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«Een mens zijn zin
is een mens zijn leven.»

Abstract. In parameterized complexity, a kernelization algorithm can
be seen as a reduction of a parameterized problem to itself, so that the
produced equivalent instance has size depending exclusively on the pa-
rameter. If this size is polynomial, then then we say that the parameter-
ized problem in question admits a polynomial kernelization algorithm.
Kernelization can be seen as a formalization of the notion of preprocess-
ing and has occupied a big part of the research on Multi-variate Algorith-
mics. The first algorithmic meta-theorem on kernelization appeared in
[H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh,
and D. M. Thilikos. (Meta) kernelization. J. ACM, 63(5):44:1–44:69,
2016 ] and unified a large family of previously known kernelization results
on problems defined on topologically embeddable graphs. In this exposi-
tion we present the central results of this paper. During our presentation
we pay attention to the abstractions on which the results where founded
and take into account the subsequent advancements on this topic.

Keywords: Parameterized problems · Parameterized Algorithms · Kerneliza-
tion Algorithms · Algorithmic Meta-theorems Finite Index · Finite Integer In-
dex · Monadic Second Order Logic · Treewidth · Protrusion Decompositions,
Bidimensionality · Separability.

1 Introduction

Parametrized complexity, introduced by Downey and Fellows in early 90’s
[1,36–39], has nowadays evolved to a mature field of Theoretical Computer Sci-
ence (see [25,35,40,45,83] for related textbooks). The key idea is to treat compu-
tational problems as bivariate entities where, apart from the size of the input, the
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17-CE23-0010) and by the Research Council of Norway and the French Ministry of
Europe and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.
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algorithm complexity is evaluated with respect to some parameter that quanti-
fies structural properties of the input. This approach is justified by the fact that,
for many computational problems, the inherent combinatorial explosion of their
complexity depends exclusively by the parameter, whose value is expected to
be small in certain applications. In this framework we deal with parameterized
problems whose instances are pairs (x, k) ∈ Σ∗ × N and we look for algorithms
whose running time is exponential in the parameter k but polynomial in the
input size n = |x|. In other words, we are aiming for algorithms that run in time
f(k) ·nc where f is a function depending only on the parameter and where c is a
constant. The parameterized problems for which such algorithms exist constitute
the parameterized complexity class FPT. In their foundational work [1, 36–39],
Downey and Fellows invented a series of parameterized complexity classes and
proposed special types of reductions such that hardness for some of the above
classes gives plausible evidence that a problem does not belong to FPT.

Kernelization is a prominent field of parameterized complexity that has rapidly
developed during the last two decades (see [57] for a recent textbook). A ker-
nelization algorithm (or simply a kernelization) is a polynomial time algorithm
that transforms every instance (x, k) of a parameterized problem to an equiv-
alent one (x′, k′), whose size depends exclusively on the parameter. We refer
to the size of (x′, k′), measured as a function of k, as the size of the kernel-
ization. Kernelization algorithms can be seen as preprocessing procedures with
performance guarantee. For this reason, kernelization has been considered as an
attempt to mathematically formalize the concept of preprocessing. Clearly, the
size of a kernelization is important as it evaluates how good is the preprocessing
that it achieves.

It is known that every every decidable parameterized problem parameterized
problem in FPT admits a kernelization and vice versa. However, it is not always
the case that a problem in FPT admits a polynomial size kernelization. The
running challenge is to distinguish which problems in FPT admit polynomial size
kernelizations and, if this is the case, to optimize the corresponding size function.
In this direction, diverse algorithmic techniques have been invented (see [41,57])
while, on the negative side, new complexity theory tools have been introduced
for proving that polynomial size kernelization would imply some unexpected
collapse in classic computational complexity [11,27] (see also [57]).

Algorithmic meta-theorems can be seen as theoretical results providing gen-
eral conditions that, when satisfied, automatically imply the existence of efficient
algorithms for wide families of problems. The term “Algorithmic Meta-Theorem”
was introduced by Martin Grohe in his seminal exposition in [65] (see also [79]
and [67]). Typically the conditions of such results have a logical part, concerning
the descriptive complexity of the problem, and a combinatorial part that con-
cerns the inputs of the problem. Algorithmic meta-theorems reveal interesting
relations between logic and combinatorial structures and yield a better under-
standing of the nature of general algorithmic techniques.

Many known algorithmic meta-theorems have been stated using the multi-
variate framework of parameterized complexity. This is due to the fact that the
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concept of problem parameterization may serve as a way to formalize the im-
posed structural restrictions. The most classic example of an Algorithmic Meta-
theorem leading to a massive classification of parameterized problems in FPT is
the celebrated Courcelle’s theorem [21,23]: Checking graph properties definable
in Counting Monadic Second Order Logic (CMSO), when parameterized by the
treewidth of the input graph, belongs in FPT (see subsection 2.3 for the formal
definition of treewidth). For other algorithmic meta-theorems permitting the
classification of parameterized problems in FPT and containing different trade-
offs between the logical part and the combinatorial part, see [26,58,81].

The purpose of this exposition is to present the main algorithmic meta-theorems
on kernelization for problems on graphs. The first results of this kind appeared
in [14] and they essentially initiated the research on meta-algorithmic for ker-
nelization (see also [8] for an earlier version). The results in [14] subsumed
several previous results on kernelization for problems on planar graphs such
as [3, 4, 15, 16, 18, 19, 62, 69, 70, 75, 80, 82]. Moreover, the algorithmic techniques
in [14] introduced new concepts and tools that were of use in later investi-
gations [42, 54, 55, 59–61, 74, 76, 77, 87]. Subsequently, several results appeared
in [54, 55] that extended the original theorems from [14] or applied the ideas
of [14] in different combinatorial settings (see e.g., [56, 59,61,63,74,77,87]).

We provide a description of the main ideas of [14], taking into account all
the improvements and generalizations known up to now [49, 50, 54, 55, 76]. We
present two main algorithmic meta-theorems on kernels for problems on graphs
that can be seen as abstract versions of the results in [14]. We also give sketches
of some of the proofs in order to expose the core ideas, as they were originally
conceived in [14]. Our exposition is self-contained and pays special attention to
“mathematical formalism” and “details”. In fact we provide an alternative to the
formalism of [14] (mostly inspired by [54,55]) that is versatile enough so to form
the base of further investigations on this topic.

2 Definitions

We use Z for the set of integers and N for the set of non-negative integers. Given
some ` ∈ N, we denote [`] = {1, . . . , `}. We also use R>0 for the set of all positive
reals. Consider a tuple t = (x1, . . . , x`) ∈ N` and two functions χ, ψ : N → N.
Given a function f : A → B, we also assume its set-extension f : 2A → 2B so
that for every X ∈ 2A, it holds f(X) =

⋃
x∈X f(x).

We write χ(n) = Ot(ψ(n)) in order to denote that there exists a function
φ : N` → N such that χ(n) = O(φ(t) · ψ(n)). Also, given a function f : N → N
and a tuple t = (x1, . . . , x`) ∈ N`, we write χ(n) = Of,t(ψ(n)) in order to denote
that there exists a function φ : N→ N such that χ(n) = O(φ(f(t)) · ψ(n)).

All graphs that we consider are simple, finite, and undirected. Given a graph
G, we denote by V (G) and E(G) the set of its vertices and edges respectively.
The size of a graph G is the number of its vertices and is denoted by |G|.
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2.1 Parameterized problems on graphs.

We start by giving the definitions of a series of algorithmic concepts.

A parameterized problem is any subset Π of the set Σ∗×N where Σ is some
alphabet with at least two symbols. If (x, k) ∈ Σ∗×N belongs in Π, then we say
that (x, k) is a yes-instance of Π, otherwise we say that (x, k) is a no-instance
of Π. Given two parameterized problems Π,Π ′ ⊆ Σ∗ × N and two instances
(x, k), (x′, k′) ∈ Σ∗ × N, we say that (x, k) and (x′, k′) are equivalent instances
(of Π and Π ′) if (x, k) ∈ Π ⇐⇒ (x′, k′) ∈ Π ′.

An annotated graph is a pair (G,S) where G is a graph and S ⊆ V (G). We
deal exclusively with parameterized problems either on graphs or on annotated
graphs, therefore we see them as subsets of Gall×N or subsets of Aall×N where
Gall is the set of all graphs and Aall the set of all annotated graphs. From now on,
whenever we present some algorithm on some problem on (annotated) graphs
we evaluate its time complexity in terms of the size of the graph in their input
that we always denote by n.

A subset of Aall is called vertex-subset property.
Given a parameterized problem on graphs Π ⊆ Gall × N and a graph class

G ⊆ Gall, we define the restriction of Π in G by

Π e G = {(G, k) | (G, k) ∈ Π and G ∈ G}.

Annotated graphs. Given a vertex-subset property A ⊆ Aall and some graph
class G ⊆ Gall, we define

A e G = {(G,S) | (G,S) ∈ A ∧G ∈ G}

and we call A e G the restriction of A to G. We define the domain of A as

dom(A) = {G | ∃k ∈ N : (G, k) ∈ A}.

Notice that dom(A e G) ⊆ G.

Problem defining pairs and vertex-subset problems. A pair (A, opt) where A ⊆
Aall and opt ∈ {min,max} is called problem defining pair or, in short, defining
pair. Given a defining pair (A, opt), we define the corresponding vertex-subset
problem as the parameterized problem on graphs

ΠA,opt = {(G, k) | ∃S ⊆ V (G) : |S| ≷ k ∧ (G,S) ∈ A}

where “≷” is interpreted as “≤”, in case opt = min and as “≥”, in case opt = max .
A vertex-subset problem is any parameterized problem on graphs Π such that

Π = ΠA,opt, for some defining pair (A, opt). In particular, we can see a vertex-
subset problem as a problem that is generated by some defining pair (A, opt).

We also define the annotated version of ΠA,opt as follows. If opt = min, then

Πα
A,min = {((G, Y ), k) | ∃S ⊆ Y : |S| ≤ k ∧ (G,S) ∈ A},
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while if opt = max, then

Πα
A,max = {((G, Y ), k) | ∃S ⊆ V (G) : |S ∩ Y | ≥ k ∧ (G,S) ∈ A}.

Clearly, ΠA,opt can be seen as a special case of Πα
A,opt if we consider only the

pairs whose annotated graph is of the form (G,V (G)).

Graph parameters. A graph parameter is any partial function mapping graphs
to non-negative integers. Given a defining pair (A, opt), we define the associated
graph parameter pA,opt : Gall → N so that

pA,opt(G) = opt {k | (G, k) ∈ ΠA,opt} ,

while, if G 6∈ dom(A), then pA,opt(G) is undefined. Notice that dom(A) is the
domain of the graph parameter pA,opt. Also we define the function solA,opt such
that for every G ∈ Gall,

solA,opt(G) = {S | (G,S) ∈ A ∧ |S| = pA,opt(G)}.

Clearly solA,opt(G) 6= ∅ ⇐⇒ G ∈ dom(A). We can see solA,opt(G) as the set of
all optimal solutions for the vertex-subset problem ΠA,opt.

2.2 (Bi)kernelization

Kernelization can be seen as a polynomial reduction of a parameterized prob-
lem to itself. Here we present it as a special case of a more general concept of
reduction called bikernel (see [60,71,72] for earlier uses of this concept).

Let Π1, Π2 ⊆ Σ∗ × N be two parameterized problems. A bikernelization
algorithm (or simply a bikernelization) from Π1 to Π2 is a polynomial-time
computable function A : Σ∗ × N→ Σ∗ × N such that

1. ∀(x, k) ∈ Σ∗ × N (x, k) ∈ Π1 ⇐⇒ A(x, k) ∈ Π2 (i.e., (x, k) and A(x, k) are
equivalent instances of Π1 and Π2 respectively) and

2. there exists a computable function s : N → N such that, for every pair
(x, k) ∈ Σ∗ ×N, it holds that if A(x, k) = (x′, k′), then max{|x′|, k′} ≤ s(k).

Given a parameterized problem Π ⊆ Σ∗×N, we define a kernelization algorithm
(or simply a kernelization) for Π as a bikernelization algorithm from Π to Π.

We call the function s above the size of the (bi-)kernelization A. If s is a
polynomial (resp. linear) function, we say that A is a polynomial-size (resp.
linear-size) (bi-)kernelization from Π1 to Π2. Also we use the term time of a
(bi-)kernelization in order to refer to the time of the (bi-)kernelization algorithm
A. We stress that when x encodes a graph G, then |x| is the encoding size of G.

It is known that every decidable parameterized problem that is in FPT admits
a kernelization and vice versa. However, it is not always the case that there is a
kernelization of polynomial size. As we already mentioned in the introduction,
a central question of parameterized complexity is to distinguish which problems
in FPT have kernelizations of polynomial size and which do not.
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2.3 Graph decompositions

We now provide several combinatorial concepts that will be useful for our proofs,
namely, tree decompositions, protrusion decompositions, and the notion of pro-
trusion decomposability.

Tree decompositions. Let G be a graph. A tree decomposition of G is a pair
D = (T, χ), where T is a tree and χ : V (T )→ 2V (G) such that:

1.
⋃
q∈V (T ) χ(q) = V (G),

2. for every edge {u, v} ∈ E, there is a q ∈ V (T ) such that {u, v} ⊆ χ(q), and
3. for each v ∈ V (G) the set {t | v ∈ χ(t)} induces a connected subgraph of T.

We call the vertices of T nodes of D and the images of χ bags of D. The width of
a tree decomposition D = (T, χ) is max{|χ(q)| | q ∈ V (T )} − 1. The treewidth
of a G is the minimum width over all tree decompositions of G.

Protrusion decompositions. We denote by ∂G(S) the vertices of S that have
neighbors outside S and by NG(S) the neighbours of vertices in S that do not
belong to S.We also st NG[S] = S∪NG(S). Let G be a graph and let R ⊆ V (G).
We say that R is a β-protrusion of G if max{|∂G(R)|, tw(G[R])} ≤ β. An (α, β)-
protrusion-decomposition of a graph G is a partition P = {X0, X1, . . . , X`} of
V (G) such that

1. max{`, |X0|} ≤ α,
2. for every i ∈ [`], the set Ri = NG[Xi] is a β-protrusion of G and
3. for every i ∈ [`], NG(Xi) ⊆ X0.

We call the set X0 the core of the (α, β)-protrusion-decomposition P.We also
call the sets Xi, i ∈ [`] flaps of P. Intuitively, an (α, β)-protrusion-decomposition
of a graph can be seen as a partition into at most α+1 sets where one of them,
the core, has size at most α and each of the rest, the flaps, has treewidth at most
β and has at most β neighbors, all contained in the core.

Protrusion decompositions served as the main combinatorial tool of [14].

Protrusion-decomposability. Given a defining pair (A, opt), a function T : N →
N, and a real constant c > 0, we say that the defining pair (A, opt) is c-protrusion-
decomposable in time T(n), if there exists an algorithm that given a (G, k) ∈
dom(A)×N, either outputs that pA,opt(G) > k or outputs a (c ·k, c)-protrusion-
decomposition of G in time T (n) (recall that by n we always denote the size of
the input graph G). It is important to observe that in the specifications of this
algorithm we demand that its input should contain a graph in the domain of A.

2.4 Boundaried graphs

Let t ∈ N. A t-boundaried graph is a triple G = (G,B, ρ) where G is a graph,
B ⊆ V (G), |B| = t, and ρ : B → [t] is a bijection. We call G underlying graph
of G, B the boundary of G, and we define the size of G, denoted by |G|, as the
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size of G. We say that G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2) are isomorphic
if there is an isomorphism from G1 to G2 that extends the bijection ρ−12 ◦ ρ1.

We call t-boundaried annotated graph the pair (G, S), where G = (G,B, ρ)
and S ⊆ V (G). We say that two t-boundaried annotated graphs (G1, S1) and
(G2, S2) (where G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2)) are compatible if
ρ−12 ◦ ρ1 is an isomorphism from G1[B1] to G2[B2] and ρ(B1 ∩S1) = ρ(B2 ∩S2).
The size of (G, S) is defined to be the size of G.

Given two compatible t-boundaried annotated graphs (G1, S1) and (G2, S2)
where G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2), we define G1 ⊕ G2 as the
annotated graph (G,S) where G is obtained if we take the disjoint union of G1

and G2 and, for every i ∈ [|B1|], we identify vertices ρ−11 (i) and ρ−12 (i) and S
is obtained if we take the union of S1 and S2 and, for each i ∈ ρ(B1 ∩ S1), we
identify the vertex ρ−11 (i) with the vertex ρ−12 (i). We agree that, during vertex
identifications, the vertices of B1 prevail those of B2.

3 Meta-theorems on kernels

3.1 Meta-kernels for subset properties with finite index

Finite index. Let A be a vertex-subset property and t ∈ N. Let also (G1, S1)
and (G2, S2) be two compatible t-boundaried annotated graphs. We say that
(G1, S1) ≡A,t (G2, S2) if for every t-boundaried annotated graph (F, SF ) that
is compatible with (G1, S1), it holds that

(F, SF )⊕ (G1, S1) ∈ A ⇐⇒ (F, SF )⊕ (G2, S2) ∈ A.

It is easy to observe that ≡A,t is an equivalence relation. For every t ∈ N, we
set up a set of representatives repA(t) containing a minimum size t-boundaried
annotated graph from each equivalence class of ≡A,t .

Given an increasing function f : N → N, we say that a subset property A
belongs in FI(f) if for every t ∈ N, f(t) is an upper bound to the size of all the
t-boundaried annotated graphs in repA(t). We say that a subset property A has
finite index if it belongs in FI(f) for some increasing function f : N→ N. Notice
that A has finite index if and only if ≡A,t has a finite number of equivalence
classes, for every t ∈ N. The notion of finite index was central in the proof of
Courcelle’s theorem in [21], see [6, 9, 13,17,20,22,24] for related bibliography.

Our first result, corresponding to Theorem 1.1 of [14], is stated in terms of
bikernelization algorithms.

Theorem 1. Let f : N → N be an increasing function, A ∈ FI(f), opt ∈
{min,max}, and c ∈ R>0. If

1. dom(A) is computable in polynomial time T1(n),
2. (A, opt) is c-protrusion-decomposable in polynomial time T2(n),

then there is a polynomial size bikernelization from ΠA,opt to Πα
A,opt, of size

O(k2), running in polynomial time T1(n) + T2(n) +Of,c(n).
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The main meta-algorithmic consequence of Theorem 1, corresponding to The-
orem 1.2 of [14], is the following.

Theorem 2. Let f : N → N be an increasing function, A ∈ FI(f), opt ∈
{min,max}, and c ∈ R>0. If

1. dom(A) is computable in polynomial time T1(n),
2. (A, opt) is c-protrusion-decomposable in polynomial time T2(n),
3. ΠA,opt is NP-hard, and
4. Πα

A,opt ∈ NP,

then ΠA,opt admits a polynomial size kernelization of size kOf,c(1), running in
polynomial time T1(n) + T2(n) +Of,c(n) + kOf,c(1).

In what follows in this subsection, we give the main steps of the proofs of
Theorem 1 and Theorem 2. A useful ingredient is the following:

Lemma 1. Let f : N → N be an increasing function, A ∈ FI(f), and opt ∈
{min,max}. For every t there exists an algorithm that, given two compatible t-
boundaried annotated graphs (G1, S1) and (G2, S2), outputs a set R ⊆ V (G1)
such that

– (G1, R) and (G1, S1) are compatible,
– (G2, S2)⊕ (G1, R) ∈ A,
– in case opt = min, then R ⊆ S1 and |R| is minimized, and
– in case opt = max, then |S1 ∩R| is maximized,

or reports that such a set R does not exist. Moreover, given that the underlying
graph of (G1, S1)⊕ (G2, S2) is G, this algorithm runs in time Of,tw(G),t(|G|).

The proof of Lemma 1 is based on the fact that there is an algorithm
that, given a vertex-subset property A ∈ FI(f) (for some increasing function
f : N → N) and a graph G, outputs, if exists, a minimum or maximum (de-
pending on the value of opt ∈ {max,min}) size set S where (G,S) ∈ A, in
time Of,tw(G)(|G|). This fact follows by making use of the results from [17, The-
orem 5] for finite index vertex-subset properties, see also [6] and [14, Lemma 5.2].

The first important step towards proving Theorem 1 is the following.

Lemma 2. Let f : N→ N be an increasing function, A ∈ FI(f), opt ∈ {max,min},
and t ∈ N. Then there exists an algorithm that, given an instance ((G, Y ), k) of
Πα
A,opt and a t-protrusion X of G, outputs an equivalent instance ((G, Y ′), k) of

Πα
A,opt, where |Y ′ ∩X| ≤ Of,t(k) and Y ′ ⊆ Y, in time Of,t(|X|).

Proof (Proof (sketch).). We present the proof only for the case where opt = min .
The case where opt = max is similar (but not the same, see [14, Lemma 5.14]).

Let B = ∂G(X) and t′ = |B| ≤ t. We consider the t′-boundaried annotated
graph (X, Z) where X = (G[X], B, ρ) (ρ is some, arbitrarily chosen, bijection
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from ∂G(X) to [t′]) and Z = Y ∩X. Recall that tw(GX) ≤ t. We also consider
the t′-boundaried annotated graph (F, R) where F = (G \ (X \ B), B, ρ) and
R = Y \ (X \B). Clearly, (G, Y ) = (F, R)⊕ (X, Z).

Let now L = (H,W ) ∈ repA(t
′). We apply the algorithm of Lemma 1 on

(H,W ) and (X, Z) and find, if exists, a minimum size set SL ⊆ Z such that
(X, Z) and (X, SL) are compatible and (H,W ) ⊕ (X, SL) ∈ A. If such an SL

does not exist or it has more than k vertices, then we set SL = ∅. We define
Y ′ = R ∪W where

W =
⋃

L∈repA(t)

SL.

Recall that the underlying graph of (H,W )⊕ (X, SL) has at most f(t′) + |X| =
Of(t)(|X|) vertices and that its treewidth is bounded by f(t′)− t′+ tw(G[X]) ≤
f(t) + t. Therefore, according to Lemma 1, each SL can be computed in time
Of,t(|X|). Moreover, as |repA(t′)| = Of,t(1), we conclude that the set Y ′ can be
computed in time Of,t(|X|).

Notice that Y ′ ⊆ Y and that |Y ′∩X| = |W | =
∑

L∈repA(t′) |SL| ≤ |repA(t′)| ·
k = Of,t(k). It also follows that ((G, Y ), k) and ((G, Y ′), k) are equivalent in-
stances of Πα

A,min and this is so because the sets SL have been chosen so to repre-
sent every possible restriction in X of a solution of Πα

A,min on G (see [14, Lemma
5.3] for the complete argumentation).

Lemma 2 is already an important step towards a (bi)kernelization algorithm
as it reduces the set of annotated vertices that can be inside the protrusions to
a linear function of the parameter k. The next step is to “completely eliminate”
the presence of annotated vertices in the “interior”, i.e., X \ ∂G(X), of each flap
X of a protrusion decomposition of the input graph.

Lemma 3. Let t ∈ N, G be a graph, Y ⊆ V (G), and P = {X0, X1, . . . , X`} be a
(t ·k, t)-protrusion-decomposition of G such that, for every i ∈ [`], |Y ∩Xi| ≤ t ·k.
Then G has a (Ot(k

2), Ot(1))-protrusion-decomposition P ′ whose core contains
Y as a subset. Moreover, P ′ can be computed in Ot(|G|) steps.

Proof (Proof (sketch).). The algorithm works, separately on each flap X of P,
on the tree decomposition D = (T, χ) of the graph induced by X and its neigh-
borhood. In fact, we consider a decomposition D = (T, χ) of G[NG[X]] where
T is a rooted binary tree and where each of its bags contains NG(X) and the
root bag is NG(X). Notice that every bag of D has at most 2t+ 1 vertices. We
declare nodes of D dirty as follows: for every v ∈ Y , mark as dirty the topmost
bag containing v. This declares at most t · k of the nodes of D dirty. Next, pro-
ceed in a bottom up fashion (starting from the leaves of T ), by declaring dirty
each node that is a least common ancestor of two already dirty nodes. When
this procedure finishes, we have less than 2t ·k dirty nodes. The new protrusion-
decomposition is built by adding in the core X0 of P the bags of all the nodes
that have been declared dirty, for each flap of P. This makes a new core X ′0
of Ot(k2) vertices. The connected components of G \ X ′0 can be organized to
Ot(k

2) subsets of the flaps of P such that, given the choice of the dirty vertices,
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each of them has neighbors in at most two dirty bags. Therefore each of these
subsets has at most 2(2t + 1) neighbors and this permits to organize them to
a (Ot(k

2), Ot(1))-protrusion-decomposition P ′, as required (see [14, Lemma 5.4]
for more details).

Protrusion replacements. We next define the concept of replacing a protrusion
X of G by another one. Let G be a graph G and let X be a t-protrusion of
G where |∂G(X)| = t′ ≤ t. We set GX = G[X], B = ∂G(X) and we pick an
arbitrary bijection ρ : B → [t′]. This gives a way to see the protrusion X as the
t′-boundaried graph GX = (GX , B, ρ). We refer to GX as a boundaried version
of X. Notice that there are t′! different boundaried versions of X, depending
on the choice of ρ. Let now Ĝ = (Ĝ, B̂, ρ̂) be a t′-boundaried graph that is
compatible to GX . The graph occurring after replacing GX by Ĝ in G, denoted
by repl(G,GX , Ĝ), is the graph F⊕ Ĝ, where F = (G \ (X \B), B, ρ).

Restricted t-boundaried annotated graphs. We say that a t-boundaried anno-
tated graph (G, Y ) –where G = (G,B, ρ)– is restricted if Y ⊆ B. Let (G1, Y1)
and (G2, Y2) be two compatible restricted t-boundaried annotated graphs where
Gi = (Gi, Bi, ρi), i ∈ [2]. Observe that, because of our assumptions, the anno-
tated vertices of (G1, Y1) and (G2, Y2) have boundary vertices corresponding to
the same set of indices. Given a t ∈ N, we say that (G1, Y1) ∼A,t (G2, Y2) if

∀(S1, S2) ∈ 2Y1 × 2Y2

(
ρ1(S1) = ρ2(S2)⇒ (G1, S1) ≡A,t (G2, S2)

)
.

Notice that ∼A,t is an equivalence relation on restricted t-boundaried annotated
graphs. By picking a minimum-size t-boundaried annotated graph from each
equivalence class, we set up a set of representatives that, from now on, we denote
by repA(t). Notice that if A ∈ FI(f) for some increasing function f : N→ N, then
|repA(t)| = Of,t(1) and the maximum size of a member of repA(t) is bounded by
Of,t(1).

Lemma 4. Let f : N→ N be an increasing function, A ∈ FI(f), opt ∈ {max,min},
and t ∈ N. There exists an algorithm that, given an instance ((G, Y ), k) of
Πα
A,opt, a t-protrusion X where X ∩ Y ⊆ ∂G(X), and a boundaried version

GX = (GX , B, ρ) of X, outputs in time Of,t(|X|), a boundaried graph Ĝ such
that

1. Ĝ is compatible with GX ,
2. |Ĝ| = Of,t(1) and,
3. if G′ = repl(G,GX , Ĝ), then ((G′, Y ), k) is an equivalent instance of Πα

A,opt.

Proof (Proof (sketch).). Again we present only the case where opt = min (see [14,
Lemma 5.15] for the case where opt = max).

Let YX = X ∩ Y and tX = |∂G(X)| ≤ t. Recall that YX ⊆ B, therefore
GX = (GX , B, ρ) is a restricted tX -boundaried annotated graph. Clearly, there
is some restricted tX -boundaried annotated graph (Ĝ, ŶX) ∈ repA(tX) such that
(GX , YX) ∼A,tX (Ĝ, ŶX), i.e., (Ĝ, ŶX) is a representative of (GX , YX) with
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respect to ∼A,tX . By the way Ĝ is defined, it can be proven that Ĝ is indeed
a tX -boundaried graph that can replace GX towards creating an equivalent
instance of Πα

A,opt. For the full proof, see [14, Lemma 5.6].
It now remains to design an algorithm that, given a pair (GX , YX), out-

puts its representative (Ĝ, Ŷ ) in Of,t(|GX |) steps. For this we set up, for every
t′ ∈ [0, 2t + 1], the set Rt′ containing every restricted t′-boundaried annotated
graph (G, Y ) where |G| ≤ 2 · f(2t + 1). For every t′ ∈ [0, 2t + 1], we next set
up the function ft′ : Rt′ → repA(t

′) mapping each (G, Y ) in Rt′ to its represen-
tative in repA(t

′), i.e., the member of repA(t′) that is equivalent to (G, Y ) with
respect to the equivalence relation ∼A,t′ . Keep in mind that the function ft′
does not depend on k. We clarify that ft′ is hardcoded in the algorithm and is
not computed on the fly.

The computation of (Ĝ, Ŷ ) is done by standard dynamic programming on a
tree decomposition D = (T, χ) of GX whose tree is rooted on a node whose bag
is B, where each node has at most two children, and where if a node has two
children then the corresponding bags are the same as the bag of their parent.
Every tree decomposition can be modified in linear time to one that satisfies
these properties. This type of a decomposition is handy for performing dynamic
programming and can be see as a simpler version of the concept of a nice tree
decomposition (see [10, 78, 87] for more details on dynamic programming on
nice tree decompositions). Each bag of D has at most 2t + 1 vertices as in the
beginning of the proof of Lemma 3. For every node i ∈ V (T ), with ti = |χ(i)|,
consider the restricted ti-boundaried annotated graph (Gi, Yi) where

1. the boundary of Gi is χ(i),
2. the underlying graph, say Gi, of Gi is the subgraph of GX induced by χ(i)

and all the vertices in bags of descendants of i in T, and
3. Yi = YX ∩ V (Gi).

The dynamic programming algorithm computes, in a bottom-up fashion, for
every bag χ(i) on ti vertices, the representative (Ĝi, Ŷi) of (Gi, Yi) given that
the representatives of the restricted boundaried graphs of the children of node i
in T that have already been computed. This computation is done in Of,t(1) steps
using the function fti and taking in mind that each i has at most two children,
therefore (Ĝi, Ŷi) is the application of fti to the “gluing” of the representatives
corresponding to the children of i, that is a ti-boundaried annotated graph whose
boundaried graph has size at most 2 ·f(2t+1). In total O(|GX |) nodes are being
processed, therefore the dynamic programming algorithm takes time Of,t(|GX |),
as required.

We are now in position to give the proof of Theorem 1.

Proof (Proof of Theorem 1). We present a bikernelization from ΠA,opt to Πα
A,opt.

Let (G, k) ∈ Gall×N be an input of ΠA,opt.We fist use the time T1(n) algorithm
of the first condition in order to check whether G ∈ dom(A). If the answer is
negative then ((G, Y ), k) is a no-instance of Πα

A,min and we are done. In case of
a positive answer, we know that G ∈ dom(A). This permits us to call the time
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T2(n) algorithm of the second condition that either outputs that pA,opt(G) >
kopt or outputs a (c · kopt, c)-protrusion-decomposition of G, where kopt = k if
opt = min and kopt = k − 1 if opt = max . If pA,opt(G) > kopt we have that
(G, k) is a no-instance of ΠA,opt, in case opt = min, while it is a yes-instance of
ΠA,opt, in case opt = max . Depending on which case applies, the kernelization
algorithm outputs a trivial no- or yes-instance of Πα

A,opt.
Assume now that P = {X0, X1, . . . , X`} is a (c·kopt, c)-protrusion-decomposition

of G. We set Y = V (G) and notice that (G, k) is a yes-instance of ΠA,opt iff
((G, Y ), k) is a yes-instance of Πα

A,min. By repetitively applying Lemma 2 for
each flap of P, we construct an equivalent instance ((G, Y ′), k) of Πα

A,min where
|Y ′ ∩ Xi| = Of,c(k), for every i ∈ [`]. Then we apply Lemma 3 on P and con-
struct a (Of,c(k

2), Of,c(1))-protrusion-decomposition P ′ whose core contains Y
as a subset. Next, we repetitively apply Lemma 4 for each of the flaps of P ′ and
construct an instance ((G′, Y ′), k) of Πα

A,opt that is equivalent to ((G, Y ′), k) and
therefore to ((G, Y ), k) as well. That way,G′ has a (Of,c(k2), Of,c(1))-protrusion-
decomposition where each flap contains at most Of,c(1) vertices. This implies
that |G′| = Of,c(k

2). According to the running times of each of the three afore-
mentioned lemmata, the construction of ((G′, Y ′), k) can be done in Of,c(|G|)
steps.

Theorem 1 can be seen as a proper abstract version of Theorem 1.1 in [14]. A
somehow stronger version of Theorem 1, that avoids the use of bikernels, can be
derived in case opt = min . The proof is the same as the one of Theorem 1 (when
opt = min) and is based on the additional observation that pA,min(G) > kopt
implies that (G, kopt) is a no-instance of Πα

A,min. This gives rise to the following.

Theorem 3. Let f : N→ N be an increasing function, A ∈ FI(f), and c ∈ R>0.
If

1. dom(A) is computable in polynomial time T1(n),
2. (A,min) is c-protrusion-decomposable in polynomial time T2(n),

then Πα
A,min admits a polynomial size kernelization of size kOf,c(1), running in

polynomial time T1(n) + T2(n) +Of,c(n).

Admittedly, we do have a version of Theorem 3 when opt = max as, in this
case, we require that pA,max(G) > kopt implies that (G, kmax) is a yes-instance
of Πα

A,max and such an implication is not a consequence of the definition of the
annotation version of a maximization problem.

We now arrive to the proof of Theorem 2.

Proof (Proof of Theorem 2). Let (G, k) be an instance ofΠA,min and let ((G′, Y ′), k)
be an equivalent instance of Πα

A,min, of size k
Of,c(1), constructed in time T1(n)+

T2(n)+Of,c(n) by the application of the bikernelization algorithm of Theorem 1.
By the two last conditions we have that there is a polynomial time re-

duction from Πα
A,opt to ΠA,opt. This means that there is a polynomial-time

algorithm, i.e., an algorithm that runs in time |G′|O(1) = kOf,c(1), that can
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transform ((G′, Y ′), k) to an instance (G̃, k̃) of ΠA,opt such that ((G′, Y ′), k)

is a yes-instance of Πα
A,min iff (G̃, k̃) is a yes-instance of ΠA,min. Notice that

max{|Ĝ|, k̂} = kOf,c(1) and that (G, k) and (G̃, k̃) are equivalent instances of
ΠA,opt, as required.

3.2 Meta-kernels for subset properties with finite integer index

Our second meta-algorithmic result is based on the notion of finite integer
index.

Finite integer index. Two t-boundaried graphs G1 and G2 are compatible if the
t-boundaried annotated graphs (G1, ∅) and (G2, ∅) are compatible. Given two
t-boundaried graphs G1 and G2 we define G1 ⊕ G2 as the graph of the pair
(G1, ∅)⊕ (G2, ∅).

Let (A, opt) be a defining pair and t ∈ N. Given two compatible t-boundaried
graphs G1,G2, we say that G1 ≈A,opt,t G2 if there exists a constant cG1,G2 ∈ Z,
depending on G1 and G2, such that for every t-boundaried graph F that is
compatible with G1, it holds that

pA,opt(F⊕G2) = pA,opt(F⊕G1) + cG1,G2 .

For completeness, if in the above definition, for some i ∈ [2], the graph F ⊕
Gi 6∈ dom(pA,opt), we assume that p(Gi ⊕ F) = ∞. Observe that c might
be negative in the above definition. In fact, cG1,G2

= −cG2,G1
. Note that the

relation ≈A,opt,t is an equivalence relation. We set up, for every t ∈ N, a set
r̃epA,opt(t) of representatives of the relation ≈A,opt,t by picking one minimum-
size representative for each of its equivalence classes.

Given an increasing function f : N → N, we define FII(f) as the set of all
defining pairs (A, opt) where for every t ∈ N, the size of every t-boundaried graph
in r̃epA,opt(t) is upper bounded by f(t).We say that the defining pair (A, opt) has
finite integer index if it belongs in FII(f), for some increasing function f : N→ N.
The defining pair (A, opt) has finite integer index if and only if ≈A,opt,t has a
finite number of equivalence classes, for every t ∈ N.

Notice that the notion of finite integer index concerns different objects than
the one of finite index. Having finite index is a property of vertex-subset prop-
erties, while having finite integer index is a property of defining pairs.

The notion of finite integer index was introduced in the thesis of Babette van
Antwerpen-de Fluiter [44], see also [5, 12, 13, 43]. Our second meta-algorithmic
result, corresponding to theorem 1.3 of [14], is the following.

Theorem 4. Let f : N → N be an increasing function, (A, opt) ∈ FII(f), and
c ∈ R>0. If

1. dom(A) is computable in polynomial time T1(n) and
2. (A, opt) is c-protrusion-decomposable in polynomial time T2(n).

then ΠA,opt admits a linear kernelization of size Of,c(k), running in polynomial
time T1(n) + T2(n) +Of,c(n).
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Proof (Proof (sketch).). The idea of the proof follows from the fact that if X
is a protrusion of G, the t-boundaried graph GX is a boundaried version of
X, Ĝ is the representative of GX in r̃epA(opt, t), G′ = repl(G,GX , Ĝ), and
k′ = k+ cGi,Ĝi

, then (G, k) and (G′, k′) are equivalent instances of ΠA,opt. The
proof of this fact follows directly from the definition of the equivalence relation
≈A,opt,t (see [14, Lemma 5.18] for the details).

As in the begining of the proof of Theorem 2 we can assume that we have a
protrusion-decomposition P = {X0, X1, . . . , X`} of G, that has been constructed
in time T1(n) + T2(n) (otherwise a direct answer can be derived and the algo-
rithm outputs a trivial equivalent instance). The algorithm performs dynamic
programming on the special type of tree decomposition that we used in the proof
of Lemma 4. For every flap X of P, the dynamic programming runs on a bound-
aried versionGX = (GX , B, ρ) ofX and detects a node i where the ti-boundaried
graph Gi (defined as in the proof of Theorem 2) has size more than f(t) but also
has size O(f(t)). The upper bound permits the detection of i in Of,c(1) steps.
The lower bound permits the replacement in G of Gi by its representative Ĝi

in r̃epA,opt(t) that has smaller size. Consider the pair (G′, k′), where G′ is the
result of the protrusion replacement and k′ = k + cGi,Ĝi

and recall that (G, k)
and (G′, k′) are equivalent instances of ΠA,opt where |G′| < |G|. By perform-
ing such replacements bottom-up and updating the protrusion-decomposition
accordingly, we keep creating equivalent instances until all the flaps in the
protrusion-decomposition of the resulting graph are of size upper-bounded by
2f(t). This ends up, in time Of,c(n), with an equivalent instance (G′, k′) whose
size is a linear function of k.

Notice that the first condition of both Theorem 2 and Theorem 4 require the
polynomial computability of the domain of A. In some cases, variants of these
theorems are ignoring (or ommiting) this condition as it is either obvious or the
problem is stated so that containment to A is a promise condition.

4 Consequences

In this section we deal with the applications of Theorem 2 and Theorem 4. Notice
that both these theorems contain two types of requirements. The first is that the
vertex-subset property (resp. defining pair) has finite integer index (resp. finite
integer index), the second is that the problem is protrusion decomposable. The
first condition will be linked to the descriptive complexity of the problem while
the second will be linked to certain combinatorial properties of its inputs, i.e.,
the domain of A.

4.1 Counting Monadic Second Order Logic

There is a wide variety of vertex-subset problems generated by defining pairs.
Typically, they can be defined using logical sentences.
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CMSOL. The syntax of Counting Monadic Second Order Logic (CMSOL) on
graphs includes the logical connectives ∨, ∧, ¬, →, ↔, variables for vertices,
edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃ that can be applied
to these variables, and the following six predicates:

1. vin : V (G)× 2V (G) → {T, F}, where vin(v, S) = T iff v is a vertex of S,
2. ein : E(G)× 2E(G) → {T, F}, where ein(e, F ) = T iff e is an edge of F,
3. inc : V (G)× E(G)→ {T, F}, where inc(v, e) = T iff v is an endpoint of e,
4. adj : (V (G))2 → {T, F}, where adj(v, u) = T iff v and u are distinct endpoints

of an edge,
5. eq : (V (G))2 → {T, F}, where eq(v, u) = T iff v and u are equal,
6. cardq,r : V (G) → {T, F}, where cardq,r(S) = T iff |S| ≡ q (mod r), where
r, q are fixed integers such that 0 ≤ q < r and r ≥ 2.

We use variants of the symbols v, e, S, and F in order to denote variants of
vertices, edges, vertex sets, and edge sets respectively. We refer to [6, 21, 23] for
a detailed introduction on CMSO. Given a sentence φ, we denote its length by
|φ|.

Some examples. We may consider CMSOL sentences that are evaluated either
on graphs or on annotated graphs. For instance, if

φ = ∀v1
(
vin(v1, S) ∨ ∃v2 (adj(v1, v2) ∧ vin(v2, S))

)
,

then (G,S) |= φ iff S is a dominating set of G. Moreover, if

φ = ∀S1, S2

((
∃x vin(x, S1) ∧ ∃x vin(x, S2)∧

∀v
((
vin(v, S1) ∧ ¬vin(v, S2)

)
∨
(
vin(v, S2) ∧ ¬vin(v, S1)

)))
→(

∃v1, v2, e
(
vin(v1, S1) ∧ vin(v2, S2) ∧ inc(v1, e) ∧ inc(v2, e)

)))
,

then G |= φ iff G is connected.

Problems defined by sentences. Given a CMSOL sentence ψ on graphs, we define
the graph class

Gψ = {G | G |= φ}.
Moreover, given a CMSOL sentence φ on annotated graphs, we define the vertex-
subset property

Aφ = {(G,S) | (G,S) |= φ}.
Given a CMSOL sentence φ on annotated graphs and an opt ∈ {min,max},

we use Πφ,opt and Πα
φ,opt as shortcuts for the vertex-subset problem ΠAφ,opt and

its annotated version Πα
Aφ,opt

respectively. Also, given a CMSOL sentence ψ on
graphs and a CMSOL sentence φ on annotated graphs, we define φ e ψ as the
CMSOL sentence where

(G,S) |= φ e ψ iff (G,S) |= φ and G |= ψ.

By admitting that shortcuts may create inflation of notation, we notice that
Aφ e Gψ = Aφeψ and that Πφ,opt e Gψ = ΠAφeGψ,opt = ΠAφeψ,opt = Πφeψ,opt.
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4.2 Properties of defining pairs

We now come to the combinatorial properties of defining pairs. In our setting,
these properties condition the domain of the vertex subset property.

Treewidth-modulability. Given a defining pair (A, opt) and a c ∈ R>0, we say
that the defining pair (A, opt) is c-treewidth-modulable if, for every (G, k) ∈
dom(A)× N, it holds that

pA,opt(G) ≤ k ⇒ ∃S ⊆ V (G) : |S| ≤ c · k ∧ tw(G \ S) ≤ c.

Minors, contractions, and topological minors. Given a graph G, we say that
a graph H is a contraction of G if a graph isomorphic to H can be obtained
from G after contracting edges. We also say that H is a minor of G if it is the
contraction of some subgraph of G. Finally, we say that H is a topological minor
of G if some subdivision of H is isomorphic to a subgraph of G (a subdivision of
H is any graph obtained by replacing edges by paths with the same endpoints).

Given a finite set of graphs H, we denote by CH the class of graphs that do
not contain any of the graphs in H as a contraction, by TH the class of graphs
that do not contain any of the graphs in H as a topological minor, and byMH
the class of graphs that do not contain any of the graphs in H as a minor. Notice
that, for every finite set of graphs H,MH ⊆ TH andMH ⊆ CH.

Fig. 1. Graph Γ9.

SQGM and SQGC properties of graph classes. Let G ⊆ Gall, λ ∈ R>0, and let c
be a real number in the interval [1, 2). We say that G has the sub-quadratic grid
minor property (SQGM property, for short) for λ and c, if

∀k ∈ N ∀G ∈M{�k} tw(G) ≤ λ · kc.
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Also, we say that a graph class G has the sub-quadratic graph contraction
property (SQGC property for short) for λ and c, if

∀k ∈ N ∀G ∈ C{Γk} tw(G) ≤ λ · kc.

We denote by SQGM(λ, c) (resp. SQGC(λ, c)) the set of all graph classes that
have the SQGM (resp, SQGC) property for λ and c.

The most simple example of a graph class that has the above properties is the
class of planar graphs, that belongs in SQGC(4.2, 1) [68]. For more general classes
of graphs satisfying the SQGM and the SQGC properties, see [7,31,48,52,53,64].

Bidimensonality. Given a k ∈ N≥1, a (k×k)-grid is the graph �k where V (�k) =
[k]2 and E(�k) = {{(x, y), (x′, y′)} | |x − x′| + |y − y′| = 1}. The perimeter of
�k, denoted by P (�k), is the set containing all the vertices of �k that have
degree smaller than 4. The uniformly triangulated grid (k× k)-grid is the graph
Γk where V (Γk) = [k]2 and

E(Γk) = E(�k) ∪
{(x+ 1, y), (x, y + 1) | (x, y) ∈ [t− 1]2} ∪
{{(k, k), (a, b)} | (a, b) ∈ P (�k) \ {(k, k)}}).

For a drawing of Γ9, see Figure 1.
Given two real functions f and g, we use the term f & g to denote that

f(x) ≥ g(x)− o(g(x)).

Let (A, opt) be a defining pair. We say that (A, opt) is minor closed (resp.
contraction closed) if for every two graphs G1, G2 ∈ dom(A), it holds that if G1

is a minor (resp. contraction) of G2, then pA,opt(G1) ≤ pA,opt(G2).
Given a c ∈ R>0, we say that (A, opt) is c-minor-bidimensional (resp. c-

contraction-bidimensional) if it is minor-closed (resp. contraction-closed) and
pA,opt(�k) & ck2 (resp. pA,opt(Γk) & ck2).

Bidimensonality was introduced in [30] and has been the combinatorial base
of several algorthmic results concerning subexponential parameterized algorithms [29,
30,34,47], the design of efficient polynomial-time approximation schemes [32,51,
53], and, of course, kernelization [54,55,76], see also [28,33,46,73,85,86].

Separability. Let (A, opt) be a defining pair and let f : N → N. We say that
(A, opt) is f -separable if for every graph G ∈ dom(A), every S ∈ solA,opt(G), and
every L ⊆ V (G), it holds that

|S ∩ L| − f(t) ≤ pA,opt(G[L]) ≤ |S ∩ L|+ f(t),

where t = |∂G(L)|. Given some c ∈ R>0, we say that the defining pair (A, opt)
is c-linearly-separable if it is f -separable for the function f : N → N, defined so
that f(x) = c · x.

The notion of separability has been introduced in [54, 55], while a similar
notion had earlier appeared in [32].
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4.3 Theorems on properties of defining pairs

Conditions for proving finite index and finite integer index. The following cele-
brated result, widely known as Courcelle’s theorem, is the standard way to prove
that a vertex-subset property has finite index.

Proposition 1. For every CMSOL sentence φ, there is an increasing function
f : N→ N such that Aφ ∈ FI(f).

Proposition 1 has appeared in many forms and with different proofs, see [2,6,17,
21, 23, 35]. For a proof of a more general version that the one in Proposition 1,
see [14, Lemma 3.2].

The next result gives a criterion for proving that a defining pair has finite
integer index.

Proposition 2. For every CMSOL sentence φ, opt ∈ {min,max}, and every
function f : N → N, if the defining pair (Aφ, opt) is f -separable, then there is
some increasing function f ′ such that (A, opt) ∈ FII(f ′).

Proposition 2 appeard in [55]. It provides an easy way to prove that a defining
pair has the FII property. For proving FII, an alternative to separability, called
strong monotonicity, had already appeared in [14, Section 7].

Conditions for proving protrusion-decomposability. In both Theorems 1 and 3,
the second condition is protrusion decomposability. This condition can be im-
plied by other more easy to verify combinatorial conditions. The first one is
treewidth-modulability combined with the exclusion of some graph as topologi-
cal minor.

Theorem 5. Let φ be a CMSOL sentence on annotated graphs, h ∈ N≥1, c ∈
R>0, and H be a set of graphs, each of size at most h. If (Aφ, opt) is a c-
treewidth-modulable defining pair, then (Aφ e TH, opt) is O|φ|,h,c(1)-protrusion-
decomposable in time O|φ|,h,c(n2).

The proof of 5 is implicit in [76] and is presented in more detail in [77].
We should stress that the quadratic-time protrusion decomposability of the

above result can be improved to a linear one by combining the results of [55,
76, 77]. We avoid presenting the proof of this here, as it is lengthy and requires
the introduction of several concepts from [49] and [50] such as solution lifting,
protrusion cover, and explicit representation of subgraphs (the bulk of the argu-
ments has already been exposed in [57, Subsection 15.6]).

The main combinatorial condition in Theorem 5 is protrusion-decomposability.
The following result appeared in [55] and reveals how this condition can be im-
plied from other, more easy to check, conditions.

Theorem 6. Let λ, c, c′ ∈ R>0, and let c′′ be a real number in the interval
[1, 2), and let f : N → N be an increasing function. If G ∈ SQGM(c′′, λ) (resp.
G ∈ SQGC(c′′, λ)) and (A, opt) is a defining pair that is c-minor-bidimensional
(resp. c-contraction-bidimensional) and c′-linearly separable, then (AeG, opt) is
Oλ,c,c′,c′′(1)-treewidth-modulable.
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4.4 Applications

In this section we present the consequences of Theorem 2 and Theorem 4 under
the light of the logical and combinatorial conditions of subsection 4.3. We expose
them as two corollaries, corresponding to Theorem 2 and Theorem 4 respectively.

Corollary 1. Let φ be a CMSOL sentence on annotated graphs, h ∈ N≥1, c ∈
R>0, H be a set of graphs, each of size at most h, and opt ∈ {min,max}. If

1. dom(Aφ) is computable in polynomial time T(n),
2. (Aφ, opt) is c-treewidth-modulable,
3. Πφ,opt e TH is NP-hard, and Πα

φ,opt ∈ NP,

then Πφ,opt e TH admits a polynomial kernelization of size kO|φ|,h,c(1), running
in time T1(n) +Oh(n

3) +O|φ|,h,c(n
2) + kO|φ|,h,c(1).

If Condition 3 is replaced by the following:

3 ′. (Aφ, opt) is f -separable, for some function f : N→ N,

then Πφ,opt e TH admits a linear size kernelization of size Of,|φ|,h,c(k), running
in time T1(n) +Oh(n

3) +Of,|φ|,h,c(n
2).

Proof. From Theorem 5, (Aφ e TH, opt) is c′′′-protrusion-decomposable in time
T2(n) = O|φ|,h,c(n

2) for some c′ = O|φ|,h,c(1).
As topological minor containment can be expressed in monadic second order

logic, there is some ψH such that TH = GψH . Recall that φ e ψH is a CMSOL
sentence on annotated graphs. Also Aφ e GψH = AφeψH and Πφ,opt e Gψ =
ΠAφeGψ,opt, therefore Πφ,opt e TH = ΠφeψH,opt.

It was proved in [66], that TH is computable in time Oh(n3). ThereforeAφeψH

is computable in time T1(n) = T(n) + Oh(n
3). Notice also that if Πα

φ,opt ∈ NP,
then also Πα

φ,opt e TH ∈ NP. The result follows by applying Theorem 2 and
Theorem 4 for the defining pair (φ e ψH, opt) and the constant c′.

If now in the second version of Corollary 1, we deduce treewidth-modulability
by using the conditions of Theorem 6, we derive the following.

Corollary 2. Let φ be a CMSOL sentence on annotated graphs, h ∈ N≥1,
λ, c, c′ ∈ R>0, c

′′ ∈ [1, 2), H be a set of graphs, each of size at most h, and
opt ∈ {min,max}. If

1. dom(Aφ) is computable in time T(n),
2. (Aφ, opt) is c′-linearly separable,
3. (Aφ, opt) is c-minor bidimensional (resp. c-minor bidimensional), and
4. TH ∈ SQGM(c′′, λ) (resp. TH ∈ SQGM(c′′, λ)),

then Πφ,opt e TH admits a linear size kernelization running in time T(n) +
Oh(n

3) +O|φ|,h,λ,c,c′,c′′(n
2).
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Concerning the applicability of Corollary 2, we stress that for every finite set
of graphs Z, each of size at most z, there is an H such that TH =MZ .Moreover,
there is a constant λz such that MZ ∈ SQGM(λz, 1) [31]. This implies that the
minor version of the fourth condition of Corollary 2 holds if we replace TH by
any non-trivial minor-closed graph class (taking into account the Robertson &
Seymour Theorem [84]). For the contraction version, assume additionally that
Z contains at least one apex graph (an apex graph is a graph containing a
vertex whose removal creates a planar graph). For every such Z, it holds that
MZ ∈ SQGC(λh, 1), for some constant λh [48]. This implies that the contraction
version of the fourth condition of Corollary 2 holds if we replace TH byMZ and
pick Z to be any finite set containing at least one apex graph.

Acknowledgements: I wish to whole-heartedly thank Professor Hans L. Bod-
laender for being the one who «told me a little but he taught me a lot».
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