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Nonlinear theory of wetting on deformable substrates

Julien Dervaux,∗a Matthieu Roché,a and Laurent Limata

The spreading of a liquid over a solid material is a key process in a wide range of applications.
While this phenomenon is well understood when the solid is undeformable, its "soft" counterpart
is still ill-understood and no consensus has been reached with regards to the physical mecha-
nisms ruling the spreading of liquid drops over soft deformable materials. In this work we provide
a theoretical framework, based on the nonlinear theory of discontinuities, to describe the behavior
of a triple line on a soft material. We show that the contact line motion is opposed both by non-
linear localized capillary and visco-elastic forces. We give an explicit analytic formula relating the
dynamic contact angle of a moving drop with its velocity for arbitrary rheology. We then specialize
this formula to the experimentally relevant case of elastomers with Chasset-Thirion (power-law)
type of rheologies. The theoretical prediction are in very good agreement with experimental data,
without any adjustable parameters. We then show that the nonlinear force balance presented in
this work can also be used to recover classical models of wetting. Finally we provide predictions
for the dynamic behavior of the yet largely unexplored case of a viscous drop spreading over a
soft visco-elastic material and predict the emergence of a new form of apparent hysteresis. .

1 Introduction
Interfaces between media, whether solid, liquid or gaseous,
play a fundamental role over a large range of scales around
us. Their physics and physico-chemistry are at play behind
phenomena such as self-assembly and protein folding1,2, ad-
hesion and wetting3–9, fracture10 and friction11,12. A count-
less amount of applications relies on the understanding and the
control of interfaces (see for example refs13–20 and references
therein). As a consequence, the study of interfaces is of cru-
cial importance to the advancement of our understanding of
fundamental bricks of the world and to the development of in-
novative applications.

In this paper, we will focus on the wetting of solids by liq-
uids. This seemingly mundane phenomenon, the consequences
of which we can observe when raindrops hit the windshield
when riding a car, offers a wonderful window into the micro-
scopic world. Its most general description requires an under-
standing of intermolecular forces and capillarity, hydrodynam-
ics, solid mechanics and transport phenomena and it is relevant
to a myriad of practical and natural situations21–29. Wetting
has fascinated scientists for the last 200 years, starting with the
pioneering work of Young30 and Laplace31 on capillarity.

Thomas Young was the first to understand that the shape of
a droplet sitting at the surface of a non-deformable solid de-
pends on the balance between the surface energies associated
with the interfaces between the droplet, the solid and the sur-
rounding atmosphere. The angle θeq between the solid-liquid
interface and the liquid-atmosphere interface measured inside
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the droplet at the line of contact of the three phases, the triple-
phase contact line, is related to the surface energies ϒs`, ϒsv

and ϒ`v (where `, s and v stand for liquid, solid and vapor) by
the Young-Dupré relation (as Athanase Dupré and his son Paul
formalized mathematically Young’s ideas32):

cos(θeq) =
ϒsv−ϒs`

ϒ`v
(1)

Two comments should accompany Eq. (1). First, molecules in
a fluid flow under stress or strain. Then the surface energy ϒ`v

is equal to the surface tension γ`v of the liquid33. Second, this
balance is obtained by neglecting what happens in the direction
normal to the surface of the solid.

To the best of our knowledge, Jacob Bikerman was the first to
express concerns about the validity of the Young-Dupré model
because of the absence of a a surface-normal balance. He re-
ported that a bar of gelatin dipped into a bath of mercury de-
forms along the contact line in the direction normal to the sur-
face. The amplitude of the deformation is of the order of several
tens of micrometers. He argued that this observation invali-
dates the classical theory of wetting34,35.

Bikerman’s claim initiated a vivid debate in the community.
Its closure led to the identification of a length scale intrinsic
to the solid-liquid-fluid system of interest that compares capil-
lary forces to bulk elastic stresses, the elastocapillary length `,
initially thought to be proportional to the ratio γ`v/E, with E
the Young modulus of the compliant substrate36. Note that `

should not be confused with the elastocapillary length involved
in the description of thin elastic plates bending under capillary
forces in capillary origamis for example37,38. Lester36 noted
that common values of surface tension span the range 10-100
mNm−1, leading to 10−11 ≤ `≤ 10−5 m when E decreases from
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1 GPa (glass) to 1 kPa (elastomer). He argued that the Young-
Dupré equation is an excellent approximation to compute the
equilibrium contact angle when the substrate has a large Young
modulus. This approximation fails when the solid is soft, as
a wedge-like deformation known as the ridge forms under the
action of capillary forces on the solid (Fig. 1).
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Fig. 1 Schematic representation of the contact line region during the
spreading of a liquid on a deformable substrate. The contact line
moves at constant velocity. At the contact line, the solid is deformed by
the vertical component of the liquid surface tension ~γ`v and develops a
characteristic ridge. The motion of the contact line is opposed both by
the visco-elastic force ~f s and by restoring capillary forces ~γsv and ~γs`
associated with the solid-vapor and solid-liquid interfaces.

The formation of the ridge and its properties are only part
of the implications of deformability of the solid for wetting.
Droplets in contact with compliant solids such as gels and elas-
tomers move at a pace whose magnitude is set by the vis-
coelastic properties of the substrate: this effect is known as
viscoelastic braking39–46. Models of the spreading of liquids
on elastomers and polymer brushes based on linear viscoelas-
ticity were proposed47,48. These papers highlighted the need
to account for the surface energy of the solid ϒs. The authors
were also the first to highlight the importance of the intrinsic
elasto-capillary length of the solid, `s = ϒs/µ0, where µ0 is the
shear modulus of the solid. Note that Long and his collabora-
tors assume ϒs = γs, a crucial assumption as we will see later.
Then, if x is the distance to the contact line measured parallel to
the solid surface, deformations of the solid for x<<`s are domi-
nated by capillarity while elasticity dominates for x >> `s. Long
et al.’s remark about the importance of accounting for the sur-
face tension of the solid in problems involving the free surface
of a compliant material is now supported by many experiments
that illustrate the importance of solid capillarity in various con-
texts49–58. The validity of these models has remained untested
against experiments until recently59,60.

Further progress in the understanding of wetting of de-
formable solids, i.e. elastowetting, had to wait for the
widespread availability of new microscopy techniques (confo-

cal, X-ray,. . . ). CarrÃl’ and Shanahan reported the first visu-
alization of the ridge using interferometric techniques44 and
could test theoretical predictions of the shape of the ridge avail-
able at the time36,61. Ten years later, the advent of confocal
and X-ray microscopies renewed the interest of the scientific
community in the problem. In particular, the ridge could be
studied with unprecedented spatial resolution, well below `s,
offering the opportunity to quantify the shape of the ridge close
to the contact line and to investigate the capillary-dominated
domain52,62,63.

These studies and many others64–70 hinted at a possible fail-
ure of the elastowetting models proposed up to then. Many
of these experiments resort to poly(dimethyl siloxane) (PDMS)
elastomers and gels as the compliant solid. These materials are
obtained from commercial kits made of two polymeric liquids
that contain the reactants to crosslink PDMS chains and form
an apparent solid after heat curing. Their surface energy is ex-
pected to be identical to that of the liquids γPDMS. However, ex-
periments reported a discrepancy between the expected value
and the one measured in experiments59,66. Concerns about the
assumptions used in the models arose, in particular with respect
to linearity.

The need to switch to nonlinear theories to describe elas-
towetting was noted early on59,61,71. Various suggestions for
improvement have been proposed since then. For example,
the dependence of the surface energy ϒs of the substrate on
deformation akin to the Shuttleworth effect observed in crys-
talline and glassy solids38,72–74 has been hypothesized. This
idea seems supported by the reported dependence of the open-
ing angle at the tip of the ridge on the deformation applied to
the substrate75. However, the interpretation of these fascinat-
ing measurements relies heavily on a macroscopic model that
lacks a connection with a microscopic theory of capillarity rele-
vant to polymeric materials. Besides, recent experiments76–79,
simulations80,81 and theory82 have questioned the existence of
the Shuttleworth effect in elastomers. First, experimental mea-
surements of the surface energy of elastomers resulting from
studies coupling adhesion tests and contact angle characteriza-
tion as well as some resorting to other techniques obtain a value
for γs that is close to that of the base liquids76,78,83–86. Second,
the Shuttleworth effect results from a change in the intermolec-
ular distance between the molecules of a crystalline solid under
strain. No such change is expected in the case of polymeric
elastomers: their elasticity results from the reduction of the
number of configurations accessible to the deformed polymer
chains compared to rest, i.e. a loss of entropy. The intermolec-
ular distance does not change, as long as the chains remain far
from their maximal extension. At the same time elastomers are
only apparent solids, as a probe into their molecular dynam-
ics using nuclear magnetic resonance for example shows that
monomers along the chains diffuse around their position as if
they were in a liquid state87. Fluctuating monomers just below
the surface can move to replace monomers displaced along the
strained surface. We conclude from this rationale that, as long
as the chains are far from their full extension, the Shuttleworth
effect is expected to be absent in elastomers, i.e. the surface en-
ergy of elastomers is equal to the surface tension of the base
liquids and it should be independent of strain. Recent simula-
tions support this view80,81. On the other hand, if a chemical
treatment such as oxidation is applied at the free surface of the
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elastomer, the formation of a stiff elastic skin can be induced88.

Another promising route to a description of elastowetting
problems is to move the models beyond linear elasticity. This
move is actually required as issues arise when injecting exper-
imental parameters into the predictions of linear elastowetting
models. For example, the slope of the surface of the elastomer
on each side of the ridge is predicted to be (Eq. 3.18 in ref69):

ζ
′ ∼ γ`v sin(θ`v)

2γs
. (2)

This prediction is obtained under the assumption that the angle
between the air/liquid interface and the direction parallel to the
flat surface away from the ridge is θ`v = π/2 and sin(θ`v) = 1.
Linearity implies that the slopes are small compared to 1. Given
Eq. (2), this constraint leads to γ`v/γs � 1, a condition never
met in experiments. More fundamentally, the solution obtained
within the classical theory of linear elasticity also fails at satis-
fying the compatibility equations (see Appendix A), suggesting
that a more general theory, able to describe discontinuities in an
otherwise continuous body, should be used. Thus linear models
should be abandoned in favor of non-linear descriptions.

Efforts have been made to move in the direction of a nonlin-
ear theory of elastowetting82,89–91. We have shown82 that the
shape of static elastocapillary ridges could be described using
values of the physical parameters relevant to experiments by
the following nonlinear force balance, here generalized to arbi-
trary surface tensions and including possible external forces:

~γ`v +~γsv +~γs`+ ~f ext = ~f s. (3)

Here, ~γ`v, ~γsv and ~γs` are respectively the liquid-vapor, solid-
vapor and solid-liquid capillary forces per unit of length of the
contact line, ~f ext represents additional external forces, other
than surface tensions and viscoelastic stresses, that might act
on the contact line. In this model, the solid surface energy is
assumed independent of strain and equal to its surface tension.
The force ~f s appearing on the right hand side of Eq. (3) is the
force per unit of length of the contact line exerted by the de-
formed solid on the triple line:

~f s = lim
Γ→0

∫
Γ

T~nΓdΓ (4)

where Γ is a contour enclosing the contact line in the deformed
configuration, T is the true (Cauchy) stress (to be defined be-
low) and ~nΓ is the outward unit vector normal to the contour
Γ. This relation is nonlinear because both T and~nΓ depends on
the deformation of the substrate.

Equation (3) is a generalization of the equation that de-
scribes equilibrium at the contact line between three immis-
cible fluids, known as the Neuman construction4. This form
accounts for the presence of external forces and for the ability
of the substrate to sustain shear. The latter is of crucial impor-
tance, as there is a discontinuity of the slope (and hence the
strain) at the triple line when the solid is compliant enough
to form a ridge. The elastocapillary ridge is then a singular
structure. A description of this structure in the context of the
theory of defects92–94 shows then that the force ~fs does not
vanish. Moreover, the prediction for the stress field around
the ridge indicates that it is similar to the terminal line of a
generalized disclination95 whose strength can take any value

between -1/2 and 1/2 as there is no underlying lattice struc-
ture, in contrast with disclinations in crystals. Then, a localized
force is exerted on the elastocapillary ridge whenever it is sub-
jected to a deformation field (either its own deformation field
or an additional external field, in which case this force is akin to
the Peach-Koehler force82,96). Equation (3) encompasses both
the Young-Dupré relation (for infinitely rigid substrates and no
external forces ~fext = 0) as well as the Neumann relation rul-
ing the equilibrium of liquid drops over a liquid bath (in the
limit of a substrate with vanishing shear and no external forces
~fext = ~fs = 0). In the general case however, the equilibrium an-

gle of static droplets on soft substrates does not obey either of
these two laws but satisfies Eq. (3).

In this paper, we show that Eq. (3) can also help predicting
the out-of-equilibrium value of the contact angle selected dur-
ing the motion of inviscid drops at constant velocities at the
free surface of viscoelastic substrates. In section 2, we provide a
derivation of the generalized force balance Eq. (3) using a vari-
ational principle. This section draws inspiration from Maugin’s
pioneering work97,98 and we hope that it is as self-contained as
possible. The reader already familiar with the nonlinear theory
of continuum mechanics may skip directly to section 3.

In section 3 we show that both nonlinear localized capillary
forces and visco-elastic stresses oppose the motion of the con-
tact line. We give an explicit analytic formula relating the dy-
namic contact angle of a moving contact line with its veloc-
ity for arbitrary rheology. We then specialize this formula to
the experimentally relevant case of elastomers with a Chasset-
Thirion (power-law) type of rheologies. The resulting theoret-
ical predictions are in excellent agreement with experimental
data59,60: they capture the saturation of the dynamic contact
angle at high velocities, without any adjustable parameters, for
example. In section IV, we show that Eq. (3) can also be used
to recover the classical de Gennes model3 of dynamical wetting
for a viscous drop moving over a hard substrate by choosing a
contour Γ located inside a liquid wedge moving at constant ve-
locity. In section V, we investigate the as-yet largely unexplored
case of a viscous fluid spreading over a visco-elastic substrate
and we give predictions for the selection of the dynamic contact
angle for such systems. Finally, we conclude the paper with a
discussion of the nonlinear elastowetting problem in section VI.

2 Formulation of the nonlinear elastowet-
ting problem

The purpose of this section is to provide the reader with the
concepts and tools of nonlinear continuum mechanics99 neces-
sary to the understanding of this paper as well as a derivation
of Eq. (3). We start by reminding the reader with the expres-
sion of stress balances describing the equilibrium of a body in
its initial (reference) configuration and its deformed (current)
configuration, and their relationship, and we obtain the appro-
priate form of the variational principle. As the treatment of the
wetting of a soft substrate by a liquid requires to account for a
jump in the strain field, we then discuss the form of the varia-
tional principle when a discontinuity is present. Finally, we add
the contribution of surface energy.
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2.1 General stress balance at equilibrium in nonlinear
continuum mechanics

We consider an elastic body B ∈R3 in the reference configura-
tion B0. Granted coherency (no material interpenetration or
cavitation), the deformation is described by an invertible con-
tinuous mapping χ : B0 7→B that transforms the material point
~X ∈B0 to a position ~x = χ(~X) in the current configuration B

(Fig. 2). A local description of this deformation is provided by
the deformation tensor F = ∂~x/∂~X . The body experiences some
tractions ~T d(~X) at the boundary ∂B0 in the reference configu-
ration.

We wish to find the equilibrium state of the solid in response
to these external tractions. The next steps rely on a thermo-
dynamic approach. First, we place ourselves in the context of
Green elasticity (or hyperelasticity) and assume the existence of
a strain energy density W (F). Given the presence of tractions
at the free surface of B , the energy functional of the system is:

E [~x] =
∫
B0

W (F)dV −
∫

∂B0

~T d .~xdA.

The principle of stationary potential energy stipulates that
the material variation δX (where the subscript specifies that the
variation must be performed at fixed ~X) of the energy func-
tional E [~x] is zero at equilibrium, δXE [~x] = 0. Any deformation
field ~x = χ(~X) that renders the energy functional stationary is
known as an extremal. Because the material variation δX con-
serves the material volume and commutes with the material
space integration, we have:

δXE [~x] =
∫
B0

δXW (F)dV −
∫

∂B0

~T d .δX~xdA (5a)

=
∫
B0

∂W

∂F
δX FdV −

∫
∂B0

~T d .δX~xdA (5b)

=
∫
B0

∇X

(
∂W

∂F
δX~x
)

dV −
∫
B0

∇X

(
∂W

∂F

)
δX~xdV

−
∫

∂B0

~T d .δX~xdA (5c)

where integration by parts has been used between Eqs.(5b) and
(5c). Defining the nominal stress tensor S ≡ ∂W /∂F, and un-
der the condition that S is a continuously differentiable tensor
field, transformation of the first volume integral appearing in
the r.h.s. of Eq. (5c) into a surface integral using Gauss’s theo-
rem leads to:∫

B0

∇X

(
∂W

∂F
δX~x
)

dV =
∫

∂B0

(
ST~N

)
.δX~xdA. (6)

where ~N is the outward unit vector normal to the reference
boundary ∂B0 of the body and ST denotes the transpose of S.
The arbitrariness of the δX~x leads us to the local form of the
equilibrium equations in the reference configuration B0:

∇X S =~0 in B0 (7)

ST~N = ~T d on ∂B0 (8)

The equilibrium equation (7) together with the traction
boundary condition (8) can also be rewritten in the current con-
figuration B. We first rewrite Eq. (5c) in compact form using

ℬ0

ℬ

�ℬ�ℬ0

N

n�

Td

td

Reference configuration

Current configuration

Fig. 2 Schematic of the change from the reference configuration of an
elastic body to its current configuration after finite-strain deformation.
The elastic body B is subjected to a distribution of surface tractions
~T d(~X) in the reference configuration B0 with boundary ∂B0. The unit
vector ~N is normal to the reference boundary ∂B0 and points toward
the exterior of the body B. After the deformation, described by the
mapping χ, the body is in the current configuration B and is bounded
by the boundary ∂B. The surface tractions in B are noted~t d. The unit
vector ~n is normal to the current boundary ∂B and points toward the
exterior of the body B.

Eq. (6):

δXE [~x] =
∫

∂B0

(
ST~N−~T d

)
.δX~xdA−

∫
B0

(∇X S)δX~xdV (9)

Let us recall Nanson’s formula that connects the surface ele-
ments in the reference and deformed configurations:

~nda = JF−T~NdA

where~n is the outward unit vector normal to the current bound-
ary ∂B of the body, J ≡ detF is the determinant of the tensor
F and F−T denotes the inverse of the transpose of F. Defining
the Cauchy stress tensor as T = J−1FS and making use of the
balance of rotational momentum TT = T, the first integral in
the r.h.s. of (9) can be rewritten as an integral over the current
boundary ∂B of the body:∫

∂B0

(
ST~N−~T d

)
.δX~xdA =

∫
∂B

(
T~n−~td

)
.δX~xda (10)

where we have defined the traction applied on the current
boundary ∂B as ~td = ~T dJ~NFT~n. Now using the formula for
volume change dv = JdV , as well as the identity ∇X .(JF−1) =~0,
it follows immediately that:∫

B0

(∇X S)δX~xdV =
∫
B
(∇xT)δX~xdv (11)

Injecting (10) and (11) into equation (9), we thus obtain the
local equilibrium equations in the current configuration:

∇xT = ~0 in B (12)

T~n = ~td on ∂B (13)

Note that either (7)-(8) or (12)-(13) are valid provided that S,
T and F are continuously differentiable tensor fields.
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2.2 Variational principle for discontinuous fields: stress
balance for an elastic body at equilibrium in the pres-
ence of a discontinuity.

In many situations however, the boundary value problems (7)-
(8) or (12)-(13) do not possess any solution (or extremal), with
the required degree of smoothness. In this case, one may try to
relax some of the smoothness requirements and look for bro-
ken extremals instead. A broken extremal is a solution of (7)-
(8) or (12)-(13) in which some of the fields of interest (~x, S,
T, F, etc) are allowed to have local discontinuities. Of course
true discontinuities seldom occur in experiments and these dis-
continuities must be physically interpreted as abrupt changes
across a transition zone whose extent compared to other typi-
cal length scales of the problem is small and where additional
physics come into play.

However, such broken extremals are typically not uniquely
defined and additional constraints must be enforced to find
a unique solution to the boundary value problems (7)-(8) or
(12)-(13). One possible approach to solve this underdetermi-
nation consists in introducing a small inner zone where these
additional physical mechanisms are specified. If a solution of
the inner problem is found, then one attempt to match it to the
outer solution (the broken extremal). In favorable situations,
this matching procedure resolves the underdetermination and
a unique solution is found. In the elastowetting problem at
hand, the width of this inner zone is the width of the contact
line. Although this quantity is so far unknown experimentally,
X-ray and confocal measurements gives an upper bound of the
order of a few tens of nanometer52,62,63. Because the contin-
uum mechanics framework will break at such scales, the physics
describing the behavior of the inner zone is likely to involve a
molecular theory. Of course, because elastic deformations are
large, all (material and geometric) nonlinearities should then
be taken into account, both in the inner and outer zones. A
matching between a nonlinear molecular theory at small scales
and a nonlinear continuous theory at large scale is a difficult
approach that we shall not attempt in this work. Instead, we
will take another route that we now introduce.

Rather than specifying some additional physical mechanisms
in the transition zone, we will use the framework of nonlinear
elasticity with discontinuous fields97,98 and look for true bro-
ken extremals. In what follows, we thus treat the sharp varia-
tion across the transition zone as a true discontinuity, or a de-
fect. Said otherwise we will consider that those sharp variations
occur over a region of vanishing width. The discontinuity may
then be a point, a line or a surface embedded in R3. As men-
tioned above, some additional constraints must be specified
across the discontinuity in order to obtain a unique solution.
As we shall see below, those constraints are obtained, loosely
speaking, by minimizing the energy functional with respect to
the position of the discontinuity. Because this minimization can
be performed either with respect to the deformed position or
to the reference position of the defect, it yields two sets of con-
straints known as the Weierstrass-Erdmann jump conditions. Of
course, in the presence of discontinuities, the derivation pre-
sented in the previous paragraph fails from the mathematical
standpoint and some modifications must be made in order to
expand the class of admissible solutions and derive the associ-
ated Weierstrass-Erdmann jump conditions.

Note that besides the elastowetting problem studied here,

broken extremals and their associated Weierstrass-Erdmann
jump conditions have a very long history in physics, starting
with the pioneering work of Poisson in the early nineteenth
century100. They arise in numerous problems of continuum
mechanics such as shock waves101–103, phase-transformation
fronts104,105, plasticity106, but also in various extremization
problems in physics. The most notable example of a broken
extremal is the path of a light ray at an interface between
two media with different refractive indices. Remarkably, the
Weierstrass-Erdmann condition at the surface of discontinuity
turns out to be none other than the celebrated Snell-Descartes
law.

ℬ0-�0 �ℬ0

NTd

Reference configuration containing a singular surface
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+

N�

�N�
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Fig. 3 Reference configuration of an elastic body containing a singular
surface. An elastic body B containing a singular surface Σ0 with bound-
ary ∂Σ0 is subjected to a distribution of surface tractions ~T d(~X) in the
reference configuration B0 with boundary ∂B0. The unit vector ~N is
normal to the reference boundary ∂B0 and points toward the exterior
of the body B. Inspired by 107.

We illustrate the use of broken extremals with the description
of the equilibrium of an elastic body containing a surface of dis-
continuity of finite extent Σ0 and regular boundary ∂Σ0 in the
reference configuration (Fig. 3). Following Maugin97,98,107, we
exclude the surface of discontinuity from the domain of inter-
est and define E |Σ0 (respectively W |Σ0 ) as the restriction of E

(respectively W ) to the domain B0−Σ0:

E |Σ0 [~x] =
∫
B0−Σ0

W |Σ0(F)dV −
∫

∂B0

~T d .~xdA (14)

We now apply the principle of stationary potential energy to
E |Σ0 . Because W |Σ0 does not contain any singularity, we repeat
the calculation leading to Eq. (5c) and we obtain:

δE |Σ0 [~x] =
∫
B0−Σ0

∇X

(
∂W |Σ0

∂F
δX~x
)

dV

−
∫
B0−Σ0

∇X

(
∂W |Σ0

∂F

)
δX~xdV

−
∫

∂B0

~T d .δX~xdA (15)

The transformation of the first volume integral appearing in
the r.h.s. of Eq. (15) into a surface integral is difficult. We need
a generalization of Gauss’s theorem. To do so, we enclose the
finite surface Σ with by a closed surface made of a torus-like
tube enclosing the boundary ∂Σ0 and connected with two sur-
faces enclosing the singular surface Σ0

107. The generalization
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reads:∫
B0−Σ0

∇X

(
∂W |Σ0

∂F
δX~x
)

dV =
∫

∂B0

(
ST~N

)
δX~xdA

+
∫

∂Σ0

(
lim
Γ→0

∫
Γ

ST~NΓdΓ

)
δX~xdL

−
∫

Σ0

[ST ]~NΣδX~xdA (16)

where we keep the notation S for the nominal stress tensor,
here defined as S ≡ ∂W |Σ0/∂F, to avoid notation overload. In
Eq.(16), the bracket operator [A(~X)] denotes the finite jump of
the field A(~X) defined as:

[A(~X)]≡ A+−A−

where A± is the uniform limit of A(~X) when approaching Σ0

from the positive or negative side of Σ0, along its normal ~NΣ that
is oriented from the negative side Σ

−
0 to the positive side Σ

+
0 of

Σ0. Γ is the cross-sectional circuit, in the indirect (clockwise)
sense, around a section of the torus-like tube enclosing ∂Σ0.

We now inject Eq. (16) in Eq. (15) to obtain the local form
of the variational principle in the presence of a discontinuity in
the reference configuration:

∇X S = ~0 in B0−Σ0 (17)

ST~N = ~T d on ∂B0 (18)[
ST
]
~NΣ = ~0 across Σ0 (19)

lim
Γ→0

∫
Γ

ST~NΓdΓ = ~0 on ∂Σ0 (20)

Equations (17) and (18) are the equilibrium-equation and
traction-boundary-condition (i.e. equivalents of equations (7)-
(8) restricted to the domain B0−Σ0). Equation (19) imposes
the continuity of tractions across the singular surface Σ0 while
Eq. (20) is a condition on the nature of the singularity (if any is
present in the body) at the boundary ∂Σ0. These two identities
form the first Weierstrass-Erdmann condition, here expressed
for the case of a 2D discontinuity surface of finite extent em-
bedded in a three-dimensional body. If the discontinuity is a
surface of infinite extent, then only Eq. (19) is relevant while for
a line discontinuity only Eq. (20) is used. Following the same
procedure leading from Eqs.(7)-(8) to Eqs.(12)-(13), Eqs.(17)
to (20) can also be rewritten to obtain the local form of the
variational principle in the presence of a discontinuity in the
current configuration:

∇xT = ~0 in B−Σ (21)

T~n = ~td on ∂B (22)

[T]~nΣ = ~0 across Σ (23)

lim
Γ→0

∫
Γ

T~nΓdΓ = ~0 on ∂Σ (24)

2.3 Variational formulation of the elastowetting problem:
accounting for surface energy

So far we have not associated any surface energy with either the
boundary ∂B0 or with the surface of discontinuity Σ0. However,

a surface energy will be associated with ∂B0 in many instances
such as elastowetting. Then, additional surface terms will ap-
pear in the energy functional Eq. (14) and in the boundary con-
dition Eq. (18) as well as in the traction continuity conditions
Eqs.(19)-(20).

We shall now derive the local form of the variational principle
in the presence of a discontinuity for an elastic body that has a
surface energy. For the sake of simplicity, we focus on the sim-
ple case where the discontinuity is a straight one-dimensional
line (such as the triple line), denoted L (respectively L0) in
the current (respectively reference) configuration, embedded
at the free surface of a three-dimensional space. In this frame-
work, the force~t d(~x) appearing at the r.h.s. of Eq. (22) can be
rewritten as a force per unit of length of L ~γ`v applied on the
current contact line L . The contact line L partitions the cur-
rent boundary ∂B of the body into two disjoints surfaces ∂B 1

and ∂B 2. These surfaces correspond to the solid-liquid and
solid-vapor interfaces, and their surface energies are different
in general. We assume that the body is made of a soft material
such as an elastomer the surface energy γs of which we have
argued to be strain-independent and equal to that of the base
liquids. If we define γs1 and γs2 the surface energies of the solid-
liquid and solid-vapor interfaces, the energy functional EL0 [~x]
is:

EL0 [~x] =
∫
B0−L0

W |L0(F)dV −
∫
L
~γ`v .~xd`

+
∫

∂B1
γs1da+

∫
∂B2

γs2da (25)

Now, we evaluate the variational derivative of Eq. (25) to ob-
tain the local form of the variational principle, keeping in mind
that the deformed domains ∂B 1, ∂B 2 and L are of course
themselves functions of the displacement field ~x. From the
properties of the shape derivative108, we have the following
result:

δX

∫
∂B i

γsida =−
∫

∂B i
γsi~n · (∇x~n)δX~xda−

∫
L
~γsi .δX~xd`

where we have defined the vector ~γsi ≡ γsi~tL i with~tL i the in-
ward unit vector locally tangent to the boundary ∂Bi of the
body at the contact line L and directed from the L toward
the interior of ∂B i. The variation of the remaining terms in
the r.h.s. of (25) are performed as in (15) and (16) and then
converted in integrals over the current domain following the
same procedure as in (10) and (11). Written in local form, the
equilibrium description of an elastic body in the presence of a
single contact line is:

∇xT = ~0 in B−L (26)

T~n = γs1~n · (∇x~n) on ∂B 1 (27)

T~n = γs2~n · (∇x~n) on ∂B 2 (28)

lim
Γ→0

∫
Γ

T~nΓdΓ = ~γ`v +~γs1 +~γs2 on L . (29)

Equation (29) is the nonlinear force balance Eq. (3) presented
in the introduction. Note that, according to Batra109, the
l.h.s. of (29) can also be rewritten in term of the Eshelby stress
tensor (W |L0 I− SF). The results above are independent of a
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specific constitutive equation and they are therefore valid for
arbitrarily large deformations and arbitrary materials. We have
shown in a recent work82 that solutions to the system (26-29)
are able to capture available data on the dependence of the
shape of the ridge on strains applied to the elastomer75. An in-
teresting outcome of the success of this model is that plasticity
seems to be unimportant to describe elastowetting in contrast
to early suggestions61.

The equations that we have derived in Sec. 2.2 and 2.3 de-
scribe systems for which the position of the contact line is pre-
scribed, either in the reference or current configuration such as
pinned static contact lines and the contact lines moving in a pre-
scribed fashion (for example at constant velocity). In the more
general case, the contact line is free to move: its lateral position
is not prescribed by the experiments or by the symmetries of the
system. Then this position is an additional unknown quantity
that must be solved for together with the force balance pre-
sented above. An additional scalar equation is needed to close
the system. This equation is simply given by the minimization
of the energy functional (25) with respect to the lateral posi-
tion of the contact line (again this minimization can be carried
either in the reference or current configuration). This mini-
mization leads to a balance of force known as the configura-
tional force balance at the ridge tip, or the second Weierstrass-
Erdmann condition, involving as one may expect the Eshelby
stress tensor. While the study of this configurational force bal-
ance is outside the scope of this paper we will present shortly
thereafter a simple connection between the Eshelby and Cauchy
stress tensors valid for disclination-like defects.

3 Spreading of a liquid on a compliant
substrate: the nonlinear dynamics of
elastowetting.

Now we turn to the dynamics of elastowetting, in which a drop
of viscous fluid spreads at the free surface of a viscoelastic ma-
terial. This work is motivated by available experimental data.
We assume that the substrate is a linearly viscoelastic mate-
rial that again does not experience plasticity. For such a mate-
rial, all the various stress measures (such as the Cauchy stress
tensor T and the nominal stress tensor S) reduce to the same
viscoelastic linear stress measure σσσ that we define below. We
investigate the effects of the geometric nonlinearities that arise
in the boundary-value-problem defined by Eqs. (26) to (29).

3.1 An inviscid drop moving over a soft visco-elastic sub-
strate

Energy dissipation in the most general case of a droplet spread-
ing on a soft viscoelastic substrate may occur in both the liquid
and the solid. However, most experiments look at the spreading
of water on an elastomer. Dissipation in the former can then be
argued to be much smaller than that in the latter. As a conse-
quence, we restrict our model to the case of an inviscid fluid
spreading on a viscoelastic substrate.

We start by considering a single contact line moving with a
constant velocity V and a dynamic contact angle θdyn at the free
surface of an initially flat, incompressible, linearly viscoelastic
layer with thickness H (Fig. 4). The reference state of the layer
is described in cartesian coordinates by the region −∞ < x < ∞

and −H < y < 0. The moving contact line deforms the layer and

θdyn

ζ(x,t)

ey

ex

Velocity V

θ-
θ+

Visco-elastic solid

Liquid Vapour

H

Rigid substrate

Fig. 4 A liquid drop with surface tension γ` moves at constant velocity
V over a viscoelastic layer with initial thickness H and surface tension
γs. The drop is located on the left of the contact line and advances with
a dynamic contact θdyn with the horizontal. The surface deformation of
the viscoelastic layer is denoted by the function ζ (x, t). The slope of
the interface has a jump discontinuity at the contact line. The angles
θ− = |∂ζ/∂x|x=Vt− | and θ+ = |∂ζ/∂x|x=Vt+ | are the positive slopes of
the solid surface on each side of the triple line located at x =Vt.

maps material points initially located at ~x = {x,y} to a new po-
sition ~χ(~x, t) =~x+~u(~x, t) where ~u(~x, t) = {ux(~x, t),uy(~x, t)} is the
displacement field. The liquid has a surface tension γ` ≡ |~γ`v|
and we assume for simplicity that the solid has a constant uni-
form surface tension γs ≡ |~γsv|= |~γs`|. In other words, the static
equilibrium contact angle is θeq = π/2. We further assume that
the stress σσσ(~x, t) and strain εεε(~x, t) = ∂~u/∂~x tensors in the soft
layer are related by the following general constitutive equation,
valid for arbitrary linear viscoelastic materials:

σσσ(~x, t) =
∫ t

−∞

µ(t− t ′)
∂εεε

∂ t ′
dt ′− p(~x, t)III, (30)

where III is the identity matrix. The pressure p(~x, t) is the La-
grange multiplier associated with the incompressibility con-
straint. For stationary contact lines, the system is described by
the following incompressibility condition and balance of linear
momentum:

∇ ·~u = 0 and ∇ ·σσσ =~0. (31)

We close the system of equations (31) with appropriate
boundary conditions. Many experimental setups focus on sup-
ported elastomer layers that are bound to a more rigid sub-
strate such as a glass slide. As a consequence, we assume that
displacements vanish at the lower face of the viscoelastic layer
y =−H:

ux(x,y =−H, t) = uy(x,y =−H, t) = 0. (32)

Everywhere at the free surface y = 0, except at the contact
line located at x = Vt, the normal projection of the viscoelastic
stresses balances the Laplace pressure induced by the curved
interface of the solid interface and we have, keeping in mind
that the spreading fluid is inviscid:

σσσ ·~n = γs~n · (∇~n) at y = 0 and x 6=Vt. (33)

At the contact line (x =Vt,y = 0), we apply the general force
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balance (3) with γs` = γsv = γs and no external forces, ~fext =~0.
This condition reads, respectively along~ex and~ey:

−γ` cosθdyn = γs
{

cosθ
−− cosθ

+
}
+~ex · ~f s, (34a)

γ` sinθdyn = γs
{

sinθ
−+ sinθ

+
}
+~ey · ~f s, (34b)

where θ− = |∂uy/∂x(Vt−,0)| and θ+ = |∂uy/∂x(Vt+,0)| are the
positive slopes of the solid surface on each side of the triple line
located at x = Vt (Fig.2). The force ~f s exerted by the solid on
the triple line is given by Eq. (4). The reader may notice that
the sole force exerted by the fluid onto the viscoelastic substrate
is located at the contact line and only has a capillary origin:
it is due to the liquid-vapor surface energy. In particular, be-
cause the fluid is taken here as inviscid, it does not exert any
shear on the solid along the liquid-solid interface. We stress
again that our analysis is restricted to the stationary motion of
triple lines for which the influence of the initial conditions, and
in particular the slow growth of the viscoelastic ridge follow-
ing the deposition of the drop63, is negligible. In the case of
droplets impacting a soft surface, the pulling forces appearing
on the l.h.s. of Eqs. (34a) and (34b) must be multiplied by a
time-dependent step function H(t− t0) where t0 is the time of
droplet deposition. Depending on the substrate rheology, such
a modification may significantly alter the selection of the dy-
namic contact angle.

3.2 The linear solution

The boundary-value problem (30)-(31)-(32)-(33)-(34) is posed
and we must solve it. Within the framework of a linear theory,
the slopes of the deformed solid surface must be small com-
pared to unity for consistency. This condition will be verified
when γ`/2γs� 1. Taking this quantity as a small parameter, we
may seek solutions of the system (30) to (34) of the form:

{~u, p,σσσ ,εεε, ~fs}=
∞

∑
i=1
{~u(i), p(i),σσσ (i),εεε(i), ~f (i)s }

(
γ`

2γs

)i
.

Although the convergence of the sum above is not guaran-
teed a priori, we have shown recently82 that the second order
theory indeed provides a nice approximation to the numerical
solution of the fully nonlinear equations, by contrast with the
linear theory. We will therefore keep the same approach here
and see wether a second-order theory provides a good descrip-
tion of the available experimental data. Using the expansion
above, a double Fourier transform with respect to both time
and space yields the first-order solution of the boundary-value
problem (30-34). The full solution, given in Appendix A, is
equivalent to that of a wedge disclination close to the tip of
the ridge110. We only provide here the solution for the surface
deflection ζ (x, t)≡ (γ`/2γs)ζ

(1)(x, t)≡ (γ`/2γs)u
(1)
y (x,y = 0, t):

ζ (x, t) =
1

2π

∫
∞

−∞

dkeik(x−Vt)
ζ̂ (k), (35)

with

ζ̂ (k) =
γ` sinθdyn

γs

[
k2 +F(k)

]−1
,

and

F(k) =
[

2H2k2 + cosh(2Hk)+1
sinh(2Hk)−2Hk

]
2kµ̂(−kV )

γs
, (36)

where we have used the particular definition of µ̂(ω):

µ̂(ω) = iω
∫

∞

0
µ(t)e−iωtdt.

The solution (35-36) satisfies the boundary-value problem
(30-34) at first order in γ`/2γs provided that cosθdyn =O(γ`/2γs)

or, equivalently, that θdyn = π/2+O(γ`/2γs). In particular, let

us underline that both components of the first-order force
~
f (1)s

vanish. This is due to the fact that the linear solution has an
integrable logarithmic singularity near the ridge tip. However,
the linear solution (35-36) does not specify the dynamic contact
angle beyond the zeroth-order approximation (θdyn = π/2): it
only provides the deformed profile of the interface in response
to a vertical localized force of magnitude γ` sinθdyn. This lin-
ear solution can be found in several other studies48,59,60. The
departure of the dynamic contact angle θdyn from π/2 results
from the fact that the slope of the deformed interface is finite.
Said otherwise, it is selected by contributions of higher order in
γ`/2γs that we consider in what follows.

3.3 The nonlinear solution: selection of the dynamic con-
tact angle

Let us now write explicitly the boundary-value problem (30-34)
at second order. The second-order constitutive relation reads:

σσσ
(2)(~x, t) =

∫ t

−∞

µ(t− t ′)
∂εεε(2)

∂ t ′
dt ′− p(2)(~x, t)III (37)

while the second-order equilibrium equations read:

∇ ·~u(2) = 0 and ∇ ·σσσ (2) =~0 (38)

supplemented by the following boundary condition at the bot-
tom of the viscoelastic layer, at y =−H:

u(2)x (x,y =−H, t) = u(2)y (x,y =−H, t) = 0 (39)

while at y = 0 and x 6=Vt, we have:

σ
(2)
xy = −γs

∂ζ (1)

∂x
∂ 2ζ (1)

∂x2 +σ
(1)
xx

∂ζ (1)

∂x
(40a)

σ
(2)
yy = γs

∂ 2ζ (2)

∂x2 (40b)

where σ
(1)
xx is the first-order stress field associated with the

first-order solution {~u1, p1}. Because the force at the ridge
tip involves the stress tensor expressed in the deformed con-
figuration, it is instructive to rewrite the boundary condition
at the free surface (40) in the deformed configuration (x′ =
x+ux(x,y),y′ = y+uy(x,y)):

σ
(2)
xy +

∂σ
(1)
xy

∂x′
u(1)+

∂σ
(1)
xy

∂y′
ζ
(1)−σ

(1)
xx

∂ζ (1)

∂x′
=−γs

∂ζ (1)

∂x′
∂ 2ζ (1)

∂x′2
(41)

σ
(2)
yy +

∂σ
(1)
yy

∂x′
u(1)+

∂σ
(1)
yy

∂y′
ζ
(1) = γs

∂ 2

∂x′2

{
ζ
(2)+

∂ζ (1)

∂x′
u(1)
}
(42)

It can be seen directly from this formulation that the second-
order stress tensor will exhibit a singularity stronger than ∼
log(x) in the deformed configuration. Indeed the third term in
the l.h.s. of (41) acts as a source of surface shear with a ∼ 1/x′

singularity. Note that a shift from a logarithmic singularity in
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the linear theory to a stronger singularity in a nonlinear frame-
work is expected both from the numerics82,89,90 and from the
analytic solution of the nonlinear Flamant problem111,112. At
the contact line, (x =Vt,y = 0), we have at second order:

−γ` cosθdyn =
γs

2
{(θ+)2− (θ−)2}+~ex ·

~
f (2)s (43a)

0 = ~ey ·
~

f (2)s (43b)

Although an analytical solution of the boundary-value-
problem (37)-(38)-(39)-(40)-(43) can be obtained, its lengthy
expression needs not be recorded here as we are interested only

in the second-order restoring viscoelastic force
~
f (2)s acting at the

tip of the ridge. In Appendix B, we show that
~
f (2)s is horizontal,

i.e.~ey ·
~
f (2)s = 0, and given by the following integral:

~ex ·
~
f (2)s =

∫
∞

−∞

σ
(1)
xx

∂ζ

∂x
dx (44)

Using Parseval’s theorem, we can rewrite Eq. (44) in the
frame of the moving ridge as:

~ex ·
~
f (2)s =

γ 2
` sin2 (θdyn)

γs
R

[∫
∞

−∞

ikF2(k)
2πγs(k2 +F(k))(k2 +F(−k))

)dk
]

≡
γ 2
` sin2 (θdyn)

γs
Fve(H,V,µ,γs) (45)

where the symbol R stands for the real part and F2(k) is given
by:

F2(k) =
[
−2H2k2 + cosh(2Hk)+1

sinh(2Hk)−2Hk

]
2kµ̂(−kV )

γs
,

Using the solution (35-36), the restoring capillary force,
i.e. the first term in the r.h.s. of (43a), can be rewritten as:

γs

2
{(θ+)2− (θ−)2}=

γ` sin(θdyn)

2
(
θ
+−θ

−)
=

γ` sin(θdyn)

2π
R

[∫
∞

−∞

−ikζ̂ (k)dk
]

=
γ 2
` sin2 (θdyn)

γs
R

[∫
∞

−∞

−ik
2π(k2 +F(k))

dk
]

≡
γ 2
` sin2 (θdyn)

γs
Fcap(H,V,µ,γs) (46)

The term
(
θ+−θ−

)
/2 represents the rotation of the elastocap-

illary ridge during the motion of the contact line. Also, the
reader can notice that expressions (45) and (46) are of the
same order O(γ`/2γs)

2, after a division by γs. Injecting results
(45) and (46) into equation (43a) we obtain:

−γ` cos(θdyn) =
γ 2
` sin2 (θdyn)

γs
Fcap(H,V,µ,γs)

+
γ 2
` sin2 (θdyn)

γs
Fve(H,V,µ,γs), (47)

that we can rewrite:

−
cos(θdyn)

sin2 (θdyn)
=

γ`

γs

(
Fcap(H,V,µ,γs)+Fve(H,V,µ,γs)

)
(48)

We deduce from Eq. (48) that the capillary driving force, i.e. the
l.h.s. of (43a), is resisted not only by the restoring capillary
force (46) but also by the viscoelastic force (45). As a con-
sequence, the Neumann construction,i.e. Eq. (48) without Fve,
does not hold in general during spreading of a liquid on a vis-
coelastic material.

Relation (48) can be deduced from a global balance of force
as well. The total second-order force per unit of length that
drives the motion of the contact line and that is applied to the
system is −γ` cos(θdyn). Under the assumption of constant ve-
locity, this tangential force must be balanced by the total re-
sisting shear force, also a second-order quantity since the first-
order shear force vanishes, developed by the viscoelastic layer
at the free boundary:

− γ` cos(θdyn)+
∫

∞

−∞

σ
(2)
xy dx = 0 (49)

which, in view of the boundary condition (40a), is strictly
equivalent to (48). Rearranging the terms in (49), we obtain
a nonlinear force balance at the contact line in dimensionless
form that is identical to Eq. (48):

−
cos(θdyn)

sin2 (θdyn)
=

γ`

γs

(
Fcap(H,V,µ,γs)+Fve(H,V,µ,γs)

)
(50)

Equation (50) gives the relation between the dynamic contact
angle and the velocity of a contact line moving on a substrate
of arbitrary rheology and thickness.

We now proceed with the first steps towards a comparison of
Eq. (50) with experimental data. We have to choose a constitu-
tive equation for the substrate. A common choice to describe
the rheology of the soft layers used in these experiments is
the Chasset-Thirion model113 for which the complex frequency-
dependent viscoelastic modulus µ̂(ω) is:

µ̂(ω) = µ0(1+(iωτ)m)

Once this constitutive equation has been specified, it is eas-
ily shown that the dimensionless functions Fcap and Fve,
which represent respectively the dimensionless capillary and
viscoelastic restoring forces, can be written in terms of the
dimensionless velocity Ξ = V τ/`s and dimensionless thickness
Λ = H/`s where `s = γs/(2µ0) is the elastocapillary length:

Fcap(H,V,µ,γs) = Fcap

(
V τ

`s
,

H
`s

)
≡Fcap (Ξ,Λ) (51)

Fve(H,V,µ,γs) = Fve

(
V τ

`s
,

H
`s

)
≡Fve (Ξ,Λ) (52)

Equation (50) is plotted in Fig. 5A for various values of the di-
mensionless thickness Λ. For all thicknesses, we observe that
the ratio cosθdyn/sinθdyn

2 increases with Ξ following a power-
law behavior. Also, we see that the dynamic contact angle
seems to saturate at high velocity. The individual contributions
of the capillary Fcap (Ξ,Λ) and viscoelastic Fve (Ξ,Λ) restoring
forces are plotted in Figure 5-B and are of similar magnitude.
In order to better understand the selection of the dynamic con-
tact angle, we investigate analytically the asymptotic behavior
of relation (50) in the limit of small (Ξ =V τ/`s� 1) and large
(Ξ =V τ/`s� 1) velocities.

Journal Name, [year], [vol.],1–19 | 9



A

0.01 0.10 1 10 100

0.05

0.10

0.50

1

Dimensionless velocity

B

0.01 0.10 1 10 100

0.20

0.25

0.30

0.35

0.40

0.45

Λ

,

C

Fig. 5 Results of the nonlinear model of elastowetting. A: Plot in log-log scale of relation (50) between the dynamic contact angle θdyn and the
dimensionless velocity Ξ for different values of the dimensionless thickness Λ = H/`s showing the power-law behavior with exponent m at low
velocities and saturation of the contact angle at large velocities. B: Plot in log-log scale of the dimensionless functions Fcap(Λ,Ξ) and Fve(Λ,Ξ),
defined respectively by Eq. (51) and Eq. (52), as functions of the parameter Λ for a fixed value of the dimensionless velocity Ξ = 1. Fcap(Λ,Ξ) and
Fve(Λ,Ξ) capture the dependence of the dynamic contact angle on the aspect ratio Λ of the problem. C: Plot in log-log scale of the dimensionless
functions Icap(Λ) and Ive(Λ), defined respectively by Eq. (53) and Eq. (54), that capture the dependance of the dynamic contact angle on the
aspect ratio Λ of the problem at low velocities. Both functions converge to m/(2cos(mπ/2)) in the limit Λ→ ∞.

3.4 Asymptotic behavior at small velocities Ξ

In this part, we focus on the case Ξ = V τ/`s� 1. In this limit,
the dimensionless forces Fcap and Fve admit the following mul-
tiplicative decompositions with a power-law dependence on the
dimensionless velocity Ξ:

Fcap (Ξ,Λ) = Icap(Λ)Ξ
m

Fve (Ξ,Λ) = Ive(Λ)Ξ
m

while the influence of the dimensionless thickness Λ = H/`s on
the selection of the dynamic contact angle is captured by the
dimensionless functions Icap(Λ) and Ive(Λ) (Fig. 5C):

Icap(Λ) =
∫

∞

0

kmG(kΛ)sin(mπ/2)
π(k+G(kΛ))2 dk (53)

and

Ive(Λ) =
∫

∞

0

km sin(mπ/2)
π(k+G(kΛ))2 dk (54)

with

G(z) =
[

2z2 + cosh(2z)+1
sinh(2z)−2z

]

Writing I (Λ) =Icap(Λ)+Ive(Λ), the dynamic force balance
may be expressed in the following compact form:

−
cos(θdyn)

sin2 (θdyn)
=

γ`

γs
I (Λ)Ξ

m (55)

In the limit of an infinitely thick substrate (Λ → ∞), in-
tegrals Icap(Λ) and Ive(Λ) converge to the same limit
m/(2cos(mπ/2)), yielding:

I∞ ≡ lim
Λ→∞

I (Λ) = 2 lim
Λ→∞

Icap(Λ) =
m

cos(mπ/2)

On an infinitely thick substrate, the restoring capillary force and
the viscoelastic force thus contribute equally to the horizontal
force balance at the moving ridge. In this limit the θdyn −Ξ

relationship obeys the following equation:

−
cos(θdyn)

sin2 (θdyn)
=

γ`

γs

m
cos(mπ/2)

Ξ
m when Λ→ ∞ (56)

Figure 5-A shows that relation (56) is in excellent agreement
with the general force balance (50) in the limit of small ve-
locities and infinite thickness. The individual contributions of
the restoring capillary and viscoelastic forces differ on the other
hand for finite values of the aspect ratio Λ (Fig.5C). In partic-
ular, the restoring viscoelastic force Ive(Λ) follows the scaling
∼ Λ3(1−m)/4 at small thickness, in agreement with a previous
analysis60.

3.5 Asymptotic behavior at large velocities Ξ� 1

In the case of large velocities Ξ� 1, we observe that the con-
tributions to motion resistance of the viscoelastic braking force
Fve and the capillary restoring force Fcap are equal (Fig. 5B)
with a magnitude that is independent of the substrate thickness
Λ. These contributions read:

lim
Ξ→∞

Fcap(Ξ,Λ) = lim
Ξ→∞

Fve(Ξ,Λ) =
m

2(1−m)
,

We therefore obtain the following simple prediction for the
maximum achievable dynamic contact angle θ max

dyn :

−cos(θ max
dyn )

sin2 (θ max
dyn )

=
γ`

γs

m
1−m

(57)

While it is natural to expect the (dimensionless) restoring vis-
coelastic force Fve to depend only on the rheology of the ma-
terial at large enough thickness, it may be surprising that the
same result also holds for the (dimensionless) restoring capil-
lary force Fcap. This result can be understood by noting that
the restoring capillary force is related to the rotation of the elas-
tocapillary ridge as previously noted59 and shown above. For
a purely elastic material the deformation of the ridge is sym-
metric and no rotation occurs (under the assumptions of neg-
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ligible inertia and equal surface energies for the solid-vapour
and solid-liquid interfaces). Because of the viscoleasticity of
the substrate, the part of the material that has been pulled up-
ward by the contact line takes some time to relax behind the
contact line and this delay induces a rotation of the ridge. For a
thick enough substrate, this rotation thus only depends on the
rheology of the substrate.

3.6 Comparison with experiments

Many of the predictions that we have described in the previous
section are reminiscent of experimental observations. For ex-
ample, saturation of the dynamic contact angle at high velocity
has been observed59. The prediction that both the restoring
capillary force and the resisting viscoelastic force are of compa-
rable order of magnitude may help solving this issue.

Before proceeding with a comparison of the model with ex-
periments, we note that available experimental data on the dy-
namics of contact lines on soft solids are not obtained with
liquids in neutral wetting situation, i.e. with θeq = π/2. The
equilibrium values are closer to 105◦. However Eq. (55) was
derived under the hypothesis that the surface energies of the
solid-vapour and solid-liquid interfaces are equal. In the gen-
eral case of broad interest where these quantities are different,
the linear problem becomes much more difficult to solve. Al-
though a solution of the linear problem can be found under the
form of an infinite series using Sneddon’s theory of dual inte-
grals, it is of limited use for the development of an analytical
nonlinear theory, as performed in this work.. Thus, we make
the assumption that Eq. (55) still holds in the vicinity of an ar-
bitrary equilibrium contact angle. Then we have:

cos(θeq)− cos(θdyn)

sin2 (θdyn)
=

γ`

γs

(
Fcap (Ξ,Λ)+Fve (Ξ,Λ)

)
(58)

where the reduced thickness Λ = H/`s and velocity Ξ = V τ/`s

are now defined for consistency based on the effective elasto-
capillary length `s = γs/(2µ0) where γs is an effective value that
can be extracted from static experiments60. Finally, while the
present analysis has been performed for an advancing contact
line, it also holds for a receding contact line, simply by chang-
ing the sign of the left hand side in Eq. (58).

We compare Eq. (58) to experimental data taken from ref. 60

in Fig. 6-A and B, using the values of the physical parameters
given in this reference. Despite the many approximations of
our model, and in particular the fact that the static equilibrium
contact angle is not π/2 and that the parameter γ`/(2γs)∼ 0.9 is
not much smaller than unity (and hence terms of order higher
than (γ`/2γs)

2 might have had a significant contribution), the
agreement between theory and experiments is excellent, with-
out any adjustable parameter. In particular, the Ξm power law
predicted by equation (56) is observed. In Fig. 6-C we also com-
pare the solid opening angle measured in91 to both our theoret-
ical prediction as well the Neumann triangle construction using
the values of the physical parameters they provide, except for
the value of the solid surface tension which was not measured
independently. Its value was thus fixed at 43 mNm−1 in order
to fit the value of the opening angle at vanishing velocity. This
value is within the error bar of the measurement performed
in60 (γs = 42± 2 mNm−1) for a similar system. In both cases,
the experimental data are very well described by our nonlin-

ear theory while the Neumann construction, i.e. Eq.(58) with
Fve = 0, fails. Finally, figure 6D shows the relation between
θdyn−θeq and the ridge rotation. Although the agreement be-
tween experimental data and either the nonlinear theory (58)
or the Neumann construction is poor, the nonlinear theory pro-
vides a better description of the experimental data (regression
coefficient R2 = 0.93) than the Neumann construction (regres-
sion coefficient R2 = 0.66), independently of the value of the
solid surface tension γs.

We can also compare Eq. (57) with available data for the
maximum dynamic contact angle θ max

dyn
59. Our model predicts

148± 2 ◦ for γs = 42± 2 mNm−1, a value close to the exper-
imental measurement of 145± 4 ◦ without any adjustable pa-
rameter. By contrast, a model based solely on the balance of
surface tensions, i.e. the Neuman triangle corresponding to the
case Fve = 0, predicts θ max

dyn = 155±4 ◦, overestimating the ob-
served value by 10◦, even when taking the surface tension of
the solid as a fitting parameter. We therefore conclude from
this comparison that it is necessary to take into account the
nonlinearities arising from both the capillarity and the visco-
elasticity in order to accurately describe the experimental data.
We also note that the very good agreement between the theory
and the experimental data suggests that the present theory in-
deed holds for equilibrium contact angles that are not exactly
equal to π/2.

3.7 The global dissipation approach

We provide here for completeness a derivation of the force bal-
ance (48) based on a global dissipation approach. Starting from
the energy balance equation, and taking into account the fact
that the surface energy terms appearing in the energy func-
tional (14) are constant throughout the motion under consid-
eration, global dissipation D is given by:

D =
d
dt

∫
B0−L0

W |L0(F)dV −
∫

∂B0

~NS
∂~χ

∂ t
dA− lim

Γ→0

∫
Γ

~NΓS
∂~χ

∂ t
dΓ

(59)

For a contact line in uniform translation, we have in the
steady state regime the following connection:

∂~χ

∂ t
=−F ·~V

where ~V = V~ex is the velocity of the contact line. In order to
estimate the first term appearing in the r.h.s. of (59) we make
use of the generalized Reynolds theorem to obtain:

d
dt

∫
B0−L0

W |L0(F)dV =
∫
B0−L0

∂W |L0

∂ t
dV

− lim
Γ→0

∫
Γ

~NΓW |L0 I~VdΓ (60)

Collecting the terms in the expressions above, we obtain the
following expression for D:

D =
∫
B0−L0

∂W |L0

∂ t
dV +~V ·

{
− lim

Γ→0

∫
Γ

~NΓ

(
W |L0 I−SF

)
dΓ

}
in which we recognize the expression for the configurational
force ~fΓ acting on a moving singularity:

~fΓ =− lim
Γ→0

∫
Γ

~NΓ

(
W |L0 I−SF

)
dΓ
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Fig. 6 Comparison of predictions from the nonlinear model of elastowetting with experimental data. A and B: Comparison of experimental data from
Zhao et al. 60(magenta circles) with Eq. (50) (blue shaded area) at a fixed thickness of 600 µm (A) and fixed velocity 0.1 mms−1 (B). Panels A and B
are in log-log scale. The values of the physical parameters are taken from ref. 60 and read γ` = 72±2 mNm−1, γs = 42±2 mNm−1, µ0 = 1085±124
Pa, τ = 15.4±0.4 ms, m= 0.66±0.04 and θeq = 106±3◦. The width of the theoretical predictions in B and C reflects the uncertainties in the values
of the physical parameters. C and D: Comparison of experimental data from van Gorcum et al. 91 (green diamonds) with our nonlinear theory
(Eq. (50), blue line) and with the Neumann construction (Eq. (50) with Fve = 0, yellow line) at large thickness Λ→∞. In (C) the solid angle is plotted
as a function of the velocity while in (D) the departure of the dynamic contact angle from the static contact angle is plotted as a function of the
ridge rotation. The values of the physical parameters (no uncertainties reported) are taken from 91 and read γ` = 72 mNm−1, µ0 = 390 Pa, τ = 0.54
s, m= 0.58 and θeq = 105±2◦. The value of the solid surface tension, not measured independently, was fixed at γs =43 mNm−1.

With this notation, the global dissipation can be re-expressed in
the classical form:

D =
∫
B0−L0

∂W |L0

∂ t
dV +~V ·~fΓ

The equation above states that the energy is dissipated by vis-
coelastic stresses within the bulk of the half-space as well as
by the configurational force acting on the moving discontinu-
ity. Since energy is injected inside the system by the capillary
force at the moving contact line, we obtain the following force
balance:

(cos(θeq)− cos(θdyn))V =
∫
B0−L0

∂W |L0

∂ t
dV +~V ·~fΓ (61)

Now, let us note that, on account of the logarithmic singular-
ity of the first-order stress field at the contact line, we have up

to second order:

~fΓ = − lim
Γ→0

∫
Γ

~NΓ

(
W |L0 I−SF

)
dΓ

≈ lim
Γ→0

∫
Γ

~NΓS(2)dΓ≈ lim
Γ→0

∫
Γ

~NΓSdΓ = lim
Γ→0

∫
Γ

~nΓTdΓ

The previous relationship implies that, at leading order, the
force at the tip of the ridge is given by the integral of either the
Cauchy or the Eshelby stress tensor around a contour enclosing
the ridge tip. Finally, we may inject the first and second-order
solutions derived previously into equation (61) to recover ex-
actly the nonlinear force balance (48).

4 A viscous drop moving over a soft
visco-elastic substrate

In this part, we show how our rationale can be extended to the
more general case of a viscous droplet moving on a viscoelastic
substrate. We first deal with the spreading of a viscous droplet
on a rigid elastic substrate. We derive both the De Gennes and
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the Cox-Voinov models that describe the shape of the droplet in
the vicinity of the moving contact line. We then deal with a vis-
coelastic substrate, and we identify the existence of an apparent
or soft hysteresis in the relation between the contact angle and
the capillary number of the experiment. The magnitude of this
soft hysteresis depends on the viscoelasticity of the solid.

4.1 De Gennes and Cox-Voinov models of wetting on rigid
substrate

We now consider the case of a viscous drop moving on a rigid
elastic substrate. Equation (34) can again be used to find the
force balance at the contact line. In the limit of an infinitely
rigid substrate, the angles θ− and θ+ vanish and the vertical
capillary traction is balanced solely by the elastic stresses69. In
the horizontal direction we are thus left with the relation (34a):

− γ`v cos(θdyn)+~ex · ~f ext = γsv− γs`+~ex · ~f s

but now the localized force ~f s must be evaluated by using a
contour inside the viscous fluid. As shown by Moffatt114, in the
vicinity of a liquid wedge defined by a free surface moving at
velocity V with respect to a solid surface, the fluid flow is self-
similar in polar coordinates (r,θ) and can be derived from the
stream function ψ = V r f (θ). The velocity components (vr,vθ )

of the fluid flow are:

vr =
1
r

∂ψ

∂θ
=V f ′(θ), vθ =−∂ψ

∂ r
=−V f (θ)

where f (θ) is:

f (θ) =
θ cos(θ)sin(θdyn)−θdyn cos(θdyn)sin(θ)

sin(θdyn)cos(θdyn)−θdyn

while the pressure field p(r,θ) is given by:

p(r,θ) =
η

r
4V cos(θ)sin(θdyn)

sin(2θdyn)−2θdyn

where η is the dynamic viscosity. Here the free surface is lo-
cated at θ = 0 while the solid substrate is located at θ =−θdyn.
Note that this solution requires the presence of a normal sur-
face pressure 4V µ sin(θdyn)/(r(sin(2θdyn)− 2θdyn)) at the free
surface in order to keep the interface flat. Using the solution
above for the velocity and pressure fields, one can easily calcu-
late the horizontal projection of the viscous force as:

~ex · ~f s =−4V η
sin2 (θdyn)

sin(2θdyn)−2θdyn

A striking feature of this result is that, although the pressure
and stress fields diverge at the corner with a singularity in ∼
r−1, the resulting viscous force at the corner is finite and in fact
independent of the choice of contour.

In addition to the viscous force, there is also a contribution at
the tip of the moving wedge coming from the divergent surface
pressure 4V µ sin(θdyn)/(r(sin(2θdyn)− 2θdyn)) at the free sur-
face needed to keep the interface flat. The usual approximation
in dynamical wetting consists in integrating this contribution
between a microscopic scale rmin and a macroscopic scale rmax

in order to obtain the force ~f ext, leading to:

~ex · ~f ext = 4V η
sin2 (θdyn)

sin(2θdyn)−2θdyn
ln
(

rmax

rmin

)

Once lumped together with the viscous force at the tip by defin-
ing r′max = ermax with e the Euler constant, we obtain the follow-
ing force balance at the tip of the moving wedge:

cos(θdyn)− cos(θeq) = 4Ca
sin2 (θdyn)

sin(2θdyn)−2θdyn
ln
(

r′max
rmin

)
where Ca = ηV/γ` is the capillary number. In the small-angle
limit (θeq � 1, θdyn � 1), we recover the classical de Gennes
model of wetting:

θdyn

(
θ

2
dyn−θ

2
eq

)
= 6Ca ln

(
r′max
rmin

)

The De Gennes model makes the assumption that the inter-
face remains flat in the vicinity of the contact line. This con-
straint must be enforced by hypothesizing the existence of an
ad-hoc external force of unknown origin. The flat interface ap-
proximation can easily be relaxed by allowing the dynamic con-
tact angle to vary over space, θdyn = θdyn(r). In that case the
divergent viscous stress is directly balanced by the Laplace pres-
sure:

− 4V η

r
sin(θdyn)

sin(2θdyn)−2θdyn
= γ`

∂θdyn

∂ r

which can be rewritten after standard manipulation:

Ca ln
(

r
rmin

)
=
∫

θdyn

θ min
dyn

θ − sin(θ)cos(θ)
2sinθ

dθ (62)

where we have introduced the microscopic contact angle
θ min

dyn = θdyn(rmin). Introducing the function g(θ):

g(θ) =
∫

θ

0

z− sinzcosz
2sinz

dz,

Eq.(62) can be rewritten:

Ca ln
(

r
rmin

)
= g(θdyn)−g(θ min

dyn )

and we recognize immediately the Cox-Voinov relation115,116.

4.2 Predictions for the general case

We now turn to the so far largely unexplored case of a viscous
liquid moving over a viscoelastic substrate. In order to keep the
model as simple as possible, we shall make the assumption that
the viscous shear stress exerted by the viscous liquid on the vis-
coelastic substrate can be neglected and the sole force exerted
by the liquid on the viscoelastic substrate is due to the (mov-
ing) capillary force at the contact line. Under this assumption,
the microscopic contact angle is selected at small scales by the
nonlinear force balance (50):

−
cosθ min

dyn

sin2
θ min

dyn
=

γ`

γs

(
Fcap(H,V,µ,γs)+Fve(H,V,µ,γs)

)
≡ A (63)

where the explicit dependence of A on H, V , µ, γ` and γs has
been omitted without ambiguity to lighten the notation. The
solution of this transcendental equation is, under the condition
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that θ min
dyn = π/2 at vanishing velocity:

θ
min
dyn =

π

2
+ arctan

(√
1+4A 2−1

2

) 1
2

Plugging this result into the Cox-Voinov relation above, we ob-
tain:

g(θdyn) = Ca ln
(

r
rmin

)
+g

π

2
+ arctan

(√
1+4A 2−1

2

) 1
2


In order to make further progress it is necessary to choose a
rheological model for the viscoelastic substrate and, as previ-
ously, we will focus on the Chasset-Thirion rheology. With this
choice, and recalling the definition of the dimensionless veloc-
ity Ξ=V τ/`s and dimensionless thickness Λ=H/`s, we obtain:

g(θdyn) = g

π

2
+ arctan

(√
1+4A 2(RCa,Λ)−1

2

) 1
2


+Ca log
(

r
rmin

)
(64)

Here we have defined the dimensionless number R:

R =
2µτγ`

ηγs
=

τγ`v
¯̀sη

which is a measure of the relative influence of dissipation in the
viscoelastic substrate and in the drop. This number can also be
seen as the inverse of a capillary number for the motion of the
liquid, where the velocity of the droplet is replaced by a char-
acteristic velocity defined with respect to intrinsic properties of
the solid substrate, Uve = ¯̀s/τ. At R = 0 dissipation occurs only
in the viscous drop and we recover the Cox-Voinov law for an
equilibrium angle of π/2:

g(θdyn) = Ca ln
(

r
rmin

)
+g(π/2)

The limit of large R is relevant to the case of a water
drop moving on a soft viscoelastic substrate. In this situation,
R ∼ 6.104. In Fig. 7 the dynamic contact angle θdyn is plot-
ted as a function of the capillary number Ca for several values
of the number R. The most striking feature of this model is
that , as the dissipation in the substrate increases, i.e. when R

increases, the θdyn-Ca curves exhibit an hysteresis-like behav-
ior characterized by an abrupt change of the dynamic contact
angle around Ca = 0 (Fig. 7A). However, the contact angle is
never multi-valued within the present framework. Therefore,
this apparent or soft hysteresis results from the high substrate
dissipation. For high values of R and at small Ca, the dynamic
contact angle is selected by the nonlinear force balance (50)
and thus independent of viscous dissipation in the drop (Fig. 7-
B). When the capillary number Ca ∼ 1/R the dynamic contact
angle reaches a plateau before increasing again as viscous dis-
sipation becomes significant. As the capillary number further
increases, the dynamic contact angle increases asymptotically
to π. In view of the results of the previous section, it is easy
to show that, in the limit R → ∞ the amplitude ∆θ of this soft
hysteresis is independent of the substrate thickness and given
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ical parameters are as follow: Λ = 100, m = 0.66, γ`/2γs = 0.8. A: dy-
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R = 0 the energy is entirely dissipated in the liquid film and we recover
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by:

∆θ = 2π−2arctan

 2√
1+4

(
γ`
γs

m
1−m

)2
−1


1
2

The second striking feature of the present model is observed
for receding contact lines and is characterized by a marked de-
crease of the critical capillary number at which the dynamic
contact angle vanish. This critical value controls the onset of
deposition of Landau-Levich films. Interestingly, both a sharp
change in dynamic contact angle at low capillary number, as
well as a reduction in the critical capillary number for liquid
film deposition were reported recently in wetting experiments
on polymeric materials117.

5 Discussion
We have shown in this paper that the generalized force balance
(3) was able to describe accurately, and without any adjustable
parameter, the dependence of the dynamic contact angle on
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both the velocity of a contact line as well as the material and
geometric properties of the soft substrate.

We have demonstrated that the motion of the triple line is
opposed by both viscoelastic and capillary forces, the two con-
tributions being equal in the limit of an infinitely thick sub-
strate. This observation explains why, in a model based purely
on capillarity, such as the Neuman force balance, the surface
tension of the solid had to be redefined, by dividing it by ∼ 2
in order to fit the experimental data59. Although this discrep-
ancy was attributed to a finite slope effect, the model presented
here shows that the reason for this disagreement comes from
the absence of the viscoelastic force exerted by the substrate
that resists contact line motion into the balance used to derive
this value. Account for this force leads to a reasonable pre-
diction. The success of our model also suggests that there is
no need to invoke a rate dependence of the surface tension of
the solid to explain data obtained in dynamics. Our mecha-
nism is similar to the viscous relaxation observed in pendent
drops of viscous liquids: the measurement of surface tension is
accurate only when viscous relaxation is completed118. In a dy-
namic situation, such a relaxation hardly occurs and it should
be accounted for in modeling attempts. Our model does so. In
addition, we have also shown that the same equation allows
to recover the classical de Gennes and Cox-Voinov models for
the spreading of a viscous drop on a rigid substrate. Therefore,
although the experimental data were limited to slowly moving
drops, for which the dissipation mostly occurs in the viscoelastic
substrate, we expect that the framework presented here will be
able to describe much more general situations, for which dissi-
pation occurs simultaneously in the solid and the liquid phases.
In addition, the generalized force balance (3) can also be ap-
plied to the yet largely unexplored case of the spreading of a
viscous drop over a viscous liquid bath.
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Appendix A: Displacement field near the
ridge tip
Let us first give the first-order solution of the boundary-value
problem (30-34) for the displacement field u(1)x ,u(1)y and pres-
sure field p(1) in the frame of the moving ridge (x′ = x−Vt,y):

u(1)x (x′,y) = − 1
2π

∫
∞

−∞

iγ`e(y|k|+ikx ′)y
γsk+2µ[−kV ]sign(k)

dk, (65)

u(1)y (x′,y) = − 1
2π

∫
∞

−∞

γ`e(y|k|+ikx ′)(−1+ y|k|)
γsk2 +2µ[−kV ]|k|

dk, (66)

p(1)(x′,y) = − 1
2π

∫
∞

−∞

2γ`µ[−kV ]e(y|k|+ikx ′)|k|
γsk2 +2µ[−kV ]|k|

dk, (67)

Let us now introduce the polar coordinate system (r,θ) cen-
tered on the moving ridge tip. Close to the tip of the ridge (at
r� `s), the expressions above for the displacement field can be
simplified. Working in the limit of vanishing velocity for sim-
plicity, we find that for r� `s:

u(1)x (r,θ) =
γ`

µ

[
θ cos(θ)

2π
+

sin(θ)
2π

(
γ−1+ log

r
`s

)]
r
`s

+o(r logr)

u(1)y (r,θ) = − γ`

µ

[
θ sin(θ)

2π
− cos(θ)

2π

(
γ−1+ log

r
`s

)]
r
`s

+o(r logr)

where γ ≈ 0.577 is the Euler gamma constant and the o notation
is the small o in Landau’s notation. These expressions above
are equivalent to the displacement field of a wedge disclination
with Frank vector 2γ`/γs

110. It can also be seen directly from
these expressions that they do not satisfy one of the compatibil-
ity equations of elasticity110.

Appendix B: Derivation of the nonlinear
force at the moving contact line
Using the contours defined in Fig. 8, the nonlinear force ~f s can
be expressed as:

~f s = lim
ε→0

∫
Cε

σσσ ·~ν d`

because the contour Cε is now oriented in the anti-clockwise
sense but the normal ~ν is oriented toward the tip of the ridge.
In order to calculate this force, let us consider the oriented com-
pound contour C defined as C =C1∪Cε ∪C2∪CR. This contour
contain no singularity and thus, in absence of body force and
acceleration, Cauchy theorem states that:∫

C

σσσ ·~νd`= 0

which can be rewritten as:∫
CR

σσσ ·~νd`+
∫
Cε

σσσ ·~νd`+
∫

C1∪C2

σσσ ·~νd`= 0

Since σσσ ·~n = γs~n · (∇~n) on C1∪C2, we have:

∫
Cε

σσσ ·~νd`=−
∫

CR

σσσ ·~νd`−
−ε∫
−R

γs~n · (∇~n)dx−
R∫

ε

γs~n · (∇~n)dx (68)
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CR

Cε

C1 C2

Fig. 8 Definition of the contours needed to obtain the nonlinear force
at the ridge tip

In order to calculate the first integral appearing in the r.h.s. of
equation (68) above, let us introduce the vector~νR as the radial
unit vector in a frame attached at the tip of the ridge. We thus
have:∫

CR

σσσ ·~νRd` =
γ`

2γs

∫
CR

σσσ
(1) ·~νRd`

+

(
γ`

2γs

)2 ∫
CR

{
σσσ
(2)+(~u(1) ·∇)σσσ (1)

}
·~νRd`

+O

(
γ`

2γs

)3
(69)

Now these two integrals can easily be calculated in the limit
where the radius of the long arc CR goes to infinity. In that case
the first integral is simply equal to the vertical first order-force
(i.e γ` sinθdyn~ey) while the second-order term is given by the
spatial integration of the boundary condition (40a), keeping in
mind the orientation of the contour:

lim
R→∞

∫
CR

σσσ ·~νRd` = γ` sin(θdyn)~ey (70)

−
0−∫
−∞

γs~n · (∇~n)dx−
∞∫

0+

γs~n · (∇~n)dx

+~ex


0−∫
−∞

σ
(1)
xx

∂ζ (1)

∂x
dx+

∞∫
0+

σ
(1)
xx

∂ζ (1)

∂x
dx


Now we plug the result above in equation (68) and multiply
the result by ~ex in order to obtain, upon taking both the limit
R→ ∞ and ε → 0:

~ex ·~f s =

(
γ`

2γs

)2


0−∫
−∞

σ
(1)
xx

∂ζ (1)

∂x
dx+

∞∫
0+

σ
(1)
xx

∂ζ (1)

∂x
dx

+O

(
γ`

2γs

)3

Because the singularity of the integrand in the formula above is

integrable, it can be rewritten, up to second-order, as:

~ex · ~f s =

(
γ`

2γs

)2 ∞∫
−∞

σ
(1)
xx

∂ζ (1)

∂x
dx
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