles introduced before. Six main views (re-
quirement, component, system, deployment, analy-
sis and instance views) are defined to support The
CHESS modeling approach. Throughout the develop-
ment process, each view has its own underlined con-
straints that enforce its specific privileges on model
entities and properties that can be manipulated. De-
pending on the current stage of the design process,
CHESS sub-views are adopted to enhance certain de-

https://projects.eclipse.org/projects/polarsys.chess


sign properties or stages of the process. Figure 2
shows the high level architecture of CHESS views and
their inter-relations.

2.2.1 Requirement view

Originally adopted from the SysML requirement
diagram, the requirement view is used to define sys-
tem requirements and track their verification. In
CHESS, requirements are part of the model and play a
central role in the system development life cycle. The
system elements are associated with the technical re-
quirements they satisfy, which are, in turn, traced to
higher-level requirements, up to system-level require-
ments (Mazzini et al., 2015). This association tech-
nique enhances the traceability while evaluating the
correctness and consistency of the modeled system.
In this way, the change’s impact can be better evalu-
ated and faithful model verification evidence can be
provided according to the requirements.

2.2.2 System view

It provides a suitable frame for system-level de-
sign activities. In the System view, the system en-
tities are initially designed into blocks and then hi-
erarchically decomposed. The system view sup-
ports contract-based design and several functional
and dependability analysis. CHESSML inherits from
SysML the specification of the block hierarchies and
their internal decomposition, i.e. a block definition
diagram can describe a system structure by means of
a set of blocks and each block may have its own dedi-
cated internal block diagram describing its sub-blocks
decomposition and interfaces.

2.2.3 Component view

This view is used for software design work and
logic of the intended model. The component view is
composed of two sub-views, Functional View which
is enabled by default, and the Extra-Functional View
which is enabled manually in the tool. The Func-
tional View is used to model system functional spec-
ifications using diagrams such as class, composite
structure, state machine, activity, and sequence di-
agrams. On the other hand, the Extra-Functional
View is used to compose the system’s extra-functional
specifications such as the real-time and dependabil-
ity attributes. Recall that all views have a dedicated
palette depending on their requirements, for instance,
the extra-functional view has no access to the activity
diagram and has the palette with entries exclusively
related to extra-functional concerns.

2.2.4 Deployment view

This view is used to model for software design the
hardware structure of the system and permits the al-
location of their corresponding software component
instances. Through the use of class and composite
structure diagrams, the user can model the type of
deployment on either single or multi-core processor.
In this view, each hardware resource is allocated to
a specific memory partition and can only access and
change its own memory space. Regarding the soft-
ware to hardware resources allocation, all software
components are allocated to cores.

2.2.5 Analysis view

This is used to capture all the activities and di-
agrams related to analysis in CHESS. The analyses
performed in CHESS are real-time analysis, quantita-
tive dependability analysis, failure propagation anal-
ysis, and so on. We will discuss further on analysis in
section 2.3.

2.2.6 Instance view

CHESS provides a dedicated view to visualize and
model the Platform Specific Model (PSM) as a com-
bination of hardware and software instances gener-
ated from the deployment and component views re-
spectively through the composite structure diagrams.
This is a novel approach to facilitate the analysis be-
tween model instances. These instances are automat-
ically generated when the BuildInstance command is
invoked. In the generated instance model each com-
ponent’s property and connector are mapped onto a
dedicated InstanceSpecification.

2.3 Model-based Analysis and
verification

CHESS provides the capability to perform several
kinds of analysis depending on the specific require-
ments (functional, timing, dependability). Many of
these functionalities have been added to the new re-
lease of CHESS and are further explained in the next
section.

Functional Verification by means of model
checking is supported by the integrated nuXmv model
checker (Cavada et al., 2014). System and component
properties, derived from requirements, can be formal-
ized into linear temporal logic properties, then they
can be verified on top of the system’s or component’s
behavioral models developed using state machines.



Figure 2: CHESS views architecture,

Contract-Based Analysis is built on top of the
OCRA tool support (Cimatti et al., 2013). Compo-
nent formal properties are structured in terms of con-
tracts, comprised of an assumption and a guarantee
pairs. The assumption is a restriction on the com-
ponent’s environment or usage, and the guarantee is
a property that must be satisfied by the component -
provided that the environment satisfies the assump-
tion (Mazzini et al., 2016).

Timing Analysis is built on top of the MAST2

analysis tool. It is invoked to perform analysis such
as schedulability and end-to-end response time analy-
sis. Schedulability analysis is performed by taking in-
put from the annotated PSM model and the computed
partition schedule on each available processing unit.
Then, the response-time analysis calculates the worst-
case response time of each task(Godard and Nelissen,
2016) assessing the schedulable tasks complying with
the given timing constraints. The end-to-end analysis
is done by utilizing the component sequence diagram.
Applying MARTE timing stereotypes, the tool evalu-
ates the hardware component’s responsiveness. This
analysis facilitates “early end-to-end response time

2https://mast.unican.es/

verification”, giving a sense of any possible refine-
ment of the model before deployment (Mazzini et al.,
2015).

Model validation exploits several types of meth-
ods to assess the software system on its target plat-
form. We can mention: (1) Model core constraints
validation is performed to enforce the CHESS model
constraints including specific preconditions as re-
quired by the schedulability analysis. (2) Validate
model for state-based analysis, (3) Validate model
for model checking, (4) Validate model for criticality
specification and finally (5) Validate model for Auto-
motive 26262 compliance (only specific for automo-
tive domain) checks the system correctness of Auto-
motive Safety Integrity Level(ASIL) inheritance and
decomposition according to the ISO 26262 standard.

3 NEW SYSTEM-LEVEL
ANALYSIS SUPPORT

In this section, we present the new major fea-
tures released in CHESS 1.0.0. The new release in-
cludes the extension support for system-level safety

https://mast.unican.es/


and security analysis. CHESSML dependability pro-
file which normally supports different techniques for
safety and dependability analysis has been extended
to model fault injection and threats. Other new fea-
tures include contract validations, parameter-based
architectures, and document generation. This new
release can be accessed at https://www.eclipse.org/
chess/

3.1 Fault Injection and Model-Based
Safety Analysis with xSAP

The new release supports the conduct of Fault
Tree Analysis (FTA) and Fault Mode Effect Analy-
sis (FMEA). FTA is a deductive technique for identi-
fying, evaluating, and modeling the interrelationship
between events leading to a failure or an undesired
state. FMEA is a highly structured approach through
which all potential failure modes of a system and their
effects can be identified, evaluated, and prioritized
(Bozzano and Villafiorita, 2013).

Once the system model is defined in CHESS,
through components definition and their nominal
behavioral model, the faulty behavior is expressed
through a specific state machine called ”Error
Model”. The Error Model extends the nominal state
machine with information about the effect upon a
property of the component, and consequently on its
nominal behavior. The next figure represents an ex-
ample of an error model that, in case of an inter-
nal fault, moves the related component in an error
state where the property ”energy” is stuck at 0 value.
The optional probability assigned to that transition is
5x10−2. Once the error model is defined, the FTA or

Figure 3: State machine modeling faulty behavior

FMEA can be done by invoking the xSAP symbolic
model checker through the CHESS environment.

The xSAP approach is based on the library-based
fault injection (i.e., an extension of a behavioral
model with the definition of faults taken from a li-
brary of faults) and the use of model-based routines
to generate safety artifacts.

The result of the FTA is the fault tree that is au-
tomatically shown in a dedicated panel in the front-

end; see Figure 3 for an example. If fault probabil-
ities have been specified during the configuration of
the error model, the fault tree will report their com-
bination. The fault tree can be examined for the
minimal cut-set, identifying the basic fault conditions
which can lead to the top-level failure. This is ad-

Figure 4: A fault tree visualized in the CHESS Editor View;
note the probabilities associated to the top and basic events

ditional to the already existing analysis techniques
in CHESS such as Failure Logic Analysis (CHESS-
FLA) (Gallina et al., 2014) and State Based Quantita-
tive Dependability Analysis (CHESS-SBA) (Montec-
chi et al., 2013).

3.2 Reliability Analysis with Mobius

Möbius3 is a software tool for modeling the be-
havior of complex systems, by allowing the study
of the reliability, availability, security, and perfor-
mance for large-scale discrete-event systems (Court-
ney et al., 2009). Many reliability analysis results
can be obtained with probabilistic models built with
Mobius using the stochastic activity networks (SAN)
formalism, solved via Monte-Carlo simulation4. The
CHESS profile for dependability is used to enrich
functional models of the system with information re-
garding the behavior with respect to faults and fail-
ures, thus allowing properties like reliability, avail-
ability, and safety to be documented and analyzed.

The new release supports the modeling of secu-
rity concerns which helps in threat identification at

3https://www.mobius.illinois.edu/
4https://www.investopedia.com/terms/m/

montecarlosimulation.asp

https://www.eclipse.org/chess/
https://www.eclipse.org/chess/
https://www.mobius.illinois.edu/
https://www.investopedia.com/terms/m/montecarlosimulation.asp
https://www.investopedia.com/terms/m/montecarlosimulation.asp


the early stages of the development and facilitates the
exploiting of the Mobius capabilities for analysis of
reliability. Specific extensions are related to the mod-
elling of Cyber-Attacks aspects and models transfor-
mations from CHESS to the Mobius tool to run the
analysis of SANs.

As a results the implemented a methodology al-
lows modeling of a system security threat and a data
corruption threat, which may result in a service cor-
ruption. An example of a system security threat can
be a cyber-security attack, i.e. an unauthorized access
of the system, halting services. Figure 5 depict the

Figure 5: Process of Security breach

process of a security breach that leads to the viola-
tion of the security-related properties. A threat event,
initiated by a threat source agent, able to exploit a
vulnerability of an asset (e.g. a component/system)
may result in a loss to the confidentiality, integrity,
and/or availability of the asset. Vulnerabilities could
be represented as a pre-defined enumeration collected
through different sources (e.g. personal competence,
standards, results of previous threat analysis, etc.). Fi-
nally, the consequences could be modeled using pre-
defined effects, which refers to the loss of Confiden-
tiality, Integrity and Availability (CIA).

Figure 6: Erroneous state transition due to security threat
event and vulnerability

An <<ErrorModel>>-tagged state machine is
used when modeling the security breach. The fail-
ure, internal fault, and effect are extended to include
security threats, vulnerability, and consequences re-
spectively. Figure 6 illustrates an example of an error
model, where a cyber-security attack initiates a data
corruption threat. The vulnerability was modeled ex-
ploiting the value check function which is set to false.
In this case, the system transits to an erroneous state

leading to component failure. Note that a component
could have multiple instances of <<ErrorModel>>-
tagged state machines, attached to it. Each instance
would provide the elaboration of input/output failure
behavior addressing a specific concern.

The generation of the Mobius SAN model pro-
cess is done by performing an automatic model-to-
model transformation from a model instance to the
SAN model recognized by Mobius for reliability anal-
ysis.

The new release facilitates the exploiting of the
Mobius analysis capabilities for safety and security
co-engineering needs, according to the scenario ad-
dressed envisaged in (Popov, 2017). Editing Mobius
models cannot be trivial. To this purpose we have ex-
tended the CHESS profile and therefore the CHESS
modelling language capabilities and user-friendly ed-
itor as front-end to fully support the modelling of sys-
tem architectures taking in consideration safety and
security co-engineering, and using automatic trans-
formations to SAN model for reliability analysis with
MOBIUS. This approach provides a smooth inte-
gration, guarantees the consistency among SysML
and SAN models, and drastically reduce the effort
required to construct an appropriate SAN analysis
model.

This extension has been developed in the context
of the AQUAS project, as result of a collaborative ef-
fort among Intecs and City University of London, and
applied across different use cases, in the ATM and In-
dustrial Drive domain.

3.3 Improved support for
contract-based design analysis and
model checking

In the contract-based paradigm, the properties of
each component may be restricted to its interfaces.
The contracts are pairs of properties representing an
assumption and a guarantee of the component. In ad-
dition, CHESS tool supports the contract refinement
analysis for composite components. The contract of
a composite component is defined by the assumption
of the composite component itself and the guarantee
ensured by the contracts of its sub-components, con-
sidering their interconnection as described by the ar-
chitecture and and that the assumption of each sub-
component is ensured by the contracts of the other
sibling sub-components.

The new CHESS release has improved the
contract-based analysis aspects by integrating CHESS
with V&V tools such as OCRA, nuXmv, and xSAP.
In this regard, the new additional analysis includes:

(1) Model checking, i.e. the behavioral models,



that describe how the internal state of a component
and the output ports are updated, can be verified
against some formal properties in different temporal
logics. The formal properties can represent some re-
quirements (e.g., functional or safety-related require-
ments) or some validation queries such as the reacha-
bility of states.

(2) Contract-based compositional verification of
state machines is performed on composite com-
ponents. The local state machine of each sub-
component is verified separately against its local con-
tract. The correctness of the composite component
is implicitly derived by the correctness of the con-
tract refinement and the successful verification of lo-
cal state machines.

(3) Contract-based safety analysis, i.e. identify
the component failures as the failure of its implemen-
tation in satisfying the contract. When the component
is composite, its failures can be caused by a failure
of one or more sub-components and/or a failure of
the environment in satisfying the assumption. As re-
sult, the analysis produces a fault tree in which each
intermediate event represents the failure of a compo-
nent or its environment, linked to a Boolean combina-
tion of other nodes. The top-level event is the failure
of the system component. The basic events are the
failures of the leaf sub-components, in addition to the
failure of the environment (see (Bozzano et al., 2014)
for more details).

3.4 Support for parameterized
architecture and trade-off analysis

In a parameterized architecture the number of
components, the number of ports, the connections,
and the static attributes of components depends on
a (possibly infinite) set of parameters. In the new
release, it is possible to define a parameterized ar-
chitecture, setting the multiplicity of FlowPorts and
sub-components to express a list of elements with the
same type. This can be very helpful when model-
ing a system with a large number of similar nodes.
The modeling of the parameterized architecture is fol-
lowed by its instantiation. In this phase the user sets
the values of the parameters, defining the configu-
ration of the architecture. OCRA takes in input the
parameterized architecture and one or more configu-
rations. Then, OCRA produces the instances of the
architecture, and for each of them, performs a list
of contract-based verifications. The output is the re-
sult derived from the contract-based verifications de-
scribed in Section3.3.

This new release also supports Tradeoff analysis
which allows to execute a certain check such as safety,

security, performance analysis on selected configura-
tions (instances) and get the results in a view that sim-
plifies the comparison between them. This makes it
easy to visually get an idea of how the intended model
instances perform with respect to the selected config-
urations. Figure 7 shows the sample result of a trade-

Figure 7: Trade-off Analysis results sample

off analysis made on two instances by looking at dif-
ferent concerns specified by the assumption/guarantee
formal properties of each contract.

3.5 Automatic generation of diagrams
and documentation

The traditional way of editing a model is by
adding an element in a diagram but changes made
in the model are not reflected in the diagrams. The
new CHESS release offers the possibility of generat-
ing a diagram from the model which reflects the data
in the model on the fly. The supported diagrams are
Block Definition Diagram(BDD) and Internal Block
diagram(IBD). Multiple diagrams can be generated
on a single component in the model. The generated
diagram elements will be automatically aligned but
the user can rearrange by moving elements manually
or by invoking “layout selection command.”

The new release also supports the generation of
the model architecture and the report on various anal-
yses executed on the model in an HTML document or
a LaTeX source code. The report is divided into two
sections. The first describes the structure of the model
which includes diagrams and the associated compo-
nents while the second includes the report lists of the
results of the validation and verification (V&V) anal-
yses results. There are many types of V&V results
such as property validation, assume/guarantee prop-
erties results, contract checks results, model checking,
FTA, FMEA, and so on. Figure 8 gives the sample of
the report page that can be generated by the tool.

4 CHESS TOOL IN PRACTICE

Throughout different phases of extending CHESS,
CHESS was involved in many projects, research com-
munities, and academies. CHESS has been used
for teaching and extending it for research purposes.
CHESS has conducted more than 10 international



Figure 8: Generated report sample

recognized research and development projects in the
frame of 8 years5. Following we list a brief extent on
the projects through which the CHESS tool played a
major role.

4.1 ARTEMIS JU-CHESS

ARTEMIS JU-CHESS6 is the originating project
that developed the CHESS tool. The project aimed
to improve model-driven engineering practices and
technologies to better address safety, reliability, per-
formance, robustness, and other non-functional con-
cerns. This was achieved while guaranteeing the cor-
rectness and composition of components under de-
velopment in the embedded systems domain. From
this point, the various project was initiated to extend
CHESS to a new level by adding more functionalities
and incorporate other domains.

4.2 CONCERTO

CONCERTO7 project aimed to deliver a reference
multi-domain architectural framework for complex,
highly concurrent, and multi-core systems, where
non-functional properties (including real-time, de-
pendability, and energy management) was established

5https://projects.eclipse.org/projects/polarsys.chess/
releases/1.0.0/review

6http://www.chess-project.org/
7http://www.concerto-project.org/

Figure 9: The main workflow supported by CHESS in
AMASS

for individual components. CONCERTO framework
was built on top of the CHESS framework developed
in 4.1, as well as the results of several other related
projects. The project enforced the modeling of multi-
core processors among the possible target platforms,
with the same level of correctness and guarantees as
for traditional single-core processor targets (Baracchi
et al., 2016).

4.3 AMASS

AMASS8 (Architecture-driven, Multi-concern
and Seamless Assurance and Certification of Cyber-
Physical Systems) project aim was to create and con-
solidate the de-facto European-wide open tool plat-
form, ecosystem, and self-sustainable community for
assurance and certification of Cyber-Physical Sys-
tems (CPS) in the largest industrial vertical mar-
kets (Alaña and Herrero, 2018). In this project,
CHESS played a role in system architecture modeling
assurance, patterns library management assurances,
contract-based assurances, and verification and val-
idation (V&V) based assurances through its exten-
sion with some tools such as OCRA, nuXmv, and
xSAP. For future consultation, the contributor offers
free training accessible at https://www.amass-ecsel.
eu/content/training which includes video tutorials and
documentation. Figure 9 shows the main workflow
supported by CHESS in the context of AMASS. The
workflow included the definition of the system and
their formal requirements, the functional refinement
of the system, the definition of the nominal and faulty
behaviors, and finally, the safety analysis.

8https://www.amass-ecsel.eu/

https://projects.eclipse.org/projects/polarsys.chess/releases/1.0.0/review
https://projects.eclipse.org/projects/polarsys.chess/releases/1.0.0/review
http://www.chess-project.org/
http://www.concerto-project.org/
https://www.amass-ecsel.eu/content/training
https://www.amass-ecsel.eu/content/training
https://www.amass-ecsel.eu/


4.4 AQUAS

AQUAS9(Aggregated Quality Assurance in Sys-
tems) project aims was to improve on how the non-
functional requirements of safety, security, perfor-
mance (SSP) are dealt with during the product life
cycle for embedded computer systems. AQUAS ap-
proach was based on two main principles. First, apply
the methods for combined analyses of project artifacts
from the viewpoints of safety, security, performance.
Second, limit the overhead cost of these combined
analyses by only applying them at a limited number
of points in the product life-cycle, called interaction
points (Popov et al., 2020).

The main CHESS’s contribution to the project was
to support the modeling of the software architecture of
the several use cases. CHESS was used to enrich the
system and software architecture model with informa-
tion related to safety, security and performance co-
engineering, and support of automated toolchains and
traceability for combined analysis among the prod-
uct. In particular, the tool was used to perform per-
formance analysis and support dependability analy-
ses with SANs, exploiting new capabilities presented
in section 3.2.

4.5 SESAMO

SESAMO10 project aimed to develop a methodol-
ogy to reduce interdependencies between safety and
security mechanisms. This was achieved by con-
structing a tool-chain that uses the constructive ele-
ments and integrated analysis procedures to ensure
the safety and security characteristics of the sys-
tem are maintained. The CHESS contribution to the
project was (1) the introduction of the concept of
components and reusability into the modelling pro-
cess. (2) the definition of safety and security as non-
functional properties, within the CHESS component
model perspective. (3) provide separation of con-
cerns for the modelling of safety and security in a
single model enabling joint verification and analysis
(SESAMO, 2014).

4.6 MEGAMART

MegaM@Rt11 is an open-sourced project with the
ambition to create a framework which incorporate
methods and tools for continuous development and
validation. This project leverages the advantages in
scalable model-based methods to provide benefits in

9https://aquas-project.eu/
10http://sesamo-project.eu/
11https://megamart2-ecsel.eu/

significantly improved productivity, quality, and pre-
dictability of large and complex industrial systems.
Employing its rich model-driven toolchain, CHESS

Figure 10: CHESS fit in MegaM@Rt Tekne case study

served in the design and the development of high-
integrity systems with a focus on non-functional prop-
erties(Afzal et al., 2018). In this project, CHESS
was used in the design and analysis of the Tekne
case study. This was an ultra-wideband (UWB) mo-
bile network technology with a short-range commu-
nication, indoor positioning, and tracking capabilities
(Cruz et al., 2020).

Figure 10 shows the process of modeling the
Tekne case study. In this project, requirement mod-
eling, traceability, contract-based design approach,
component real-time behavior analysis exploit and
demonstrate the CHESS potential. In addition, the
collected run-time logs were analyzed by CHESS to
capture non-functional constraint violations. The re-
sults are back-propagated to the design environment
for further model refinement (Cruz et al., 2020).

5 RELATED WORK

Several commercial tools provide similar func-
tionalities of CHESS. One of the most popular is
Matlab/Simulink(Mathwork, 2020). Although Mat-
lab/Simulink facilitates the modelling and analysis of
complex systems, its simulation efficiency might be
an important disadvantage. Being based on a single
Model of Computation and Communication (MoCC)
is another limitation. CoFluent is another commer-
cial tool extended to model IoT systems (Intel, 2020).
Although supporting more interaction models than
Matlab/Simulink, it is also limited in the way com-

https://aquas-project.eu/
http://sesamo-project.eu/
https://megamart2-ecsel.eu/


ponents may interact among them.
Another tendency is to overcome the UML lacks

in semantic content, required in some application
domains, towards a proliferation of DSLs (Bram-
billa et al., 2012). Among the available DSLs,
UML/MARTE is the standard language for real-time
and embedded systems design, while SysML is the
standard language for system modeling. Several mod-
elling environments like Papyrus (Papyrus, 2020)
support UML/MARTE. Nevertheless, its flexibility
and semantic richness requires the definition of effi-
cient modelling methodologies.

Capella (Capella, 2020) is an open-source com-
prehensive and extensible Eclipse system modelling
tool. It is inspired to the SysML principles and it
supports the ARCADIA methodology that is success-
fully deployed in a wide variety of industrial contexts
(Bonnet et al., 2015). ARCADIA provides architec-
tural descriptions for functional analysis, structural
analysis, interfaces and behavior modeling, structured
in five perspectives according to major system engi-
neering activities and concerns.

COMPASS (Bozzano et al., 2019) supports
model checking, model-based safety, reliability, and
performance analysis and shares with CHESS some
of the tools used as backend for such analyses. Differ-
ently from CHESS, it targets a variant of AADL and
does not support traceability and code generation.

MapleSim12 is a modeling tool for multi-domain
engineering systems built on top of Modelica mod-
eling language (Elmqvist et al., 1998). MapleSim
features an integrated environment in which the sys-
tem equations can be automatically generated and an-
alyzed (Cao and Wu, 2013).

Although we see some approaches able to tackle
modeling challenges, no tool or approach has been
able to fit in our methodology with such analysis and
verification functionalities. Which makes CHESS a
novel approach for implementing component-based
modeling methodology for real-time and dependable
systems by taking care of non-functional properties
and enforces the correctness at all the stages of the
development process.

6 FUTURE WORK

CHESS is a very huge toolset with more sophisti-
cated and powerful functionality to meet user needs.
However, there is still a gap for improvement, to cover
more and more domains such as the Internet of Things
(IoT) in a more concrete way. Note that we are not

12https://www.maplesoft.com/products/maplesim/

concluding that it is not capable to perform some ba-
sic modeling of IoT related scenarios but we aspire
to make it more IoT specific. This extension will fol-
low CHESS’s component-based methodology and it
will also follow already existing modeling approaches
present in CHESS.

The envisioned approach will be achieved by im-
proving the CHESSML metamodel with a set of spe-
cific stereotypes, contracts, communications, and op-
erations profiled for IoT. The new proposed approach
will also take in use of already existing dependabil-
ity analysis infrastructure such as Fault Mode Effect
Analysis, Fault Logic Analysis, Fault Tree Analysis,
and so on. We also plan to export IoT models devel-
oped with CHESS to external consumers. Finally, we
plan to exploit the current CHESS’s code generation
support for Ada language, integrated with the open-
source ThingML framework, for IoT code generation.

7 CONCLUSIONS

Dependable complex system design and devel-
opment present several challenges, the well-known
canonical approach is to divide complex systems into
smaller chunks (or subsystems), build them sepa-
rately, and later integrate them. In this paper, we
presented the current state of the CHESS tool to
tackle design, analysis, and verification of real-time
dependable complex systems. We walked through
the CHESS tool architecture and we highlighted
its component-based and multi-view modeling ap-
proaches. We have also presented the new system-
level extensions and capabilities of the tool released
under the CHESS1.0.0 version. Finally, we intro-
duced the different projects and contributions where
CHESS was used either in the industry and academia
at large and presented the future envisioned extension
strategy.

ACKNOWLEDGEMENTS

This work has received funding from the Low-
comote project under European Union’s Horizon
2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement n813884.
We would like to acknowledge also different
projects funding leading to the mature realization of
CHESS which include the CHESS13, CONCERTO14,

13http://www.chess-project.org/
14http://www.concerto-project.org/

https://www.maplesoft.com/products/maplesim/
http://www.chess-project.org/
http://www.concerto-project.org/


SESAMO15 under ARTEMIS Joint Undertaking ini-
tiative, and AMASS16, and AQUAS17 under EC-
SEL Joint Undertaking initiative. We would like
to acknowledge the main contributors to the devel-
opment of the CHESS toolset, in particular Stefano
Puri, Nicholas Pacini, Luca Cristoforetti and Pietro
Braghieri. Finally, we would like to acknowledge also
Prof. Davide Di Ruscio for the assistance on drafting
this paper.

REFERENCES

Afzal, W., Bruneliere, H., Di Ruscio, D., Sadovykh,
A., Mazzini, S., Cariou, E., Truscan, D., Cabot,
J., Gómez, A., Gorroñogoitia, J., Pomante, L., and
Smrz, P. (2018). The MegaM@Rt2 ECSEL project:
MegaModelling at Runtime – Scalable model-based
framework for continuous development and run-
time validation of complex systems. Microproces-
sors and Microsystems: Embedded Hardware Design
(MICPRO), 61:86 – 95.

Alaña, E. and Herrero, J. (2018). Design and safety as-
sessment of on-board software applications using the
amass platform. In EUROSPACE DASIA 2018.

Baracchi, L., Mazzini, S., Puri, S., and Vardanega,
T. (2016). Lessons learned in a journey toward
correct-by-construction model-based development. In
Bertogna, M., Pinho, L. M., and Quiñones, E., ed-
itors, Reliable Software Technologies – Ada-Europe
2016, pages 113–128, Cham. Springer International
Publishing.

Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario,
M., Griggio, A., Mattarei, C., Micheli, A., and
Zampedri, G. (2016). The xSAP Safety Analysis Plat-
form. In Chechik, M. and Raskin, J., editors, Tools
and Algorithms for the Construction and Analysis
of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Pro-
ceedings, volume 9636 of Lecture Notes in Computer
Science, pages 533–539. Springer.

Bonnet, S., Voirin, J.-L., Normand, V., and Exertier, D.
(2015). Implementing the mbse cultural change: Or-
ganization, coaching and lessons learned. INCOSE
International Symposium, 25(1):508–523.

Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J., Noll,
T., and Tonetta, S. (2019). COMPASS 3.0. In Vojnar,
T. and Zhang, L., editors, Tools and Algorithms for the
Construction and Analysis of Systems - 25th Interna-
tional Conference, TACAS 2019, Held as Part of the
European Joint Conferences on Theory and Practice
of Software, ETAPS 2019, Prague, Czech Republic,
April 6-11, 2019, Proceedings, Part I, volume 11427

15http://sesamo-project.eu/
16https://www.amass-ecsel.eu/
17https://aquas-project.eu/

of Lecture Notes in Computer Science, pages 379–
385. Springer.

Bozzano, M., Cimatti, A., Mattarei, C., and Tonetta, S.
(2014). Formal safety assessment via contract-based
design. In International Symposium on Automated
Technology for Verification and Analysis, pages 81–
97. Springer.

Bozzano, M. and Villafiorita, A. (2013). Safety critical sys-
tems. In Encyclopedia of Software Engineering. CRC
Press (Taylor & Francis Group).

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
Driven Software Engineering in Practice, volume 1.

Bressan, L., de Oliveira, A. L., Montecchi, L., and Gallina,
B. (2018). A systematic process for applying the chess
methodology in the creation of certifiable evidence. In
2018 14th European Dependable Computing Confer-
ence (EDCC), pages 49–56.

Cao, J. M. and Wu, T. (2013). Multi-domain modeling
simulation and application based on maplesim. In
Mechatronics and Intelligent Materials III, volume
706 of Advanced Materials Research, pages 1894–
1897. Trans Tech Publications Ltd.

Capella (2020). An open source solution for model-based
systems engineering. Last Accessed: July 2020.

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mar-
iotti, A., Micheli, A., Mover, S., Roveri, M., and
Tonetta, S. (2014). The nuXmv Symbolic Model
Checker. In Biere, A. and Bloem, R., editors, Com-
puter Aided Verification - 26th International Confer-
ence, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, volume 8559 of Lecture Notes in Com-
puter Science, pages 334–342. Springer.

Cicchetti, A., Ciccozzi, F., Mazzini, S., Puri, S., Panunzio,
M., Zovi, A., and Vardanega, T. (2012). CHESS: a
model-driven engineering tool environment for aid-
ing the development of complex industrial systems.
In 2012 Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 362–365.

Cimatti, A., Dorigatti, M., and Tonetta, S. (2013). OCRA:
A tool for checking the refinement of temporal con-
tracts. In Denney, E., Bultan, T., and Zeller, A., edi-
tors, 2013 28th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2013, Sil-
icon Valley, CA, USA, November 11-15, 2013, pages
702–705. IEEE.

Courtney, T., Gaonkar, S., Keefe, K., Rozier, E. W. D., and
Sanders, W. H. (2009). Möbius 2.3: An extensible
tool for dependability, security, and performance eval-
uation of large and complex system models. In 2009
IEEE/IFIP International Conference on Dependable
Systems Networks, pages 353–358.

Cruz, J. G., Sadovykh, A., Truscan, D., Bruneliere, H.,
Pierini, P., and Muñiz, L. L. (2020). Megam@rt2 eu
project: Open source tools for mega-modelling at run-
time of cpss. In Ivanov, V., Kruglov, A., Masyagin, S.,
Sillitti, A., and Succi, G., editors, Open Source Sys-
tems, pages 183–189, Cham. Springer International
Publishing.

http://sesamo-project.eu/
https://www.amass-ecsel.eu/
https://aquas-project.eu/


Elmqvist, H., Mattsson, S. E., and Otter, M. (June, 1998).
Modelica- the new object oriented modeling language.
The 12th European Simulation Multiconference.

Gallina, B., Sefer, E., and Refsdal, A. (2014). To-
wards safety risk assessment of socio-technical sys-
tems via failure logic analysis. In 2014 IEEE Interna-
tional Symposium on Software Reliability Engineering
Workshops, pages 287–292.

Gallina, B., Sefer, E., and Refsdal, A. (2014). Towards
safety risk assessment of socio-technical systems via
failure logic analysis. In Proceedings of the 2014
IEEE International Symposium on Software Reliabil-
ity Engineering Workshops, pages 287–292.

Godard, W. and Nelissen, G. (2016). Model-based design
and schedulability analysis for avionic applications on
multicore platforms. 37:157–163.

Intel, C. (2020). Solution for simulation and modeling of
systems. Last Accessed: July 2020.

Mathwork (2020). Simulation and model-based design.
Last Accessed: July 2020.

Mazzini, S. (2015). The concerto project: An open source
methodology for designing, deploying, and operat-
ing reliable and safe cps systems. Ada User Journal,
36:264–267.

Mazzini, S., Favaro, J., and Baracchi, L. (2015). A model-
based approach across the IoT lifecycle for scalable
and distributed smart applications. In 2015 IEEE 18th
International Conference on Intelligent Transporta-
tion Systems, pages 149–154.

Mazzini, S., Favaro, J. M., Puri, S., and Baracchi, L.
(2016). CHESS: an open source methodology and
toolset for the development of critical systems. In
EduSymp/OSS4MDE@MoDELS.

Montecchi, L. and Gallina, B. (2017). Safeconcert: A
metamodel for a concerted safety modeling of socio-
technical systems. In Bozzano, M. and Papadopou-
los, Y., editors, Model-Based Safety and Assessment,
pages 129–144, Cham. Springer International Pub-
lishing.

Montecchi, L., Lollini, P., and Bondavalli, A. (2013).
A reusable modular toolchain for automated de-
pendability evaluation. In Proceedings of the 7th
International Conference on Performance Evalua-
tion Methodologies and Tools, ValueTools ’13, page
298–303, Brussels, BEL. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommuni-
cations Engineering).

Pace, L., Pasquinelli, M., Gerbaz, D., Fuchs, J., Basso,
V., Mazzini, S., Baracchi, L., Puri, S., Lassalle, M.,
and Viitaniemi, J. (2014). Model-based approach for
the verification enhancement across the lifecycle of a
space system. In INCOSE Italian Chapter Conference
on Systems Engineering (CIISE2014).

Panunzio, M. and Vardanega, T. (2014). A component-
based process with separation of concerns for the de-
velopment of embedded real-time software systems.
Journal of Systems and Software, 96:105 – 121.

Papyrus (2020). Eclipse papyrus modeling environment.
Last Accessed: July 2020.

Popov, P. (2017). Models of reliability of fault-tolerant soft-
ware under cyber-attacks. In 2017 IEEE 28th Interna-
tional Symposium on Software Reliability Engineering
(ISSRE), pages 228–239.

Popov, P., Strigini, L., Hunt, S., and et al (2020). Deliver-
able 3.3: Combined analysis of safety, security and
performance. Technical report, City, University of
London and AQUAS team.

Puri, S., Mazzini, S., and Pachini, N. (May 2020). CHESS
toolset user guide, toolset release 1.0.0.

SESAMO, T. (2014). D4.2 – Integrated Design and Evalu-
ation Methodology Version 01.


