
HAL Id: hal-03002639
https://hal.science/hal-03002639v1

Submitted on 20 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse obstructions for minor-covering parameters
Dimitris Chatzidimitriou, Dimitrios M. Thilikos, Dimitris Zoros

To cite this version:
Dimitris Chatzidimitriou, Dimitrios M. Thilikos, Dimitris Zoros. Sparse obstructions
for minor-covering parameters. Discrete Applied Mathematics, 2020, 278, pp.28-50.
�10.1016/j.dam.2019.10.021�. �hal-03002639�

https://hal.science/hal-03002639v1
https://hal.archives-ouvertes.fr

Sparse Obstructions for Minor-Covering Parameters∗

Dimitris Chatzidimitriou† Dimitrios M. Thilikos‡†§ Dimitris Zoros†

Abstract

Given a finite set of graphs H and a non-negative integer k, we define Ak(H) as the set
containing every graph G that has k vertices whose removal provides a graph without
any of the graphs in H as a minor. It is known that if H contains at least one planar
graph then each obstruction in Ak(H) has at most kcH vertices, for some cH depending
only on the choice of H. In this paper, we investigate the size of the graphs in Ak(H)
that belong to certain classes of sparse graphs. In particular, we prove that for every
graph F , if H contains at least one planar graph and only connected graphs, all graphs
in Ak(H) that are F -topological minor-free have at most cF,H · k vertices, where cF,H

depends exclusively on the choice of H and F . Our result is a consequence of two more
general conditions on graph parameters, namely the Finite Integer Index Property and
Protrusion Decomposability, that can serve as a general framework for proving linear
bounds for obstructions.

keywords Obstruction sets, graph minors, apex-extensions, protrusion decompositions, tree
decompositions, finite integer index.

Contents
1 Introduction 2

2 A more general result 4
2.1 The FII property . 4
2.2 Graph decompositions . 5
2.3 The main theorem . 5
2.4 Proof of Theorem 1 . 6
2.5 Outline of the proof of Theorem 2 . 7

3 Basic concepts and results 9
3.1 Sets and functions . 9
3.2 Graphs . 9

3.2.1 Trees . 9
3.2.2 Rooted trees . 10
3.2.3 Pair collectons . 10

3.3 Graph decompositions . 11
3.3.1 Protrusion decompositions . 11

∗Emails of authors: hatzisdimitris@gmail.com, sedthilk@thilikos.info, dzoros@math.uoa.gr.
†Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece.
‡AlGCo project-team, LIRMM, Université de Montpellier, CNRS, Montpellier, France.
§The work of the second author has been supported by the projects DEMOGRAPH (ANR-16-CE40-0028)

and ESIGMA (ANR-17-CE23-0010).

1

mailto:hatzisdimitris@gmail.com
mailto:sedthilk@thilikos.info
mailto:dzoros@math.uoa.gr

3.4 Tree-decompositions of boundaried graphs . 12
3.4.1 Treewidth of boundaried graphs . 12
3.4.2 (α, β)-rooted tree-decompositions . 15

4 The proof of Theorem 2 17
4.1 Some functions . 17
4.2 A lemma on the compression of admissible pairs 17

4.2.1 Replacements . 17
4.2.2 Compressible and admissible pairs . 18

4.3 Compressing transition pairs . 20
4.3.1 The minor relation for boundaried graphs 20
4.3.2 Transition pairs . 20
4.3.3 Weak leanness and linkedness . 20
4.3.4 Looking for transition pairs . 22
4.3.5 Compressing transition pairs . 23

4.4 Boundaried graph compression . 24
4.5 Rich protrusions . 24

4.5.1 Bounding graphs without rich protrusions 25
4.6 Compressing a null-transition pair . 26

4.6.1 Bounding potentials . 26
4.6.2 A combinatorial lemma on pair collections 27
4.6.3 Protrusion compression . 29
4.6.4 The proof of Theorem 2 . 29

5 Conclusions and open problems 29

1 Introduction
All graphs in this paper are simple, finite, and undirected. We use the term graph collection
for finite sets of graphs, while for infinite sets of graphs we use the term graph class. A graph
collection H is connected if all its graphs are connected, while we say that H is planar if at
least one of its graphs is planar. A graph H is a minor of G if H can be obtained from some
subgraph of G after a series of edge contractions. Also, H is a topological minor of G if G
contains some subdivision of H. Given a collection of graphs H, we define exc(H) as the class
of all graphs that do not contain any of the graphs in H as a minor.

Given a graph class G we say that G is minor-closed if every minor of a graph in G belongs
to G. Given a graph class G, we define obs(G) as the set of all minor-minimal graphs that do
not belong to G. Because of the Robertson and Seymour theorem [52], obs(G) is finite. This
implies that every minor-closed graph class can be finitely characterised by its obstruction set:
indeed, for such a class G it holds that G = exc(obs(G)), therefore a graph H belongs to G iff
none of the (finitely many) graphs in obs(G) is a minor of H. To identify the obstruction set
of a minor-closed graph class can be a difficult task and there is a long line of research on the
characterization (partial or complete) of the obstruction sets for diverse minor-closed graph
classes (see [2–5,7, 9, 12,14,22,24,25,27,33,37,40,42,44–46,50,53–56]).

Apex extensions. In this paper we study the obstructions of the general family of minor-
closed graph classes that are produced from simpler ones using the k-apex extension operation.
More specifically, given a minor-closed graph class G and a non-negative integer k, we define
the k-apex extension of G as the graph class containing every graph G that, by removing at

2

most k vertices, becomes a graph in G. Given a collection of graphs H, we denote by Ak(H)
the k-apex extension of exc(H). Notice that Ak(H) is quite general as it can express several
known (parameterized) graph classes. For instance, Ak({K2}) is the class of graphs with a
vertex cover at most k, Ak({K3}) is the class of graphs with a feedback vertex set at most
k, Ak({K4,K2,3}) is the class of k-apex outerplanar graphs [20], and Ak({K5,K3,3}) is the
class of k-apex planar graphs (see [44]).

In the general case, it has been proved in [3] that Ak(H) can be effectively computed,
given H and k. In practice, the identification of Ak(H) is a hard problem even for simple
choices of H and it becomes really hard for non-trivial values of k (see e.g. [21]).

Particular cases where Ak(H) has been completely identified are Ak({K2}), for k ≤
7 [12, 24, 25], Ak({K3}), for k ≤ 2 [22], and A1({K4,K2,3}) [20] – see also [44] for some
interesting discussion on A1({K5,K3,3}). Another direction is to identify graphs in Ak(H)
with some particular property (e.g., [53] identified all the outerplanar graphs in Ak({K3}) or
to just identify members of Ak(H) (e.g., [44] proved that |A1({K5,K3,3})| ≥ 36). Another
direction is to upper bound the sizes of the graphs in Ak(H) by some function fH on k. Such
a function has been found for H = {K2} where fH(k) = 2k+ 1 [23]. It was also proved in [49]
that if H is connected and contains the graph K1,t, then fH(k) = O(tk7 + t7k2). Without
doubt, the most general result in this direction was proved in [30] and says that if H is
planar, then all obstructions in Ak(H) have size bounded by a polynomial function of k, i.e.
fH(k) = kcH , where cH is a constant that depends only on the choice of H. A challenging
open question is whether this bound can become uniform in the sense of improving it to
fH(k) = cH · kc, where c is some universal constant not depending on H. This question has
been the main motivation of this paper (see also the Conclusion section in the end of the
paper for some related discussion).

Our results. In this paper we consider some connected and planar collection of graphs H.
We prove a linear, in k, bound on the size of the graphs in obs(Ak(H)) that do not contain
some fixed graph F as a topological minor. To be more precise, we define TF as the class of
all graphs excluding F as a topological minor and we prove the following:

Theorem 1. Let H be a planar and connected graph class and let F be a graph. Then for
every non-negative integer k, every graph in TF ∩ obs(Ak(H)) has at most c · k vertices, for
some c depending on H and F .

The above theorem has several implications. For instance, planar obstructions for k-apex
extensions to H have linear, in k, size. Indeed, just consider F = K6 and observe that TF
contains all planar graphs. Moreover, for every t, bounded (by t) degree graphs in obs(Ak(H))
have also size O(k) (just take F = K1,t).

Organization of the paper. The proof of Theorem 1 follows as a special case of a much
more general result. This result is Theorem 2 and its presentation demands some additional
concepts that are given in Section 2. Such concepts are the FII property (Subsection 2.1)
and the notion of protrusion-decomposability (Subsection 2.2). Theorem 2 is presented in
Subsection 2.3. The proof of the fact that Theorem 1 follows from Theorem 2 is given in
Subsection 2.4. As the proof of Theorem 2 is lengthy, we dedicate the last subsection of
Section 2 to an outline of it.

In Section 3 we present the main definitions required for the proof and some preliminary
results. This includes notation on sets and functions in Subsection 3.1 and on graphs and
trees in Subsection 3.2. We also give several types of graph-decompositions in Subsection 3.3.
In Subsection 3.4, we provide extensions of those decompositions to boundaried graphs along
with some related preliminary results.

3

The bulk of the proof of Theorem 2 is given in Section 4. The structure of this section is
presented in the outline of the proof in Subsection 2.5. Finally, in Section 5, we give some
open problems and conjectures related to the size of the obstructions of the k-apex extensions
of minor-closed graph classes.

2 A more general result
Given a graph G, we denote by V (G) and E(G) the vertex and the edge set of G respectively.
We also set |G| = |V (G)|. Let u ∈ V (G) and e ∈ E(G). We denote by G \ S, for some
S ⊆ V (G), the graph obtained from G by removing the vertices in S. We also use G \ u to
denote G \ {u}.

2.1 The FII property

Boundaried graphs. A labeling of a graph G is any injective function λ : V (G) → N.
Let t ∈ N. A t-boundaried graph is a triple G = (G,X, λ) where G is a graph, X ⊆ V (G),
|X| = t, and λ is a labelling of G. We call X the boundary of G and we call the vertices
of X the boundary vertices of G. We also call G the underlying graph of G and the integer
t = |X| boundary size of G. When we do not want to specify what is the value t, we simply
call G boundaried graph instead of t-boundaried graph. We denote by B(t) the class of
all t-boundaried graphs and we set B(≤t) =

⋃
i∈{0,...,t} B(i). Given a t-boundaried graph

G = (G,X, λ), we define the label normalising function of G ψG : X → [t] such that for each
v ∈ X, ψG(v) = |{u ∈ X | λ(u) ≤ λ(v)}|. Note that, as λ is an injective function, ψG is a
bijection and, given a boundary vertex v of G, we call ψG(v) the index of v. We also define
the frontier graph of G as

HG = ({1, . . . , t}, {{ψG(x), ψG(y)} | {x, y} ∈ E(G[X])).

Two t-boundaried graphs G1 and G2 are compatible if HG1 = HG2 (not just isomorphic).
Let G1 = (G1, X1, λ1) and G2 = (G2, X2, λ2) be two t-boundaried graphs. We define the

gluing operation ⊕ such that (G1, X1, λ1)⊕ (G2, X2, λ2) is the graph G obtained by taking
the disjoint union of G1 and G2 and then, for each i ∈ [t], identifying the vertex ψ−1

G1
(i) and

the vertex ψ−1
G2

(i) (i.e., we identify boundary vertices of the same index). Keep in mind that
G1 ⊕G2 is a graph and not a boundaried graph. Moreover, the operation ⊕ requires both
boundaried graphs to have boundaries of the same size.

Finite Integer Index. We call every partial function p mapping graphs to non-negative
integers a graph parameter. We denote by dom(p) (called the domain of p) the set containing
every graph G for which p(G) is defined.

Let p be a graph parameter and t ∈ N. Let Gi = (Gi, Xi, λi), i ∈ [2] be boundaried graphs
of boundary size at most t. We say that G1 ≡p,t G2 if G1 and G2 are both t′-boundaried
graphs for some t′ ∈ {0, . . . , t}, they are compatible, and

∃cG1,G2 ∈ Z ∀F ∈ B(t′), p(G1 ⊕ F) = p(G2 ⊕ F) + cG1,G2 (1)

If in the above definition, for some i ∈ [2], the graph Gi ⊕ F 6∈ dom(p), we assume that
p(Gi ⊕ F) =∞. It is easy to observe that ≡p,t is an equivalence relation on the set B(≤t).
Moreover, one of the equivalence classes of this relation is the set, denoted null(p), of all
boundaried graphs whose underlying graph does not belong to dom(p).

4

We say that p has Finite Integer Index (FII) if ≡p,t has a finite number of equivalence
classes for every t, i.e., the number of its equivalence classes of ≡p,t, depends on p and t only.

Given that p has FII, we define cardp(t) as the number of equivalence classes of ≡p,t, for
each t ∈ N. We define the function transpp that receives as inputs pairs (G1,G2) where
G1 ≡p,t G2 and Gi 6∈ null(p), i ∈ [2] and outputs the number cG1,G2 as in (1). Notice that
demanding that Gi 6∈ null(p), i ∈ [2] guaranties that transpp(G1,G2) is an integer.

Notice that the above definition slightly deviates from the standard one, given in [8], as we
additionally demand that the two boundary graphs G1 and G2 are compatible. We adopt this
definition of FII as it suits better to the presentation our proofs. Moreover, it is not hard to
prove that the two definitions (ours and the one in [8]) are equivalent. In fact, ≡p,t (because
of the compatibility demand) is a refinement of the equivalence relation in [8]. The notion of
FII first appeared in the works of [10, 18] and is similar to the notion of finite state [1, 11, 16].
Results and examples of parameters having the FII property can be found in [8, 30,31,38].

2.2 Graph decompositions

Tree-decompositions. Let G be a graph. A tree-decomposition of G is a pair D = (T, χ),
where T is a tree and χ : V (T)→ 2V (G) such that:

1.
⋃
q∈V (T) χ(q) = V (G),

2. for every edge {u, v} ∈ E, there is a q ∈ V (T) such that {u, v} ⊆ χ(q), and

3. for each v ∈ V (G) the set {t | v ∈ Xt} induces connected subgraph of T .

We call the vertices of T nodes of D and the images of χ bags of D. The width of a tree-
decomposition D = (T, χ) is max{|χ(q)| | q ∈ V (T)}−1. The treewidth of a G is the minimum
width over all tree-decompositions of G.

Protrusion decompositions. We denote by ∂G(S) the vertices of S that have neighbours
outside S and by NG(S) the neighbours of vertices in S that do not belong to S. Let G be a
graph and let R ⊆ V (G). We say that R is a β-protrusion of G if max{|∂G(R)|, tw(G[R])} ≤
β. An (α, β)-protrusion decomposition of a graph G (see Figure 2) is a partition P =
{X0, X1, . . . , X`} of V (G) such that

1. max{`, |X0|} ≤ α,

2. for every i ∈ [`], the set Ri = NG[Xi] is a β-protrusion of G and

3. for every i ∈ {1, . . . , `}, NG(Xi) ⊆ X0.

Intuitively, an (α, β)-protrusion decomposition of a graph can be seen as a partition into
at most α+ 1 sets where one of them, the central one, has size at most α and each of the rest
has treewidth at most β and has at most β neighbors, all contained in the central set.

Protrusion decompositions have been introduced in [8] in the context of kernelization
algorithms (see also [31,32]).

2.3 The main theorem
We say that a parameter p is protrusion decomposable, if there exists some c > 0 such that

∀G ∈ dom(p), G has a (c · p(G), c)-protrusion decomposition. (2)

5

If p is protrusion decomposable, we denote by dec(p) the minimum c for which (2) is true
and we call it protrusion decomposability constant of p. We use notation H ≤m G to denote
that H is a minor of G and we say that p is minor-closed if H ≤m G⇒ p(H) ≤ p(G). The
main result of this paper is a consequence of the following.

Theorem 2. Let p be a graph parameter that has FII, is protrusion decomposable, and is
minor-closed. There is a constant cp such that for every graph G ∈ dom(p), there exists a
graph G′ such that

1. G′ ≤m G,

2. p(G′) = p(G), and

3. |G′| ≤ cp · p(G).

The constant cp emerges from the proof of correctness of the above theorem, that is
presented in Section 3 and in Section 4. The precise value of cp is given in Subsection 4.1. we
postpone the proof of Theorem 2, to the next sections. All results in the rest of this section
are assuming this result.

2.4 Proof of Theorem 1
We define the graph class Gkp containing every graph G where p(G) ≤ k. We say that p is
c-normal for some operation, that can be edge deletion, vertex deletion or edge contraction, if
for every graph G ∈ dom(p) the application of the corresponding operation does not decrease
the value of p more than c. Furthermore, we say that p is normal if there exists a constant c
such that p is c-normal for some of the above operations.

Theorem 2 implies that when p is normal, there is a linear, in k, bound on the size of the
graphs in obs(Gkp).

Lemma 1. Let p be a graph parameter that has FII, is normal, protrusion-decomposable, and
minor-closed. Then, for every k ∈ N, all graphs in obs(Gkp) have at most O(k) vertices.

Proof. Let G ∈ obs(Gkp) and suppose towards a contradiction that |G| > cp · p(G). From
Theorem 2 there exists a graph G′ such that p(G′) = p(G) > k, G′ ≤m G, and |G′| ≤ cp ·p(G),
which implies that |G′| < |G|, a contradiction to the fact that G ∈ obs(Gkp).

We assume that p is c-normal for vertex deletions (the same argument holds for edge
deletions or edge contractions). Let u ∈ V (G). It holds that p(G)− c ≤ p(G \ u) and, as G
is a minor minimal graph with p greater than k and G \ u ≤m G, p(G \ u) ≤ k. This implies
that p(G) ≤ k + c. Hence |G| ≤ cp · (k + c).

There are no relevant parameters that are protrusion decomposable when defined in general
graphs. However, there are many parameters that when we restrict their domain in (topological)
minor free graph classes, then they become protrusion decomposable. See [8, 31, 38, 39] for
results on general families of parameters and graph classes where this holds. In the rest of this
subsection we give such a general framework based on the notion of treewidth-modulability.

We say that a graph parameter p is treewidth-modulable if there are constants c1, c2 such
that for every graph G and every non-negative integer k, p(G) ≤ k implies that there is some
S ⊆ V (G) such that |S| ≤ c1 · k and tw(G \ S) ≤ c2. The following is proved in [38].

Proposition 1. Let p be a graph parameter and let F be a graph. If p is treewidth-modulable
and every graph in dom(p) excludes F as topological minor, then p is protrusion-decomposable.

We now proceed with the proof of Theorem 1.

6

Proof of Theorem 1. Given a graph G we define the parameter pH,F as a partial function
mapping graphs in TF to numbers as follows:

pH,F (G) = min{k ∈ N | ∃S ⊆ V (G) such that |S| ≤ k and G \ S ∈ exc(H)}.

Notice that the parameter pH,F depends on both H and F and that dom(pH,F) = TF .
Observe also that pH,F has been defined so to ensure that

TF ∩ Ak(H) = GkpH,F .

Because of Lemma 1, it suffices to prove that pH,F has FII, is normal, protrusion-decomposable,
and minor-closed.

The fact that pH,F has FII has been proved in [8, Lemma 8.4]. We now claim that pH,F
is 1-normal for vertex deletions. Indeed, suppose in contrary that for some graph G and
some x ∈ V (G) pH,F (G) ≥ k while pH,F (G \ x) ≤ k − 2. The last relation implies that there
exists an S ⊆ V (G \ x) such that |S| ≤ k − 2 and (G \ x) \ S ∈ exc(H). This implies that
G \ (S ∪ {x}) ∈ exc(H) and as |S ∪ {x}| ≤ k − 1 we have that pH,F (G) < k, a contradiction.

Next we prove that pH,F is protrusion-decomposable. As H contains some planar graph
H, we know that all graphs in exc(H) have treewidth at most cH , for some constant cH that
depends only on the choice H [13, 15, 19, 51]. Therefore all graph in exc(H) have treewidth at
most cH . This implies that pH,F is treewidth-modulable, therefore, from Proposition 1 pH,F
is protrusion-decomposable.

Finally, it is easy to verify that pH,F is minor-closed. This completes the proof.

2.5 Outline of the proof of Theorem 2
We now outline the main ideas of the proof of Theorem 2 with references to the concepts,
definitions, and proofs that are given in Section 3 and in Section 4.
Rooted tree decompositions. For our proofs it is convenient to consider tree decomposi-
tions of boundaried graphs (see Subsection 3.4). A rooted tree decomposition of a boundaried
graph G = (G,X, λ) is a triple (T, χ, r) where (T, χ) is a tree decomposition, the tree T
is rooted on r and χ(r) = X. For each x ∈ V (T), we denote by Gx = (Gx, χ(x), λ|V (Gx))
the subgraph of G induced by the vertices in the bags of (T, χ) that are descendants of x,
boundaried on χ(x). We also consider rooted tree decompositions, called binary tree decompo-
sitions, where T is a binary tree and for each two vertices i, j of T , where j is a child of i,
|χ(i)| = |χ(j)| implies that |Gj | < |Gi| (see Subsection 3.4). Next, we define a special type
of rooted tree decomposition, namely, the (α, β)-rooted tree-decomposition, whose root node
contains at most α vertices, has at most α children and each of the rooted tree decompositions
corresponding to its children is a binary tree decomposition of width at most β, where its
root consists of the boundary of the vertices of its nodes and this boundary is different for
each child of the root (see Subsection 3.4). (α, β)-rooted tree-decompositions are much more
convenient to work with and we prove that if p is protrusion decomposable, then every graph
in dom(p) admits an (c · p(G), 2 · c)-rooted tree-decomposition (see Subsection 3.4), where
c = dec(p) is the protrusion-decomposability constant of p. Given such a decomposition
(T, χ, r) of G we denote by r(1), . . . , r(s) the children of r, for i ∈ {1, . . . , s}.
Rich protrusions. The second concept that we need is the one of rich protrusion. Intuitively
a rich protrusion can be seen as a β-protrusion X whose size is big enough (as a function of
the size of its boundary) so to enable the replacement in G of some part o X by a smaller
one so that the value of p on the resulting graph is the same as on G (see Section 4.5 for the
formal definitions).

7

Graphs without rich protrusions. Our next step is to prove that if G does not have rich
protrusions, then |G| = O(p(G)). For this, we already know that G has a (c ·p(G), 2c)-rooted
tree-decomposition and, based on this, we prove that

∑
i∈[s] p(Gr(i)) ≤ p(G) + O(1) (see

Subsection 4.5). Notice that as G does not contain any rich protrusion and as each Gr(i) can
be seen as such a protrusion, we have that |Gr(i) | = O(p(Gr(i))). This, together with the
previous inequality and the fact that |G| =

∑
i∈[s] |Gr(i) |+O(p(G)) imply that |G| = O(p(G))

(see Lemma 19). We conclude that if G does not have rich protrusions, its size is already
linear in the value of the parameter p on G.

What remains now is to deal with the case where G contains a rich protrusion R. Notice
that R is the vertex set of some boundaried graph H = (H,Y, λ) that has a binary rooted
tree decomposition D = (T, χ, r) of width at most 2c (i.e., R = V (H)). We stress here that
one might be tempted to apply directly the aproach of [8] and replace in G the boundaried
graph H by a smaller equivalent protrusion H′. This replacement creates a graph G′ where
p(G) = p(G′) + transpp(H,H′). However, we do not have any guarantee that G′ will be a
minor of G and moreover that transpp(H,H′) = 0 (in order to have that p(G) = p(G′)). To
enforce these additional properties, we follow an alternative approach that intuitively consists
of “locally compressing” the protrusion rather than “replacing” it with something smaller (see
also [43] for a similar approach). This is done in Lemma 23.
Pair collections. We now make a short break in order to give some additional definitions.
Let T be the tree of the decomposition D that is rooted on r. We say that a pair (a, b) ∈
V (T)×V (T) is a vertical pair if b is a descendant of a in T , distinct from a (see Subsection 3.2
for the formal definitions). Two vertical pairs (a, b) and (a′, b′) of (T, r) are non-interfering if
either a and a′ are non-comparable in T (i.e., none is a descendant of the other), or b′ is a
descendant of a, or a′ is a descendant of b. The inner territory of a pair (a, b) consists of the
descendants of a that are not proper descendants of b. A pair collection of (T, r) is a set C of
pairwise non-interfering vertical pairs of T. (See Figure 1 for a visualization of these concepts.)
The capacity of a pair (a, b) is the size of its inner territory. The capacity of C is the minimum
capacity of a vertical pair in C. Finally, the potential of C is

∑
(a,b)∈C transpp(Ha,Hb).

Transition pairs. We now go back to the decomposition D = (T, χ, r) of the protrusion
H. We say that a vertical pair (a, b) of T is a transition pair if Ha and Hb are compatible,
Ha ≡p,t Hb, and Hb is a “rooted”-minor of Ha in the sense that Hb can be obtained from Ha

by operations that preserve the boundaried vertices and the index correspondence between
them (see Subsection 4.3). We also say that a transition pair (a, b) is a null-transition pair if
transpp(Ha,Hb) = 0 (see Subsection 4.6). Given a transition pair (a, b) of T , we define the
(a, b)-compression of H as the boundaried graph obtained from H if we replace Ha by Hb

(see Subsection 4.2).
As an important step of our proof we show that if a vertical pair (a, b) has “big enough”

capacity, then we can revise the part of D that corresponds to the inner territory of (a, b)
so that it now contains some transition pair (a′, b′) (see Subsection 4.3). The proof of this
result makes extensive use of some suitable variants of the concepts of lean and linked tree
decompositions introduced in [6, 57].

We next prove a combinatorial lemma asserting that if |T | > c · p(G) for some constant
c ≥ 1, then T contains a pair collection of size bigger than p(G) and capacity “big enough” so
as to guarantee the existence of a pair collection of more than p(G) transition pairs (see 4.6).
Null-transitions. The next step is to prove that H has a null-transition pair (we postpone
the argumentation on this to the next paragraph). We can prove that if (a, b) is a such a pair
and H′ is the (a, b)-compression of H, it holds that, for every boundaried graph F that is
compatible to H, p(F⊕H) = p(F⊕H′). Given that there is some F such that F⊕H = G, we

8

obtain that p(G) = p(G′) where G′ = F⊕H′. As Hb is a rooted minor of Ha it also follows
that G′ is a minor of G and as a 6= b, |G′| < |G|. This means that, as long as we can find a
null-transition pair, we can always “compress” G to a minor G′ of it where p(G) = p(G′).
Existence of null-transition pairs. We conclude this exposition by explaining why a null-
transition pair exists in H. Since H is a rich protrusion, the tree T in its tree decomposition
is big enough to guarantee the existence of a pair collection C of more than p(G) transition
pairs. For each such pair the value transpp(Ha,Hb) expresses how much the value of the
parameter will change after a replacement. Using the fact that p is a minor closed parameter,
we prove that this value is never negative (see Subsection 4.6). Therefore the potential of C is
also non-negative (this is the only point in the proof that we use the minor-closedness of p).

We next prove that if we apply all (a, b)-compressions in C (in any order) the total reduction
of the parameter in the compressed graph will be at least the potential of C (see 4.6 and the
proof of Lemma 23). This proof is strongly based on the fact that the pairs in C are mutually
non-interfering. As this total reduction cannot be bigger than p(G) we conclude that at least
one of the pair in C should be a null-transition pair.

3 Basic concepts and results
In this section we introduce all combinatorial concepts and supporting results that are required
for the proof of Theorem 2.

3.1 Sets and functions
We denote by Z, N, and N+ the set of all integers, non-negative integers, and positive integers
respectively.

For two positive integers n,m ∈ N, such that n ≤ m, we write [n,m] = {n, n+ 1, . . . ,m}.
We also write [n] = {1, . . . , n}.
Given a set S, we denote by 2S the set of all subsets of S and by

(
S
2
)

the set of all subsets of
S with cardinality 2. Given a function f : A→ B and a set S, we define f |S = {(x, f(x)) |
x ∈ S ∩A} and f \ S = {(x, f(x)) | x ∈ A \ S}. Moreover, we always assume that a function
σ : A→ B is also defined on 2A so that for S ⊆ A, σ(S) = {σ(x) | x ∈ S}.

3.2 Graphs
Given an S ⊆ V (G), the closed neighbourhood of S in G is NG[S] = S ∪NG(S).

A subgraph H = (VH , EH) of a graph G = (V,E) is a graph such that VH ⊆ V (G) and
EH ⊆ E(G) ∩

(
V (H)

2
)
. If H is a subgraph of G and V (H) = V (G), then we say that H is a

spanning subgraph of G. If S ⊆ V (G), the subgraph of G induced by S, denoted G[S], is the
graph (S,E(G) ∩

(
S
2
)
). We also define G \ S to be the subgraph of G induced by V (G) \ S.

If S ⊆ E(G), we denote by G \ S the graph (V (G), E(G) \ S). Given a v ∈ V (G), we call
|NG({v})| the degree of v in G.

Given two graphs H and G we say that H is a minor of G, denoted by H ≤m G, if H can
be obtained by contracting some of the edges of some subgraph of G. A more formal (and
general) definition of the minor relation will be given in Subsection 4.3.

3.2.1 Trees

We say that a subset S of V (G) is connected if G[S] is connected. A tree is a connected
graph T , where T is the only connected spanning subgraph of T . The leaves of T are the

9

vertices of T that have degree at most 1 and are denoted as Leaf(T). Given a graph G and
a, b ∈ V (G), an (a, b)-path in G is every connected subgraph of G that is a tree of maximum
degree 2 where a and b are its vertices of degree at most 1. A path in G is any (a, b)-path P

where a, b ∈ V (G). We call a and b endpoints of P and if E(P) 6= ∅, then we say that P is a
non-trivial path. The vertices of a path P that are not leaves are called internal vertices of P .
Given a tree T and two distinct vertices a, b of V (T) we denote by aTb the unique (a, b)-path
in T . Given a graph G and two sets X,Y ⊆ V (G), a collection of t internally vertex-disjoint
paths between X and Y are t paths P1, . . . , Pt where, for h ∈ [t], one endpoint of Pi is in X

and the other is in Y and for every i, j ∈ [t], i 6= j there is no internal vertex of Pi that is a
vertex of Pj .

3.2.2 Rooted trees

A rooted tree is a pair (T, r) where T is a tree and r ∈ V (T). We define Leaf(T, r) as the set
of all leaves of T that are different than r. Given two vertices a, b of T , we write a ≤T,r b to
denote that a ∈ V (rTb) and, in this case, we say that b is a descendant of a in (T, r). We
write a <T,r b to denote that a 6= b and a ≤T,r b. We also write a 6=T,r b to denote that
neither a ≤T,r b nor b ≤T,r a is true and, in this case, we say that a and b are non-comparable
in (T, r). Given some q ∈ V (T), we denote the set of descendants of q in (T, r) as descT,r(q).
The children of a vertex q ∈ T , in (T, r) are the vertices in descT,r(q) that are adjacent to q
and are denoted as childrenT,r(q). A rooted tree (T, r) is binary if every vertex of T has at
most two children. Let v ∈ V (T). The depth of v in (T, r) is |V (rTv)|.

3.2.3 Pair collectons

Consider a rooted tree (T, r). We say that a pair (a, b) of V (T)×V (T) is a vertical pair of (T, r)
if a <T,r b (notice that in a vertical pair (a, b), a and b should be different vertices). We call a
(resp. b) upper (resp. lower) vertex of (a, b). If {a, b} is an edge of T we call (a, b) an edge-pair.
The inner part of a vertical pair (a, b) is innerT,r(a, b) = {b} ∪ (descT,r(a)) \ descT,r(b). Notice
that in the tree T [innerT,r(a, b)] the vertex b is a leave. The outer part of (a, b) is defined as
outerT,r(a, b) = {a, b}∪(V (T)\innerT,r(a, b)). Notice that outerT,r(a, b)∩innerT,r(a, b) = {a, b}
(see Figure 1). The capacity of (a, b) is defined as capacityT,r(a, b) = |innerT,r(a, b)|.

b

innerT,r(a, b)

outerT,r(a, b)

x4

r

a

y2

T

y3

x2

y1

x3

Figure 1: The vertical pairs (x2, y2), (x3, y3) and (x4, b) are pairwise non-interfering. Notice
that a and y1 are not (a, b)-aligned.

Two vertical pairs (a, b) and (a′, b′) of (T, r) are non-interfering if a 6=T,r a
′ or b <T,r a′,

or b′ <T,r a (see Figure 1). A pair collection of (T, r) is a set C of pairwise non-interfering

10

vertical pairs of T . The minimum (resp. maximum) capacity of C is the minimum (resp.
maximum) capacity of a vertical pair in C.

If (a, b) is a vertical pair of (T, r), the (a, b)-compression of (T, r) is the rooted tree (T ′, r)
where T ′ is obtained from T if we remove all vertices in innerT,r(a, b) \ {a, b}, identify a and
b, and call this vertex a again. We denote this new rooted tree by (T, r) \ (a, b). Notice that
if (T, r) is binary, then (T, r) \ (a, b) is also a binary tree.

Let (a, b) be a vertical pair of (T, r) and x, y ∈ innerT,r(a, b) (x and y are not necessarily
distinct). We say that x and y are (a, b)-aligned if either V (xTy) ⊆ V (aTb) or V (xTy) ∩
V (aTb) ⊆ {x, y} (see Figure 1). Notice that x and y are not (a, b)-aligned if the path joining
x and y contains edges from the path joining a and b and edges outside this path. Certainly,
a and b are (a, b)-aligned.

Lemma 2. Let (T, r) be a rooted binary tree and let (a, b) be a vertical pair of (T, r). For
every d ≥ 2, if (a, b) has capacity (d− 2) · 2d−2 + 1, then there are x, y ∈ innerT,r(a, b) such
that x and y are (a, b)-aligned and |xTy| ≥ d.

Proof. We set Y = T [innerT,r(a, b)]. Observe that (Y, a) is a rooted graph where b ∈ Leaf(Y, a).
If |aY b| ≥ d then a and b are the required vertices of innerT,r(a, b). Suppose then that
|aY b| ≤ d − 1. Let Y1, . . . , Yz be the connected components of Y \ E(aY b). Each Yi is a
binary tree whose root is some vertex of aY b that has only one child. Clearly, as b ∈ Leaf(Y, a)
and |aY b| ≤ d− 1, it holds that z ≤ d− 2. Also the vertices of Y1, . . . , Yz form a partition
of V (Y). This means that one, say Yi, of Y1, . . . , Yz has at least 1 + 2d−2 vertices. As Yi is
binary and its root has only one child, it follows that Yi contains a path P on d vertices. Let
x and y be its endpoints. We obtain that |xY y| ≥ d. The lemma follows as the endpoints x
and y are (a, b)-aligned.

3.3 Graph decompositions
Lean tree-decompositions. In this section we provide some variants of tree decomposi-
tions.

We say that (T, χ) is lean if for every t ∈ N, every pair u1, u2 ∈ V (T), and every
Zi ⊆ χ(ui), i ∈ [2], where |Z1| = |Z2|, either there is an e = {w1, w2} ∈ E(iT j) such that
χ(w1) ∩ χ(w2) < t or there is a collection of t internally vertex-disjoint paths in G between
Z1 and Z2.

Proposition 2 ([6]). Every graph G has a lean tree-decomposition of width tw(G).

Small tree-decompositions We say that a tree-decomposition (T, χ) is small if ∀{i, j} ∈
E(T), χ(i) \ χ(j) 6= ∅ and χ(j) \ χ(i) 6= ∅. For the proof of the following, we copy
[29, Lemma 11.9].

Proposition 3. Let G be a graph and D = (T, χ) a (lean) tree-decomposition of G of width
at most tw(G). Then there exists a small (and lean) tree-decomposition D′ = (T ′, χ′) of G of
width at most tw(G), where |T ′| ≤ |G|.

3.3.1 Protrusion decompositions

Let G be a graph and let R ⊆ V (G). We say that R is tight in G if ∂G(R) = NG(R \ ∂G(R)).
If R is a β-protrusion of G and R is tight, then we say that R is a tight β-protrusion of G.
Notice that if X = R \ ∂G(R), then R is tight iff NG(X) = ∂G(NG[X]).

Let P = {X0, X1, . . . , X`} be an (α, β)-protrusion decomposition of a graph G (for the
definition, see Page 5). We call the sets Ri, i ∈ [`], the protrusions of P and the set X0 the

11

X0

X1

X2

Xl−1

Xl

...

Rl

∂G(Rl)

NG(X1)

Figure 2: Notice that for every i ∈ [l] the set ∂G(Ri) contains the vertices of Ri that are
incident to vertices of X0 and that ∂G(Ri) ⊆ NG(Xi).

core of P (see Figure 2). An (α, β)-protrusion decomposition P = {X0, X1, . . . , X`} is tight if
all its β-protrusions are tight.

Lemma 3. If a graph G has an (α, β)-protrusion decomposition P = {X0, X1, . . . , X`} then
it also has a tight (α, β)-protrusion decomposition.

Proof. Let P = {X0, X1, . . . , X`} be an (α, β)-protrusion decomposition of G. Recall that
Ri = NG[Xi], i ∈ [`]. For every i ∈ [`], we set Zi = NG(Xi) \ ∂G(Ri) and observe that the
sets Z1, . . . , Z` are pairwise disjoint. Indeed this follows by the fact that, for each i ∈ [`],
each vertex in Zi is incident only with edges in G[Ri]. For the same reason, none of these
vertices can be a vertex of some ∂G(Rj), j ∈ [`]. We conclude that

⋃
i∈[`](Zi ∩ ∂G(Ri)) = ∅.

We define X ′i = Xi ∪ Zi, i ∈ [`] and observe that

NG[X ′i] = NG[Xi] and NG(X ′i) = ∂G(Ri). (3)

We also define X ′0 = X0 \
⋃
i∈[`] Zi. We claim that P ′ = {X ′0, X ′1, . . . , X ′`} is also an (α, β)-

protrusion decomposition of G. As the sets in the collection {Z1, . . . , Z`, X1, . . . , X`} are
mutually disjoint we obtain that P ′ is a partition of V (G). As X ′0 ⊆ X0, Condition 1 holds.
(3) and the fact that Ri = NG(Xi) is a β-protrusion decomposition of G, imply Condition
2. To prove Condition 3, we recall first that ∂G(Ri) ⊆ NG(Xi) ⊆ X0. Combining this with
the fact that

⋃
i∈[`](Zi ∩ ∂G(Ri)) = ∅ and the definition of X ′0, we obtain that ∂G(Ri) ⊆ X ′0.

From (3), we deduce that NG(X ′i) ⊆ X ′0 and the claim holds. From (3) we get the additional
property that ∀i ∈ [`], NG(X ′i) = ∂G(NG[X ′i]), therefore P ′ is tight.

3.4 Tree-decompositions of boundaried graphs
We now extend several of the definitions of the previous sections to boundaried graphs.

3.4.1 Treewidth of boundaried graphs

Let G = (G,X, λ) be a boundaried graph. A tree-decomposition of G is a triple D = (T, χ, r)
where (T, χ) is a tree-decomposition of G and r is a vertex of T such that χ(r) = X. The
width of a tree-decomposition D = (T, χ, r) is the width of the tree-decomposition (T, χ). The

12

X

X G

r

q

Gq

Gq

χ(q)

χ(q)

Dq = (Tq, χq, q)

Ṽq

Figure 3: A boundaried graph G = (G,X, λ) and a tree-decomposition D = (T, χ, r) of it.
Notice that Ṽq contains the vertices of the three bags inside the dotted curve.

treewidth of a boundaried graph G is the minimum width over all its tree-decompositions
and is denoted by tw(G).

Let D = (T, χ, r) be a tree-decomposition of a boundaried graph G. For each q ∈ V (T),
we set tq = |χ(q)| and we denote the corresponding frontier graph by Hq = HGq

. Also we set
Tq = T [descT,r(q)] and we denote by Gq the tq-boundaried graph (Gq, χ(q), λq) where

Gq = G[
⋃

q′∈V (Tq)

χ(q′)] and λq = λ|V (Gq).

Notice that if a, b ∈ V (T) and a ≤T,r b, then Gb is a subgraph of Ga. We also set Vq = V (Gq),
Ṽq = Vq \χ(q), Gq = G \ Ṽq and we define the tq-boundaried graph Gq = (Gq, χ(q), λq) where
λq = λ|V (Gq), for q ∈ V (T). Notice that Gq and Gq are compatible and that Gq ⊕Gq = G.
Finally, for every q ∈ V (T), we use the notation V q = V (Gq), χq = χ|Vq , and Dq = (Tq, χq, q)
and observe that Dq is a tree-decomposition of Gq (see Figure 3).

We say that D = (T, χ, r) is a lean tree-decomposition if (T, χ) is lean. D = (T, χ, r) is a
binary tree-decomposition if (T, r) is a binary tree and for every edge-pair (i, j), if |χ(i)| = |χ(j)|
then Gj is a proper subgraph of Gi, i.e. |Gj | < |Gi|.

Lemma 4. Let G be a boundaried graph and let D = (T, χ, r) be a tree-decomposition of G
of width ≤ t− 1. Then |G| ≤ t · |T |.

Proof. Notice that a set of n = |G| vertices is covered by |T | sets, the bags of D, each of size
at most t. As each bag of D covers at most t vertices, it follows that n ≤ t · |T | as required.

Lemma 5. Let G be a boundaried graph and let D = (T, χ, r) be a binary tree-decomposition
of G. Then |T | ≤ 4 · |G|.

Proof. The proof is based on the fact that a binary tree-decomposition D = (T, χ, r) of G
can be transformed to a decomposition D′ = (T ′, χ′, r) with the following properties:

A. T ′ is a binary tree

B. if some vertex of t has two children t1 and t2, then χ′(t) = χ′(t1) = χ′(t2).

C. if some vertex of t has one child t′, then either |χ′(t) \ χ′(t′)| = 1 or |χ′(t′) \ χ′(t)| = 1.

A tree-decomposition as above is called nice and it is known (see e.g., [41]) that |T ′| ≤ 4 · |G|.
It now remains to provide a way to transform (T, χ, r) to a nice tree-decomposition of G of
the same width where |T | ≤ |T ′|. For this we apply the following transformations as long as
this is possible.

13

b

b1 b2 bs

b

bsbs−1

b′s−1

b′2b1
b2

Figure 4: The transformation of Lemma 6.

1. If t ∈ V (T), t has two children and for one, say t′, of them it holds that χ(t′) 6= χ(t),
then subdivide the edge {t, t′} and, if tnew is the subdivision vertex, set χ(vnew) = χ(t).

2. If for some edge-pair (t, t′) of T it holds that |χ(t) ∩ χ(t′)| < min{|χ(t)|, |χ(t′)|}, then
subdivide the edge {t, t′} and, if tnew is the subdivision vertex, set χ(vnew) = χ(t)∩χ(t′).

3. If for some edge {t, t′} of T there are at least two vertices, a and a′ in χ(t) \ χ(t′), then
subdivide the edge {t, t′} and, if tnew is the subdivision vertex, set χ(vnew) = χ(t′)∪{a}.

Let (T ′, χ′, r) be the resulting tree-decomposition of G. Clearly T ′ is binary, therefore property
A holds. Property B follows by the fact that Transformation 1 cannot be applied any more and
Property C follows because transformations 2 and 3 cannot be applied any more. Therefore
(T ′, χ′, r) is a nice tree-decomposition, as required.

Lemma 6. Let G be a graph and D = (T, χ, r) a (lean) tree-decomposition of G of width at
most k ∈ N. Then there exists a (lean) binary tree-decomposition of G of width at most k
that has at most 2 · |G| − 1 nodes.

Proof. Because of Proposition 3, we can assume that (T, χ) is small and that T has at most
|G| nodes. Clearly it holds that

∀{x, y} ∈ E(T), χ(x) \ χ(y) 6= ∅ and χ(y) \ χ(x) 6= ∅ (4)

Let B be the set of vertices of T that have more than 2 children in T . For each b ∈ B we
apply the following transformation on D. Let {b1, . . . , bs} be the children of b in (T, r). We
set D′ := (T ′, χ′, r) where:

- T ′ is obtained by T after removing the edges {b, bi}, i ∈ [2, s], adding the new vertices
{b′2, . . . , b′s−1}, the edge {b, b′2}, the edges {b′i, b′i+1}, i ∈ [2, s− 2], the edges {bi, b′i}, i ∈
[2, s− 1] and the edge {b′s−1, bs} (see Figure 4), and

- χ′ = χ ∪ {(b′i, χ(b)) | i ∈ [2, s− 1]}.

We call D′ = (T ′, χ′, r) the tree-decomposition of G that is obtained after applying the
above transformation for every b ∈ B. Notice that T is a binary tree and that the width
of D′ is equal to the width of D. Also, it is easy to observe that the number of new nodes
is upper bounded by the number of leaves of T , therefore the number of nodes of the new
decomposition cannot increase more than twice. Moreover, it can be easily verified that if D
is lean, then D′ is lean as well.

Notice that D satisfied Condition (4) before the application of the above transformation.
Moreover for every vertical pair (a, b) where Condition (4) is still true after the transformation,
it holds that |Gb| < |Ga|. If Condition (4) is not any more true for some vertical pair (x, y),
created after the application of the above transformation, then (x, y) ∈ {(b′i, b′i+1) | i ∈

14

[2, s− 2]} for some b ∈ B (here we denote b′2 := b). In this case, χ(b′i) = χ(b), i ∈ [2, s− 1].
But then b′i has another child, that is bi, where both χ(bi) \ χ(b′i) and χ(b′i) \ χ(bi) are
non-empty, because both χ(bi) \ χ(b) and χ(b) \ χ(bi) where initially non-empty. This implies
that if χ(b′i) = χ(b′i+1), Vb′

i+1
(Vb′

i
then |Gb′

i+1
| < |Gb′

i
| as required. Therefore D′ is a binary

tree-decomposition.
Notice now that the number of new nodes of D′ is equal to

∑
v∈V≥3

(degT (v)− 2), where
V≥3 is the number of vertices in T with more than 2 children. It is easy to observe that∑
v∈V≥3

(degT (v)− 2) ≤ |Leaf(T, r)| ≤ |T | − 1. Therefore, |T ′| ≤ 2 · |T | − 1 ≤ 2 · |G| − 1.

Lemma 7. Let G = (G,X, λ) be a boundaried graph where G[X] is a clique and tw(G) ≤ t−1.
Then G has a lean binary tree-decomposition D = (T, χ, r) with width at most t − 1 where
χ(r) = X and |T | ≤ 2 · |G|.

Proof. From Proposition 2, G has lean tree-decomposition (T, χ) of width tw(G). As G[X]
is a clique, all vertices of X will go in the same bag. Let q ∈ V (T) such that X ⊆ χ(q)
and set G′ = (G,χ(q), λ). Notice that (T, χ, q) is a lean tree-decomposition of G′ of width
tw(G). From Lemma 6, (T, χ, q) can be transformed to a lean binary tree-decomposition
D = (T ′, χ′, q) of width tw(G), such that T ′ has at most 2 · |G′| − 1 = 2 · |G| − 1 nodes.
Recall that χ′(q) = χ(q). In the case where χ(q) = X, D is the required lean binary tree
decomposition of G and we are done. In the case where X (χ(q), rename q to qold, add in T
a new vertex qnew along with the edge {q, qnew}, set χ := χ ∪ (qnew, X) and rename qnew to q.
Notice that, as X (χ(q), after this modification D remains a lean binary tree-decomposition
of G of width tw(G).

Lemma 8. Let G = (G,X, λ) be a boundaried graph and D = (T ′, χ′) a tree-decomposition
of G′ = G \X of width tw(G′). Then there exists a binary tree-decomposition of G of width
at most tw(G′) + |X|.

Proof. Pick any vertex r of T ′ and let S = χ′(r). Clearly D′ = (T ′, χ′, r) is a rooted tree-
decomposition of G′ = (G′, S, λ\X). From Lemma 6, there exists a binary tree-decomposition
D′′ = (T ′′, χ′′, r) of G′ of width tw(G′) and 2 · |G′| = 2 · (|G| − |X|) nodes. We update χ′′
so that for every q ∈ V (T ′′), χ′′(q) := χ′′(q) ∪ {X}. Clearly, the new D′′ is a binary rooted
tree-decomposition of G, where χ′′(r) = S ∪X. Let s = |S| and pick a colection A1, . . . , As
of subsets of S ∪X such that X = As (As−1 (· · · (A1 (S ∪X. We use D′′ = (T ′′, χ′′, r)
in order to construct a binary tree-decomposition D+ = (T+, χ+, r+) of G of width tw(G′)
as follows. Let T+ be the disjoint union of T ′′ and a path on s vertices q1, . . . , qs. The
construction of T+ is completed by adding the edge {r, q1}. We also set r+ = qs. Finally
we set χ+ = χ′′ ∪ {(qi, Ai) | i ∈ [s]} and notice that D+ = (T+, χ+, r+) is a binary tree-
decomposition of G of width at most tw(G′)+ |X| and with at most 2 ·(|G|−|X|)+tw(G′)+1
nodes, as |S| ≤ tw(G′) + 1.

3.4.2 (α, β)-rooted tree-decompositions

Let G = (G,X, λ) be a boundaried graph and let D = (T, χ, r) be a tree-decomposition of G.
Given α, β ∈ N, we say that D is an (α, β)-tree-decomposition of G if the following conditions
hold (see Figure 5):

1. |χ(r)| ≤ α. Also, if {r(1), . . . , r(s)} is the set of children of r in (T, r), then s ≤ α,

2. ∀h ∈ [s], then D(h) = (Tr(h) , χr(h) , r(h)) is a binary tree-decomposition of Gr(h) of width
at most β,

15

χ(r) = X

r

r(1)

r(2)

r(s) D(s)

D(2)

D(1)

∂G(V (G
r(1)

))

Figure 5: An (α, β)-tree-decomposition of a boundaried graph G.

3. ∀h ∈ [s], V (Gr(h)) is tight in G,

4. ∀h ∈ [s], χ(r(h)) = ∂G(V (Gr(h))), and

5. for each {i, j} ∈
([s]

2
)
,χ(r(i)) 6= χ(r(j)).

We also define tq, Hq, Tq, Gq, Vq, Ṽq, Gq and Dq, for every q ∈ V (T), as we did in the
case of tree-decompositions.

Lemma 9. Let G be a graph that has an (α, β)-protrusion decomposition. Then there exists
some boundaried graph G whose underlying graph is G and such that G has an (α, 2β)-tree-
decomposition.

Proof. Let P = {X0, X1, . . . , X`} be an (α, β)-protrusion decomposition of G. From Lemma 3,
we may assume that P is tight, i.e.,

∀i ∈ [`], NG(Xi) = ∂G(NG[Xi]). (5)

Recall that Ri = NG[Xi], |∂G(Ri)| ≤ β and tw(G[Ri]) ≤ β, i ∈ [`]. We set Gi = G[Xi], i ∈ [`]
and, as Xi ⊆ Ri, we obtain that tw(Gi) ≤ tw(G[Ri]), i ∈ [`]. Notice that the vertex sets of
the graphs in G1, . . . , G` are pairwise disjoint, therefore

∀I ⊆ [`], tw(
⋃
i∈I Gi) ≤ β (6)

We say that Gi ∼ Gj iff ∂G(Ri) = ∂G(Rj). Clearly, ∼ defines an equivalence relation.
Let {G1, . . . ,Gs} be the partition of {G1, . . . , G`} into the equivalence classes of ∼. For
h ∈ [s], we set G(h) = ∪∪∪∪∪∪∪∪∪Gh and observe that, because of (6), tw(G(h)) ≤ β. Also we set
G

(h) = G[V (G(h)) ∪ Z(h)] where Z(h) is the common open neighbourhood, in G, of all the
vertex sets of the graphs in G(h), h ∈ [s]. From (5), Z(h) = ∂G(V (G(h))). As each Z(h) is some
of the sets in {∂G(R1), . . . , ∂G(R`)}, taking into account (5), we have that |Z(h)| ≤ β, h ∈ [s].

Let λ be some labelling of G. We set, for every h ∈ [s], G(h) = (G(h)
, Z(h), λ|

V (G(h))),
and t(h) = |Z(h)|. Recall that t(h) ≤ β, h ∈ [s]. From Lemma 8, each G(h) has a binary
tree-decomposition D(h) = (T (h), χ(h), r(h)) of width at most tw(G(h)) + t(h) ≤ 2 · β.

We now construct a tree-decomposition D = (T, χ, r) of G as follows. To construct the
tree T we take the disjoint union of T (1), . . . , T (s), then we add a new vertex r and we make
r adjacent with r(1), . . . , r(s). We then define χ = {(r,X0)} ∪ χ(1) ∪ · · · ∪ χ(s). Notice that
D is a tree-decomposition of G. We claim that D is an (α, 2 · β)-decomposition. Moreover,

16

Condition 2 follows as |χ(r)| = |X0| ≤ α and the fact that s is the number of equivalence
classes of ∼ that is at most ` ≤ α. Condition 2 follows directly by the construction of D.
Condition 3 follows from the tightness of P. For Condition 4 it is enough to observe that
for every h ∈ [s], χ(r(h)) = Z(h) = ∂G(V (G(h))) = ∂G(V (Gr(h))). As χ(r(h)) = Z(h), and, by
their definition, all sets in {Z(1), . . . , Z(s)} are pairwise distinct, Condition 5 is satisfied.

4 The proof of Theorem 2

4.1 Some functions
Given a graph parameter p that has FII, we define the functions τp, θp, µp, δp, ξp : N → N
such that:

τp(x) = max{p(G) | G is a graph in dom(p) where |G| ≤ x},
θp(x) = (cardp(x) · x! + 1)x+1,

µp(x) = (θp(x)− 2) · 2θp(x)−2 + 1,
δp(x) = x((4x · µp(x)− 1)2 + 4x · µp(x)), and
ξp(x) = τp(x · (24x·µp(x)−1 − 1)).

We also define the constant cp = (δp(2 · dec(p)) · (2 · dec(p) · ξp(2 · dec(p)) + 1) + dec(p)).

4.2 A lemma on the compression of admissible pairs
4.2.1 Replacements

Let Gi = (Gi, Xi, λi), i ∈ [2] be two boundaried graphs. We say that G2 is a part of G1 if
G2 is a subgraph of G1 such that V (G2) is the union of some of the connected components
of G1 \X2 that do not contain vertices of X1 and λ1|V (G2) = λ2.

Let G′2 = (G′2, X ′2, λ′2) be a boundaried graph. We say that G′2 and G2 are strongly
compatible if they are compatible, and λ′2(V (G2)) ⊆ λ2(V (G2)). Given that G2 is a part of
G1 and that G2 and G′2 are strongly compatible, we define the replacement of G2 by G′2 in
G1 as the boundaried graph G′1 = (G′1, X ′1, λ′1) where

- G′1 = (G1 \ (V (G2) \X2), X2, λ \ (V (G2) \X2))⊕G′2,

- X ′1 = X1, and

- λ′1 = (λ1 \ (λ2 \ (V (G2) \X2))) ∪ λ′2.

See Figure 6 for a visualization of the replacement operation.

X1

X2 X ′
2

G′
2

G2

G1

X1

X ′
2

G′
2

G′
1

Figure 6: The replacement of G2 by G′2 in G1.

17

X

χ(i1)

χ(i2)

Xnew

G′
i1

G′
i2

Gnew

BCE

CE
E

G

X

χ(i1)

χ(i2)

χ(i3)

Gi1

Gi2

Gi3

BCD

CD D

C

B

A A

Figure 7: The boundaried graphs in Lemma 10.

4.2.2 Compressible and admissible pairs

Let G = (G,X, λ) be a boundaried graph and let D = (T, χ, r) be a binary tree-decomposition
of G of width at most t−1. We say that a vertical pair (a, b) of (T, r) is compressible for (G, D)
if Ga and Gb are compatible. Given a vertical pair (a, b) that is compressible for (G, D), we
define the (a, b)-compression of the pair (G, D) as the pair (G′, D′) where G′ = (G′, X, λ′) is
the replacement of Ga by Gb in G, D = (T ′, χ′, r), T ′ = T \ (a, b), and χ′ = χ|V (T ′). Notice
that if D is a binary tree-decomposition of G, then D′ is again a binary tree-decomposition
of G.

Let G = (G,X, λ) be a boundaried graph and let D = (T, χ, r) be a binary tree-
decomposition of G of width at most t−1. Let t ∈ N and p be a graph parameter that has FII.
We say that a vertical pair (a, b) of (T, r) is ≡p,t-admissible for (G, D) if (a, b) is compressible
for (G, D) and Ga ≡p,t Gb.

Lemma 10. Let p be a graph parameter that has FII and let t ∈ N. Let G = (G,X, λ) be
a boundaried graph and let D = (T, χ, r) be a rooted tree-decomposition of G of width at
most t − 1. Let (i1, i2) be an ≡p,t-admissible pair for (G, D) where Gi1 ≡p,ti1

Gi2 and let
i3 ∈ V (T) such that i2 ≤T,r i3. Let also Gnew = (Gnew, Xnew, λnew) be a boundaried graph
that is strongly compatible with Gi3 and Gi3 ≡p,ti3

Gnew and let G′ii be the replacement of
Gi3 by Gnew in Gii , for i ∈ [2]. Then the following hold:

• G′i1 ≡p,ti1
G′i2 , and transpp(G′i1 ,G

′
i2

) = transpp(Gi1 ,Gi2).

• Gi2 ≡p,t G′i2 , and transpp(Gi2 ,G′i2) = transpp(Gi3 ,Gnew).

Proof. We define (see Figure 7):

B = Gi1 ∩Gi2 C = Gi2 ∩Gi3 D = Gi3

BCE = G′i1 CE = G′i2 BCD = Gi1

CD = Gi2 D = Gi3 E = Gnew.

If A = (A, Y, λ) is some ti1-boundaried graph, we denote ABC = (A ∪B ∪ C,χ(i3), λ′),
where we insist that V (A) ∩ V (Gi1) = Y = χ(i1) and we pick λ′ as some vertex labelling of
A ∪B ∪ C such that λ|χ(i3) ⊆ λ′.

Similarly, if A = (A, Y, λ) is some ti1 -boundaried graph, we denote AC = (A∪C,χ(i3), λ′),
where we insist that V (A) ∩ V (Gi2) = Y = χ(i2) and we pick λ′ as some vertex labelling of
A ∪B ∪ C such that λ|χ(i3) ⊆ λ′.

18

We also set ABCD = A⊕BCD, ACD = A⊕CD, ABCE = A⊕BCE, and ACE =
AC⊕E. Clearly,

ABCD = ABC⊕D (7)
ACD = AC⊕D (8)

ABCE = ABC⊕E (9)
ACE = AC⊕E (10)

Finally we set t = ti1 = ti2 , t′ = ti3 = |Xnew|, c1,2 = transpp(Gi1 ,Gi2), and c3,4 =
transpp(Gi3 ,Gnew). The proof is based on the following observations:
Gi1 ≡p,t Gi2 means that

∀A ∈ B(t), p(A⊕Gi1) = p(A⊕Gi2) + c1,2 ⇐⇒
∀A ∈ B(t), p(ABCD) = p(ACD) + c1,2 (11)

Gi3 ≡p,t′ Gnew means that

∀S ∈ B(t′), p(S⊕Gi3) = p(S⊕Gnew) + c3,4 ⇐⇒
∀S ∈ B(t′), p(S⊕D) = p(S⊕E) + c3,4 (12)

We apply (12) for all S ∈ {ABC | A ∈ B(t′)},

∀A ∈ B(t), p(ABC⊕D) = p(ABC⊕E) + c3,4
(7),(9)⇐⇒

∀A ∈ B(t), p(ABCD) = p(ABCE) + c3,4 (13)

From (11) and (13), we obtain that

∀A ∈ B(t), p(ABCE) = p(ACD) + c1,2 − c3,4 (14)

We apply (12) for all S ∈ {(AC | A ∈ B(t′)},

∀A ∈ B(t), p(AC⊕D) = p(AC⊕E) + c3,4
(8),(10)⇐⇒

∀A ∈ B(t), p(ACD) = p(ACE) + c3,4 (15)

From (14) and (15) we conclude that

∀A ∈ B(t), p(ABCE) = p(ACE) + c1,2
(9),(10)⇐⇒

∀A ∈ B(t), p(A⊕BCE) = p(A⊕CE) + c1,2

which implies that BCE ≡p,t′ CE and transpp(BCE,CE) = c1,2, as required.
Notice now that (15) can be rewritten

∀A ∈ B(t), p(A⊕CD) = p(A⊕CE) + c3,4 (16)

From (16) we obtain that CD ≡p,t CE and transpp(CD,CE) = c3,4. Also, (12) implies that
transpp(D,E) = c3,4. Therefore transpp(CD,CE) = transpp(D,E), thus Gi2 ≡p,t G′i2 and
transpp(Gi2 ,G′i2) = transpp(Gi3 ,Gnew).

19

4.3 Compressing transition pairs
4.3.1 The minor relation for boundaried graphs

Let G1 = (G1, X1, λ1) and G2 = (G2, X2, λ2) be two t-boundaried graphs. We say that G1
is a minor of G2, denoted by G1 ≤m G2, if there is a function σ : V (G1)→ 2V (G2) where

1. ∀x, y ∈ V (G1), x 6= y ⇒ σ(x) ∩ σ(y) = ∅,

2. ∀x ∈ V (G1), G2[σ(x)] is connected.

3. ∀{x, y} ∈ E(G1), G2[σ(x) ∪ σ(y)] is connected.

4. ∀i ∈ [t], ψ−1
G2

(i) ∈ σ(ψ−1
G1

(i))

We also say that the graph H is a minor of G if (H, ∅,∅) ≤m (G, ∅,∅) and we denote it by
H ≤m G. Notice that if G1 ≤m G2, then HG2 is a spanning subgraph of HG1 .

The following observation indicates how the minor relation on boundaried graphs is
generating the minor relation under the gluing operation.

Observation 1. Let G = (G,X, λ), G1 = (G1, X1, λ1) and G2 = (G2, X2, λ2) be three
t-boundaried graphs such that G1 ≤m G2. Then the graph G⊕G1 is a minor of the graph
G⊕G2.

4.3.2 Transition pairs

Let p be a graph parameter that has FII. Let also G be a boundaried graph and let
D = (T, χ, r) be an (α, β)-rooted tree-decomposition of G. We say that a vertical pair (a, b)
of (T, r) is a transition pair of (G, D) if (a, b) is ≡p,t-admissible (G, D) and Gb ≤m Ga.

Lemma 11. Let p be a graph parameter that has FII and let t ∈ N. Let also G be a boundaried
graph, D = (T, χ, r) be a binary tree-decomposition of G of width at most t − 1, and (a, b)
be a transition pair of (G, D). If (G′, D′) is the (a, b)-compression of the pair (G, D) then
G′ ≤m G, |G′| < |G|, G′ ≡p,t G and transpp(G,G′) = transpp(Ga,Gb).

Proof. G′ ≤m G follows from the fact that Ga and Gb are compatible, thus the corresponding
frontier graphs Ha and Hb are equal, and the fact that Gb ≤m Ga. Moreover, |G′| < |G|
follows from the definition of a binary tree-decomposition. To prove that G′ ≡p,t G and
transpp(G,G′) = transpp(Ga,Gb), it is enough to apply Lemma 10 for G and D, by setting
i1 := r, i2 := r, i3 := a, and Gnew := Gb.

4.3.3 Weak leanness and linkedness

Let D = (T, χ, r) be a tree-decomposition of a boundaried graph G = (G,X, λ). Given
a vertical pair a, b ∈ V (T), we say that D is weakly (a, b)-lean for G if for every x, y ∈
innerT,r(a, b), such that x and y are (a, b)-aligned, and every s ∈ N, either there are s vertex
disjoint paths between χ(x) and χ(y) in G or there is an edge {q, q′} ∈ E(xTy) such that
|χ(q)∩χ(q′)| < s. We also say that D is (a, b)-linked if for every x, y ∈ innerT,r(a, b), such that
x and y are (a, b)-aligned, and every s ∈ N, either there are s vertex disjoint paths between
χ(x) and χ(y) in G or there is an vertex w ∈ V (xTy) such that |χ(w)| < s.

Lemma 12. Let G = (G,A, λ) be a boundaried graph where G[A] is a clique, let B ⊆ V (G)
where G[B] is a clique, and let D = (T, χ, r) be a lean binary tree-decomposition of G such
that T has a leaf l where χ(l) = B. Let also G′ be a graph obtained by removing from G edges
that belong to E(G[A]) or in E(G[B]). Then D is weakly (r, l)-lean for G′ = (G′, A, λ).

20

Proof. Let P = rT l and let T1, . . . , Tz be the connected components of T \E(P). Recall that
if x and y are (r, l)-aligned, then they both belong to one of P, T1, . . . , Tz. In any case, we
have to prove that if χ(x) and χ(y) are joined by a collection Q = {Q1, . . . , Qz} of pairwise
vertex disjoint paths of G, then they are also joined by the same collection of paths in G′.
We choose Q, so that V (∪∪∪∪∪∪∪∪∪Q) is minimized. This minimization forces each internal vertex of a
path in Q to belong to χ(h) for some h ∈ V (xTy) but not in χ(x) ∪ χ(y).

Suppose that some edge e = {i, j} of some path Q ∈ {Q1, . . . , Qz} does not exist in G′.
Clearly, the endpoints of e belong to one, say A, of A and B. Also, w.l.o.g., we assume that
i is the vertex of {i, j} that is closer to r in T and, again w.l.o.g., we assume that i is an
endpoint of {i, j} that does not belong to χ(x) (by the choice of Q it is not possible that both
i and j belong to χ(x) or to χ(y)). We now claim that i ∈ χ(h) for some h ∈ V (xTy) \ {x}.
Indeed, as we already mentioned, this holds when i is an internal vertex of Q while if i is not
an internal vertex, then i should belong to χ(y). We conclude that i belongs both to χ(r) and
to χ(y) and as x ∈ V (rTy), i ∈ χ(x), a contradiction to the choice of i. Therefore all edges of
the paths in Q are also edges of G′.

Lemma 13. Let G be a boundaried graph, D = (T, χ, r) a binary tree-decomposition of G of
width at most t− 1, t ∈ N, and (a, b) a vertical pair of (T, r). Then there exists a binary tree-
decomposition D′ = (T ′, χ′, r) of G where: (a, b) is a vertical pair of (T ′, r), outerT ′,r(a, b) =
outer(T,r)(a, b), χ|outerT ′,r(a,b) = χ|outer(T,r)(a,b), D′ is (a, b)-linked, and capacity(T ′,r)(a, b) ≥
1
4t · capacityT,r(a, b).

Proof. Let I = innerT,r(a, b) and keep in mind that capacityT,r(a, b) = |I|. Let A = χ(a) and
B = χ(b). Let J = G[

⋃
x∈I χ(x)] and let J be the graph obtained from J if we make all pairs

of vertices in A adjacent and all pairs of vertices in B adjacent, i.e., both A and B induce
cliques in J . Let J = (J,A, λ|I). Let also D∗ = (T ∗, χ∗, a), where T ∗ = T [I] and χ∗ = χ|I .
Observe that D∗ is a binary tree-decomposition of J of width ≤ t − 1. From Lemma 4,
|J | = |J | ≤ t · |I| ≤ t · c, where c = capacityT,r(a, b). Finally, from Lemma 5 it holds that

|T ∗| ≤ 4 · |J| ⇒ |J| ≥ |T ∗|/4 (17)

From Lemma 7 there exists a lean binary tree-decompositions D• = (T •, χ•, a) of J, with
width at most t− 1, such that χ•(a) = A and |T •| ≤ 2 · |J| ≤ 2 · t · c.

We name b the vertex of T • that has the biggest possible depth and B ⊆ χ(b). Our target
is to modify D• so that b will be a leaf of T • and χ•(b) = B. To this aim we assume that b is
not a leaf of T • and we apply modifications according to the following case analysis:
Case 1: B (χ(b) and b has at most one child in T •, rename b to bold in D• and add in
T • a new vertex bnew along with the edge {bold, bnew} (see Figure 8, Case 1). Finally, set
χ• := χ• ∪ (bnew, B) and rename bnew to b. Notice that, as B (χ•(bold), this modification
creates again a lean binary tree-decomposition of J.
Case 2: If B = χ(b) and b has one child d in T •, we copy the transformation of Case 1 (see
Figure 8, Case 2). Notice that as χ(d) cannot be a subset of χ(b), the new decomposition D•
is again a lean binary decomposition of J.
Case 3: b has two children d and d′ in T •. We remove the edges {b, d} and {b, d′} rename b
to bold in D• and add two new vertices bnew and b′new, and the edges {bold, bnew}, {b′new, d

′},
{bold, b

′
new}, and {b′new, d} (see Figure 8, Case 3). We set χ• := χ•∪{(bnew, B), (b′new, χ

•(b))}and
then we rename bnew to b. Observe that the fact that χ(d) is not a subset of χ(b) and χ(d′) is
not a subset of χ(b) in the original D•, the “new” D• is again a lean binary decomposition of
J.

21

Case 1
b bold bnew

Case 2
b bold bnew

d d

Case 3
b bold

bnew

d′

d

d′b′new

d

Figure 8: The transformations of Lemma 13.

After the above modifications, we have that b is indeed a leaf of T •. Also, these modifica-
tions may add at most 2 more nodes in D•. Now we are in position to apply Lemma 12 on J,
B, D•, b, and J and obtain that D• is a binary tree-decomposition that is weakly (a, b)-lean
for J = (J,A, λ|I).

We now construct D′ = (T ′, χ′, r) by setting T ′ = (T \ I) ∪ T •, and χ′ = χ|V (G)\I ∪ χ•.
As b is a leaf of T •, D′ is a binary tree-decomposition of G with width at most the width
of D. Moreover, D′ is a binary tree-decomposition that is weakly (a, b)-lean for G. We now
transform D′ to a tree-decomposition that is (a, b)-linked for G by applying the following
transformation for every edge-pair (x, y) of (T •, a): if |χ′(x) ∩ χ′(y)| < min{|χ′(x)|, |χ′(y)|},
then remove {x, y} from T ′, add a new vertex vx,y and the edges {x, vx,y} and {vx,y, y} and
set χ′ := χ′ ∪ {(vx,y, χ′(x) ∩ χ′(y))}. This transformation makes D′ (a, b)-linked while it does
not harm the status of D′ of being a binary tree-decomposition.

To prove the last property, first observe that capacityT,r(a, b) = |T ∗| and then use (17).
Now notice that capacity(T ′,r)(a, b) ≥ |T •|, as we may add some vertices to T ′ when trans-
forming T • to an (a, b)-linked tree-decomposition. From Lemma 4, it holds that |T •| ≥ |J|/t.
Combining this with (17) we conclude that |T •| ≥ |T ∗|/(4 · t).

4.3.4 Looking for transition pairs

We need the following proposition (for a proof, see [35]).

Proposition 4. Let t, y be positive integers, and let w ∈ Σ∗, where Σ is an alphabet whose
symbols are the numbers in [t]. If |w| ≥ yt, then there is a number t′ ∈ [t] and a subword u of
w such that all letters in u are at least t′ and u contains the number t′ at least y times.

Lemma 14. Let p be a graph parameter that has FII. Let also G be a boundaried graph,
D = (T, χ, r) a binary tree-decomposition of G, and (a, b) a vertical pair of (T, r) such that D
has width at most t− 1, t ∈ N, capacityT,r(a, b) ≥ µp(t), and D is (a, b)-linked. Then there
exists a transition pair (a′, b′) of (G, D) where a′, b′ ∈ innerT,r(a, b).

Proof. We set θ = θp(t). From Lemma 2 and the definition of µp, there are x, y ∈ innerT,r(a, b)
such that x and y are (a, b)-aligned and |xTy| ≥ θ = (cardp(t) · t! + 1)t+1. Let P = xTy and
keep in mind that all vertices of P belong to innerT,r(a, b).

Let 〈q1, . . . , qθ〉be the vertices of P ordered in the way they appear in P starting from
q1 = x. We see the sequence w = 〈|χ(q1)|, |χ(q1)|, . . . , |χ(qθ)|〉 as a word on the alphabet
Σ = [0, t]. As θ = (cardp(t) · t! + 1)t+1, from Proposition 4, there is some t′ ∈ [0, t], a pair
i′, j′ ∈ [θ] and a set I ⊆ [i′, j′] such that

A. |χ(qi′)|, |χ(qi′+1)|, . . . , |χ(qj′)| ≥ t′

22

B. |I| ≥ cardp(t) · t! + 1 and

C. for all f ∈ I, |χ(qf)| = t′.

Let σ : {Gqh
| h ∈ I} → R such that σ(Gqh

) = repp(Gqh
). As |I| ≥ cardp(t) · t! + 1 and

t ≥ t′, there is a set I ′ ⊆ I where |I ′| = t′! + 1 and such that all graphs in {Gqh
| h ∈ I ′} are

equivalent with respect to ≡p,t. Let W = 〈p1, . . . , p|I′|]〉 be the vertices of I ′ ordered in the
way they appear in P .

As D is (a, b)-linked, and because of A. and C., for every i, j ∈ [t′! + 1], the vertices
of χ(pi) and the vertices of χ(pj) are connected in Gpi

by a collection Qi,j of t′ internally
vertex-disjoint paths. For every i, j ∈ [t′! + 1], i ≤ j, we define the bijection κi,j : [t′]→ [t′]
such that for each m ∈ [t], it holds that the vertices ψ−1

Gpi
(m) and ψ−1

Gpj
(m) are the two

endpoints of some path in Qi,j (recall that ψGpi
and ψGpj

are the label normalising functions
of Gpi and Gpj respectively). Notice that if qi, qj , and qh are vertices in W where i ≤ j ≤ h,
then, κi,h = κi,j ◦ κj,h. As [t′] has t′! different permutations, there exist i, j ∈ [t! + 1], i < j

such that κi,j is the identity mapping. This means that Qi,j contains t′ vertex-disjoint paths
P1, . . . , Pt′ in Gpi

, from χ(pi) to χ(pj), such that the endpoints of each path are equally
indexed. Let a′ = pi and b′ = pj and we assume that for m ∈ [t′], Pm is the path with
endpoints ψ−1

Ga′
(m) and ψ−1

Gb′
(m). It remains to show that Gb′ ≤m Ga′ . For this, we define

the injection µ : V (Gb′)→ V (Ga′) where:

µ(v) =
{

V (PψG
b′

(v)) , if v ∈ χ(b′)
v , if v ∈ Ṽb′ = Vb′ \ χ(b′)

Intuitively, Gb′ can be obtained from Ga′ if we remove all vertices in Va′ \ Vb′ that do not
belong to some of the paths in Qi,j = {P1, . . . , Pt′} and then, for each h ∈ [t′] contract the
path Ph to its endpoint in χ(w), i.e., the vertex of χ(w) that has index h.

4.3.5 Compressing transition pairs

Lemma 15. Let p be a graph parameter that has FII. Let also G be a boundaried graph,
D = (T, χ, r) a binary tree-decomposition of G of width at most t − 1, t ∈ N, and (a, b) a
vertical pair of (T, r) where 4t · µp(t) ≤ capacityT,r(a, b). Then there exist a boundaried graph
G′ and a binary tree-decomposition D′ = (T ′, χ′, r) of G′ such that G ≡p,t G′, |G′| < |G|,
G′ ≤m G, and D′ has width at most t − 1. Moreover, if (x, y) is a transition pair where
(x, y) ∈ outerT,r(a, b), then (x, y) is also a transition pair of (G′, D′) and transpp(Gx,Gy) =
transpp(G′x,G′y).

Proof. From Lemma 13 we know that there exists a binary tree-decomposition D∗ = (T ∗, χ∗, r)
with the specifications of Lemma 13. Notice that capacity(T∗,r)(a, b) ≥ 1

4t · capacityT,r(a, b) ≥
µp(t).

From Lemma 14 we know that there exists a transition pair (a′, b′) of (G, D∗), where
a′, b′ ∈ inner(T∗,r)(a, b). Let (G′, D′) be the (a′, b′)-compression of the pair (G, D∗). By
Lemma 11, G′ ≤m G, |G′| < |G|, G′ ≡p,t G, and transpp(G,G′) = transpp(Ga′ ,Gb′).
Notice that transpp(G,G′) = transpp(Ga′ ,G′b′) = transpp(Ga′ ,H) + transpp(H,Gb′) where
H = repp(Ga′) = repp(G′b′).

The last statement of the lemma is straightforward in the case where a 6∈ desc(T,t)(y)
as, in this case, Gx = G′x. Suppose now that a ∈ desc(T,t)(y). We apply Lemma 10 on G
and D′ for i1 = x, i2 = y, i3 = a′ and Gnew := Gb′ and we obtain that transpp(Gx,Gy) =
transpp(G′x,G′y) as required.

23

4.4 Boundaried graph compression
Lemma 16. Let p be graph parameter that has FII. Let also G = (G,X, λ) be a t-boundaried
graph and D = (T, χ, r) a binary tree-decomposition of of G of width t− 1, t ∈ N. Then there
exists a t-boundaried graph G′ such that (1) G ≡p,t G′, (2) G′ ≤m G, (3) tw(G′) ≤ t− 1,
and (4) |G′| ≤ t · (24t·µp(t)−1 − 1).

Proof. Let G′ be a minimum size t-boundaried graph such that G′ = (G′, X, λ) satisfies
Conditions 1–3 (notice that G′ exists as G already satisfies these properties). Let D′ =
(T ′, χ′, r). Let also µ = 4t · µp(t). Let y be a leaf of T ′ of maximum distance from r. Let d
be this distance. Notice that it is enough to prove that d < µ− 1, then we are done because,
from Lemma 4, |G′| ≤ t · (2µ − 1). Suppose to the contrary that d ≥ µ− 1. In this case, the
vertical pair (r, y) has capacity at least µ. From Lemma 15, applied on G′ and D′, there
exist a boundaried graph G′′ and a binary tree-decomposition D′′ of width at most t− 1 such
that G′′ ≤m G′, |G′′| < |G′|, and G′ ≡p,t G′′. Therefore G′′ ≤m G, tw(G′′) ≤ t − 1, and
G ≡p,t G′′, a contradiction to the choice of G′.

Lemma 17. Let p be a graph parameter that has FII and let t ∈ N. Let G,G′ ∈ T (≤t), where
G ≡p,t G′. Then p(G) = p(G′) + transpp(G,G′) where G and G′ are the underlying graphs
of G and G′.

Proof. Let t′ be the boundary size of G and G′. We denote G = (G,X, λ). The fact that
G ≡p,t G′ implies that

∀F ∈ B(t′), p(G⊕ F)− p(G′ ⊕ F) = transpp(G,G′) (18)

We apply (18) for F := B = (G[X], X, λX). Notice that G ⊕ B = G and G′ ⊕ B = G′.
Therefore p(G) = p(G′) + transpp(G,G′).

4.5 Rich protrusions
In this section we introduce the concept of a rich protrusion and we prove a series of results
on it that will be useful later.

Let p be a graph parameter and f : N → N be some function. Let also β ∈ N, a graph
G along with a labeling λ : V (G)→ N of G, and R ⊆ V (G). We say that R is a (β, f)-rich
protrusion of G for p if:

1. |∂G(R)| ≤ β and the boundaried graph (G[R], ∂G(R), λ|R) has treewidth at most β,

2. R is tight in G,

3. the set R is set-maximal with respect to (1) and (2),

4. |R| > p(G[R]) · f(β).

The third condition asks that there is no tight β-protrusion R′ of G such that R (R′ and
∂G(R) = ∂G(R′) (see Figure 9). Intuitively, this condition demands that all protrusions with
the same boundary should be grouped together to a single one. As a consequence of this, the
number of rich protrusions with the same boundary B is bounded by 2|B|. In the proof of
Lemma 19, this condition will be combined with conditions 3 and 5 in the definition of a
(α, β)-rooted tree-decomposition (given in Subsection 3.4.2).

Let G be a graph and Y ⊆ V (G). We say that a graph A is an augmented connected
component for (G, Y) if there is some connected component C of G \ Y such that A =
G[Y ∪ V (C)]. We denote by A(G, Y) the set containing the vertex set of the augmented
connected components for (G, Y).

24

R′

R

Figure 9: A visualization of the definition of a (β, f)-rich protrusion. Notice that the set R′
is a (β, f)-rich protrusion while the set R is not.

4.5.1 Bounding graphs without rich protrusions

Lemma 18. Let p be a graph parameter that has FII. Let also G = (G,X, λ) be bound-
aried graph and let D = (T, χ, r) be an (α, β)-tree-decomposition of G. If childrenT,r(r) =
{r(1), . . . , r(`)}, then

∑
i∈[`] p(Gr(i)) ≤ p(G) + α · ξp(β).

Proof. From Lemma 16, for every i ∈ [`], there is a graph G′
r(i) where Gr(i) ≡p,β G′

r(i) ,
G′
r(i) ≤m Gr(i) , and |G′

r(i) | ≤ m where m = β · (24β·µp(β)−1 − 1). We also set li =
transpp(Gr(i) ,G′r(i)), i ∈ [`]. From Lemma 17, p(Gr(i)) = li + p(G′

r(i)) ≤ li + τp(|G′
r(i) |) ≤

li + τp(m), therefore:∑
i∈[`]

p(Gr(i)) ≤
∑
i∈[`]

(li + τp(m)) = (
∑
i∈[`]

li) + ` · τp(m)

≤ (
∑
i∈[`]

li) + α · τp(m) = (
∑
i∈[`]

li) + α · ξp(β) (19)

It holds that for every i ∈ [`],

∀F ∈ B(t
r(i)), p(Gr(i) ⊕ F)− p(G′r(i) ⊕ F) = li (20)

Let G(0) = G. We set:

F0 = (G(0), χ(r0)), λ|G(0)) \ Ṽr(0) , G(1) = F0 ⊕G′r(0)

F1 = (G(1), χ(r(1)), λ|G(1)) \ Ṽr(1) , G(2) = F1 ⊕G′r(1)

. . .

F`−1 = (G(`−1), χ(r(`−1)), λ|G(`−1)) \ Ṽr(`−1) , G(`) = F`−1 ⊕G′r(`−1)

If we repetitively apply (20) and Observation 1 for i ∈ [`] and F = Fi, we have that
p(G(i)) = p(G(i−1)) − li. Combining these equalities altogether we conclude that p(G) −∑
i∈[`] li = p(G(`)) ≥ 0, therefore

∑
i∈[`] li ≤ p(G). This, together with (19), complete the

proof of the lemma.

The following lemma is an important ingredient of our proof. It provides a constant d
such that if |G| > d ·p(G), then G contains a big enough protrusion. In Subection 4.6 we will
explain how such a protrusion can be compressed to an equivalent one.

25

Lemma 19. Let p be a graph parameter that has FII and is protrusion decomposable. Let also
c = dec(p) and f : N→ N be a function. For every G, if G does not contain any (2c, f)-rich
protrusion W for p, then |G| ≤ d · p(G) where d = (f(2c) · (c · ξp(2c) + 1) + c).

Proof. According to the definition of protrusion decomposability in (2), G has a (c · p(G), c)-
protrusion decomposition. Let λ be a labeling of G. From Lemma 9 G is the underlying
graph of some boundaried graph G = (G,X, λ) that has a (c · p(G), 2c)-tree-decomposition
D = (T, χ, r). We consider such a (c·p(G), 2c)-tree-decomposition D so that χ(r) is minimized.
Let {r(1), . . . , r(`)} be the set of children of r in (T, r). A consequence of the minimality
of χ(r) and Conditions (4) and (5) of the definition of an (a, b)-tree-decomposition, is that
property (3) in the definition of a (2c, f)-rich protrusion is satisfied for all Vr(i) , i ∈ [`]. As
none of Vr(i) can be a (2c, f)-rich protrusion of G for p, we deduce that:

∀i ∈ [`], |Gr(i) | ≤ p(Gr(i)) · f(tr(i)) (21)

From Lemma 18 it holds that:∑
i∈[`]

p(Gr(i)) ≤ p(G) + c · p(G) · ξp(2c) = p(G) · (1 + c · ξp(2c)) (22)

Using (21) and (22) we deduce that |G| ≤ |X|+
∑
i∈[`] |Gr(i) | ≤ c·p(G)+f(2c)·

∑
i∈[`] p(Gr(i)) ≤

c · p(G) + f(2c) · p(G) · (1 + c · ξp(2c)) ≤ (f(2c) · (c · ξp(2c) + 1) + c) · p(G) which gives the
claimed upper bound.

4.6 Compressing a null-transition pair
In this subsection we prove a series of lemmata that permit us to compress a graph with
a rich protrusion to an equivalent one. This is achieved in Lemma 23 and is prepared in
Lemmata 20, 21, and 22.

Let G be a boundaried graph and D = (T, χ, r) a (α, β)-tree-decomposition of it. The po-
tential of a transition pair (a, b) of (G, D) is defined as potential(G,D)(a, b) = transpp(Ga,Gb).
If the potential of a transition pair (a, b) is 0, then we say that (a, b) is a null transition pair.
A transition collection of (G, D) is a pair collection P of (T, r) consisting of transition pairs
of (G, D). The potential of P, denoted by potential(G,D)(P) is the sum of the potentials of
the pairs of P.

4.6.1 Bounding potentials

Lemma 20. Let p be a graph parameter that has FII and let t ∈ N. Let also G be a
boundaried graph and D = (T, χ, r) a binary tree-decomposition of G of width at most t. For
every transition collection P of (G, D), it holds that potential(G,D)(P) ≤ p(G).

Proof. Notice that the lemma is obvious when potential(G,D)(P) = 0. Assume now that the
lemma holds for every choice of (G, D) and P with potential(G,D)(P) < k, where k ∈ N+.
Let P be a transition collection of (G, D) where potential(G,D)(P) = k > 0. Clearly, P
contains some non-null-transition pair (a, b). We set t := ta = tb. Assume that ` =
potential(G,D)(a, b) = transpp(Ga,Gb) and keep in mind that ` > 0. We set P ′ = P \ {(a, b)}.

Let (G′, D′) be the (a, b)-compression of (G, D).
Claim: potential(G′,D′)(P ′) = k − `.
Proof of claim: Let Pdown contain all the pairs (i, j) ∈ P such that i ∈ childrenT,r(b), let Pside
contains all the pairs (i, j) ∈ P such that i 66=T,r a and let Pup contains all the pairs (i, j) ∈ P
such that i ≥T,r a. The fact that all pairs P are pairwise non-interfearing pairs of (T, r),

26

implies that {Pdown,Pup,Pside} is a partition of P ′. Notice that if (x, y) ∈ Pdown ∪Pside, then
G′x = Gx, G′y = Gy, therefore potential(G′,D′)(x, y) = potential(G,D)(x, y). Suppose that
(x, y) ∈ Pup. We apply Lemma 10 on G by setting i1 := x, i2 = y, i3 = a, and Gnew := Gb

and deduce that G′x ≡p,t G′y and transpp(G′x,G′y) = transpp(Gx,Gy). This implies that
potential(G′,D′)(x, y) = potential(G,D)(x, y). As the potentials of the pairs in P ′ do not change,
we conclude that potential(G′,D′)(P ′) = potential(G,D)(P)− potential(G,D)(a, b) = k − `. The
induction hypothesis along with the above claim yield that p(G′) ≥ k − `. Recall now that
Ga ≡p,t Gb and G′a = Gb. This implies Ga ≡p,t G′a and that transpp(Ga,G′a) = `. We have

∀F ∈ B(t), p(Ga ⊕ F)− p(G′a ⊕ F) = ` (23)

By applying (23) for F = Ga and taking into account that Ga ⊕Ga = G and G′a ⊕Ga = G′,
we conclude that p(G′) = p(G)− `. This, together with the fact that p(G′) ≥ k − `, imply
that k ≤ p(G) as required.

The following lemma is an important ingredient of our proof. Notice that it is the first
time that we ask p to be minor-closed.

Lemma 21. Let p be a graph parameter that has FII and is minor-closed and let t ∈ N. If G
is a boundaried graph, D is a binary rooted tree-decomposition of G, and (a, b) is a transition
pair of (G, D), then potential(G,D)(a, b) ≥ 0.

Proof. Let Q = repp(Ga) = repp(Gb). Recall that potential(G,D)(a, b) = transpp(Ga,Gb). It
remains to prove that transpp(Ga,Gb) ≥ 0. Let t′ = ta = tb and H = (Ha, χ(a), λa). Notice
that Ga ⊕H = Ga and Gb ⊕H = Gb. Recall that Ga ≡p,t Gb implies that

∀F ∈ B(t′), p(Ga ⊕ F)− p(Gb ⊕ F) = transpp(Ga,Gb) (24)

By applying (24) for F := H, we have that transpp(Ga,Gb) = p(Ga)−p(Gb). Recall that
Gb ≤m Ga. As p is minor closed, it holds that p(Gb) ≤ p(Ga) and the lemma follows.

4.6.2 A combinatorial lemma on pair collections

Lemma 22. Let (T, r) be a rooted binary tree and z ≥ 2 an integer. There exists a pair
collection of minimum capacity at least z that has more than |T |+1

(z−1)2+z elements.

Proof. In our proof we “arrange” T so that for every two leafs of T the one in the left is the
one of the bigest depth. Let f be a function that takes as input a rooted binary tree (T, r)
and finds a vertex u such that capacity(T,r)(r, u) ≥ z, rTu is the leftmost such path in T , and
|V (rTu)| is the minimum possible, or outputs null when there is no such vertex in T . Notice
that if f(T, r) = null then |T | ≤ z − 1.

We denote the left child of a vertex u by uL and the right by uR. We also define the set
Vu =∪∪∪∪∪∪∪∪∪v∈V (rTu)childrenT,r(v) \ (V (rTu) ∪ childrenT,r(u)) (see Figure 10). Notice that, if u is
the output of f , then |Vu| ≤ z − 1.

We define a pair collection C(T, r) using the following recursive formula:

C(T, r) =

C(Tf(T,r)L , f(T, r)L) ∪ C(Tf(T,r)R , f(T, r)R) , if |T | > z and
∪{(r, f(T, r))}

∧
v∈Vf(T,r)

|Tv| ≤ z − 1
C(TrL , rL) ∪ C(TrR , rR) , if |T | > z and∨

v∈Vf(T,r)
|Tv| ≥ z

{(r, f(T, r))} , if |T | = z

∅ , if |T | < z

27

Vu

T

r

rL rR

u

uL uR

Figure 10: The trees and vertices defined in the proof of Lemma 22, where u = f(T, r).

It is straightforward to show that the pairs in C(T, r) are non-interfering and have capacity
at least z. Let a(T, r) be the number of elements of C(T, r). This number can be computed
from the following recurrence relation:

a(T, r) =

a(Tf(T,r)L , f(T, r)L) + a(Tf(T,r)R , f(T, r)R) + 1 , if |T | > z and∧
v∈Vf(T,r)

|Tv| ≤ z − 1
a(TrL , rL) + a(TrR , rR) , if |T | > z and∨

v∈Vf(T,r)
|Tv| ≥ z

1 , if |T | = z

0 , if |T | < z

We will prove by induction that a(T, r) ≥ |T |+1
(z−1)2+z : Clearly, if |T | = z, C(T, r) contains only

one pair, namely (r, f(T, r)), thus a(T, r) = 1. As z + 1/((z − 1)2 + z) for z ≥ 2 is at most 1
the claim holds.

Let |T | > z and let u = f(T, r). We assume that the claim holds for every tree with at
most |T | − 1 vertices. We distinguish two cases:
Case 1: if

∧
v∈Vu

|Tv| ≤ z − 1 then:

a(T, r) = a(TuL , uL) + a(TuR , uR) + 1 ≥ |TuL |+ 1
(z − 1)2 + z

+ |TuR |+ 1
(z − 1)2 + z

+ 1

≥ |TuL |+ |TuR |+ 2
(z − 1)2 + z

+ 1

Notice that |TuL |+ |TuR | ≥ |T | − (|Vu| · (z − 1) + |rTu|) ≥ |T | − ((z − 1) · (z − 1) + z) (see
Figure 10). Therefore:

a(T, r) ≥ |T | − (z − 1)2 − z + 2
(z − 1)2 + z

+ 1 = |T |+ 2
(z − 1)2 + z

>
|T |+ 1

(z − 1)2 + z

Case 2: if
∨
v∈Vf(T,r)

|Tv| ≥ z then:

a(T, r) = a(TrL , rL) + a(TrR , rR) ≥ |TrL |+ 1
(z − 1)2 + z

+ |TrR |+ 1
(z − 1)2 + z

= |T | − 1 + 2
(z − 1)2 + z

= |T |+ 1
(z − 1)2 + z

Hence, the claim holds for every case.

28

4.6.3 Protrusion compression

Lemma 23. Let p be a graph parameter that has FII, and is minor-closed. Let also G∗ be a
graph and R a (t, δp)-rich protrusion of G∗ for p, t ∈ N. Then there exists a graph G∗∗ such
that |G∗∗| < |G∗|, G∗∗ ≤m G∗, and p(G∗∗) = p(G∗).

Proof. Recall that δp(x) = x((4x · µp(x)− 1)2 + 4x · µp(x)). We set Z = ∂G∗(R), G = G∗[R],
and G = (G,Z, λ|R) where λ is a some labelling of G. From Lemma 6 there exists a binary
tree-decomposition of G, say D = (T, χ, r), of width t− 1.

Notice that |T | ≥ |R|/t, because of Lemma 4. From Lemma 22 there exists a pair collection
Q of (T, r) of minimum capacity z = 4t · µp(t) such that:

|Q| ≥ |T |+ 1
(z − 1)2 + z

>
|T |

(z − 1)2 + z
≥ |R|
t((z − 1)2 + z)

= |R|
t((4t · µp(t)− 1)2 + 4t · µp(t)) = |R|

δp(t) ≥ p(G)

We assume that Q = {(a1, b1), . . . , (as, bs)} where we know that s ≥ p(G) + 1.
Using Lemma 13 for every (ai, bi) ∈ Q, i ∈ [s], we conclude that there exists a binary

tree-decomposition D′ = (T ′, χ′, r) of G of width at most t− 1 such that, for every i ∈ [s],
D′ is (ai, bi)-linked and capacity(T ′,r)(ai, bi) ≥ 1

4t · z ≥ µp(t).
From Lemma 14, we know that each innerT ′,r(ai, bi), i ∈ [s] contains a vertical pair (a′i, b′i)

that is a transition pair for (G, D′). Let Q′ = {(a′1, b′1), . . . , (a′s, b′s)} be such a collection
of transition pairs for (G, D′). From Lemma 20, |Q′| = s > p(G) ≥ potential(G,D′)(Q′),
therefore |Q′| > potential(G,D′)(Q′). From Lemma 21, all transition pairs in Q′ are of non-
negative potential, therefore Q′ contains at least one null-transition pair, say (a, b). Clearly
(a, b) is a vertical pair of T ′ where a, b belong to the same innerT ′,r(ai, bi) for some i ∈ [s].

Let (G′, D′′) be the (a, b)-compression of (G, D′). From Lemma 11 we deduce that
G′ ≤m G, |G′| < |G|, G′ ≡p,t G and transpp(G,G′) = transpp(Gx,Gy) = 0. Let F =
G∗ \ Ṽr, i.e., F contains all vertices of G∗ except from the non-boundary vertices of G. Set
F = (G∗[F], χ′(r), λ|F) and observe that G∗ = F⊕G. Let G∗∗ = F⊕G′. From |G′| < |G|
and G′ ≤m G, we obtain |G∗∗| < |G∗|, G∗∗ ≤m G∗. Moreover, G′ ≡p,t G implies that

∀B ∈ B(tr), p(G⊕B)− p(G′ ⊕B) = transpp(G,G′). (25)

By setting B := F in (25), we obtain that p(G∗)− p(G∗∗) = 0 and the lemma follows.

4.6.4 The proof of Theorem 2

Now we have all the tools we need to prove Theorem 2.

Proof of Theorem 2. Let β = 2 · dec(p) and f = δp. Let G′ be a minimum size graph
satisfying conditions 1 and 2 of Theorem 2, i.e., G′ ≤m G and p(G′) = p(G). It remains
to prove that |G′| ≤ cp · p(G). Suppose, to the contrary that |G′| > cp · p(G′). By
the minimality of the choice of G′ and Lemma 23 G′ does not contain any (β, f)-rich
protrusion for p. Thereofre, from Lemma 19 we conclude that |G′| ≤ cp · p(G′) (recall that
cp = (δp(2 · dec(p)) · (2 · dec(p) · ξp(2 · dec(p)) + 1) + dec(p))), a contradiction.

5 Conclusions and open problems
In this paper we study the obstructions of the graph class Ak(H), i.e., the k-extensions of
H-minor free graphs when H consists of connected graphs and at least one of the graphs in

29

H is planar. We prove that such obstructions have size linear in k when they satisfy some
certain sparsity properties. The proof is based on a more abstract result whose statement
and proof use algorithm-driven notions, such as FII and protrusion decomposability. A first
improvement of our result would be to wave the connectivity requirement on the graphs of H.

It is worth to comment here some results from parameterized complexity and, in particular,
from the theory of kernelization (see [17,26,48] for textbooks on parameterized algorithms and
the corresponding parameterized complexity classes – see also [28] for the relation between
kernelization and obstructions).

Consider the problem, known as Planar H-Deletion, that, given a graph G and a
non-negative integer k, asks whether G is an k-apex extension of some exc(H) (for some planar
collection H). It was proven in [47] that, when H = {K2} (i.e., we consider Vertex Cover),
this problem admits a kernel of size 2k. This means the existence of a preprocessing procedure
that, given G and k, can produce an equivalent instance G′, k′ of at most 2k vertices where,
moreover, G′ is a subgraph of G. This last property implies a bound of size 2k + 1 to the size
of all graphs in obs(Ak({K2})). In the much more general result in [30], a kernel of size kO(1)

was given for Planar H-Deletion. Moreover this kernel produces an equivalent instance
whose graph is a minor of the original one. Again, this last property implies that each graph
in obs(Ak(H)) has at most kcH vertices. In [34], it was proved that this problem does not
admit a uniformly polynomial kernel, i.e., a kernel of size at most cH · kc, for all H, unless
NP ⊆ coNP/poly.

Given the above complexity bounds, one may be tempted to conjecture that the obstruction
bound of [30] cannot be improved to a uniform one, i.e., one of the type cH · kc where c is a
universal constant and cH a constant depending only on H. Actually we would like to argue
to the opposite direction. Empirical evidence on obstruction detection indicates that the
sparser an obstruction is, the bigger becomes the number of its vertices. For apex extensions
this evidence is supported by the graphs in obs(Ak({K2})) in [12, 24, 25] or obs(Ak({K3}))
in [22] or in obs(Ak({K4,K2,3})) in [20]. Futhermore, the same empiric observation can also
be done by inspecting other known obstruction sets (see [5, 7, 9, 27,36,40,50,55,56]). Based
on this, we conjecture the following:

Conjecture 1. For every collection H of graphs containing at least one planar graph and
for every non-negative integer k, every graph in obs(Ak(H)) has at most cH · kc

′ vertices, for
some universal c′ and some cH depending only on H.

An other interesting question is whether polynomial bounds can also be proved when H
does not contain any planar graph. We would avoid to make a conjecture on this.

Acknowledgements. We wish to thank several anonymous reviewers of this paper for their
useful comments.

References
[1] Karl R. Abrahamson and Michael R. Fellows. Finite automata, bounded treewidth and

well-quasiordering. In Neil Robertson and Paul D. Seymour, editors, AMS Summer
Workshop on Graph Minors, Graph Structure Theory, Contemporary Mathematics vol.
147, pages 539–564. American Mathematical Society, 1993.

[2] Islode Adler. Open problems related to computing obstruction sets. Manuscript, Septem-
ber 2008.

30

[3] Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In
nineteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’08, pages
641–650. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[4] Dan Archdeacon. A kuratowski theorem for the projective plane. Journal of Graph
Theory, 5:243 – 246, 10 2006.

[5] Stefan Arnborg, Andrzej Proskurowski, and Derek G. Corneil. Forbidden minors charac-
terization of partial 3-trees. Discrete Mathematics, 80(1):1 – 19, 1990.

[6] Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-
decompositions. Comb. Probab. Comput., 11(6):541–547, November 2002.

[7] Micah J Best, Arvind Gupta, Dimitrios M. Thilikos, and Dimitris Zoros. Contraction
obstructions for connected graph searching. Discrete Applied Mathematics, 209:27 – 47,
2016. 9th International Colloquium on Graph Theory and Combinatorics, 2014, Grenoble.

[8] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016.

[9] Hans L. Bodlaender and Dimitrios M. Thilikos. Graphs with branchwidth at most three.
J. Algorithms, 32(2):167–194, 1999.

[10] Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms for
graphs of small treewidth. Inf. Comput., 167:86–119, June 2001.

[11] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of
linear-time algorithms from predicate calculus descriptions of problems on recursively
constructed graph families. Algorithmica, 7:555–581, 1992.

[12] Kevin Cattell and Michael J. Dinneen. A characterization of graphs with vertex cover
up to five. In Vincent Bouchitté and Michel Morvan, editors, Orders, Algorithms, and
Applications, pages 86–99, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[13] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem.
CoRR, abs/1305.6577, 2013.

[14] Janka Chleb́ıková. The structure of obstructions to treewidth and pathwidth. Discrete
Appl. Math., 120(1-3):61–71, 2002.

[15] Julia Chuzhoy. Excluded grid theorem: Improved and simplified. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15, pages
645–654, New York, NY, USA, 2015. ACM.

[16] Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Inf. Comput., 85:12–75, 1990.

[17] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer,
2015.

[18] Babette de Fluiter. Algorithms for Graphs of Small Treewidth. PhD thesis, Dept.
Computer Science, Utrecht University, 1997.

31

[19] Reinhard Diestel, Tommy R. Jensen, Konstantin Yu. Gorbunov, and Carsten Thomassen.
Highly connected sets and the excluded grid theorem. J. Comb. Theory Ser. B, 75(1):61–
73, 1999.

[20] Guoli Ding and Stan Dziobiak. Excluded-minor characterization of apex-outerplanar
graphs. Graphs and Combinatorics, 32(2):583–627, 2016.

[21] Michael J. Dinneen. Too many minor order obstructions (for parameterized lower ideals).
In First Japan-New Zealand Workshop on Logic in Computer Science (Auckland, 1997),
volume 3(11), pages 1199–1206 (electronic). Springer, 1997.

[22] Michael J. Dinneen, Kevin Cattell, and Michael R. Fellows. Forbidden minors to graphs
with small feedback sets. Discrete Math., 230(1-3):215–252, 2001. Paul Catlin memorial
collection (Kalamazoo, MI, 1996).

[23] Michael J. Dinneen and Rongwei Lai. Properties of vertex cover obstructions. Discrete
Mathematics, 307(21):2484–2500, 2007.

[24] Michael J. Dinneen and Ralph Versteegen. Obstructions for the graphs of vertex cover
seven. Technical Report CDMTCS-430, University of Auckland, 2012. Technical report.

[25] Michael J. Dinneen and Liu Xiong. Minor-order obstructions for the graphs of vertex
cover 6. Journal of Graph Theory, 41(3):163–178, 2002.

[26] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

[27] Zdenk Dvořák, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. Forbidden graphs
for tree-depth. Eur. J. Comb., 33(5):969–979, July 2012.

[28] Michael R. Fellows and Bart M. P. Jansen. Fpt is characterized by useful obstruction sets.
In Andreas Brandstädt, Klaus Jansen, and Rüdiger Reischuk, editors, Graph-Theoretic
Concepts in Computer Science, pages 261–273, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[29] Jörg Flum and Martin Grohe. Parameterized Complexity theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

[30] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar
f-deletion: Approximation, kernelization and optimal FPT algorithms. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick,
NJ, USA, October 20-23, 2012, pages 470–479, 2012.

[31] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2010), pages 503–510. ACM-SIAM, 2010.

[32] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidi-
mensionality and kernels. CoRR, abs/1606.05689, 2016. Revised version.

[33] Andrei Gagarin, Wendy Myrvold, and John Chambers. The obstructions for toroidal
graphs with no k3,3’s. Discrete Mathematics, 309(11):3625 – 3631, 2009. 7th International
Colloquium on Graph Theory.

32

[34] Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh.
Uniform kernelization complexity of hitting forbidden minors. ACM Trans. Algorithms,
13(3):35:1–35:35, 2017.

[35] Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M.
Thilikos, and Marcin Wrochna. Cutwidth: Obstructions and Algorithmic Aspects. In
11th International Symposium on Parameterized and Exact Computation (IPEC 2016),
volume 63 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–15:13,
2017.

[36] Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros. Effective computation of
immersion obstructions for unions of graph classes. Journal of Computer and System
Sciences, 80(1):207 – 216, 2014.

[37] Henry H Glover, John P Huneke, and Chin San Wang. 103 graphs that are irreducible
for the projective plane. Journal of Combinatorial Theory, Series B, 27(3):332 – 370,
1979.

[38] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith,
Ignasi Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via
protrusion decompositions. ACM Trans. Algorithms, 12(2):21:1–21:41, 2016.

[39] Eun Jung Kim, Maria Serna, and Dimitrios M. Thilikos. Data-compression for
parametrized counting problems on sparse graphs. CoRR, abs/1809.08160, 2018.

[40] Nancy G. Kinnersley and Michael A. Langston. Obstruction set isolation for the gate
matrix layout problem. Discrete Applied Mathematics, 54:169–213, 1994.

[41] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes
in Computer Science. Springer, 1994.

[42] Athanassios Koutsonas, Dimitrios M. Thilikos, and Koichi Yamazaki. Outerplanar
obstructions for matroid pathwidth. Discrete Mathematics, 315-316:95 – 101, 2014.

[43] Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb.
Theory, Ser. B, 73:7–40, 1998.

[44] Max Lipton, Eoin Mackall, Thomas W. Mattman, Mike Pierce, Samantha Robinson,
Jeremy Thomas, and Ilan Weinschelbaum. Six variations on a theme: almost planar
graphs. https://arxiv.org/abs/1608.01973.

[45] Thomas W. Mattman. Forbidden minors: Finding the finite few. CoRR, abs/1608.04066,
2016.

[46] Bojan Mohar and Petr Škoda. Obstructions of connectivity two for embedding graphs
into the torus. Canadian Journal of Mathematics, 66, 07 2012.

[47] George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex packing and
independence system polyhedra. Math. Programming, 6:48–61, 1974.

[48] Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

[49] Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Fast fixed-parameter
tractable algorithms for nontrivial generalizations of vertex cover. Discrete Appl. Math.,
152(1-3):229–245, 2005.

33

[50] Siddharthan Ramachandramurthi. The structure and number of obstructions to treewidth.
SIAM J. Discrete Math., 10(1):146–157, 1997.

[51] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.
J. Comb. Theory Ser. B, 62(2):323–348, 1994.

[52] Neil Robertson and P.D. Seymour. Graph minors. XX. wagner’s conjecture. Journal
of Combinatorial Theory, Series B, 92(2):325 – 357, 2004. Special Issue Dedicated to
Professor W.T. Tutte.

[53] Juanjo Rué, Konstantinos S. Stavropoulos, and Dimitrios M. Thilikos. Outerplanar
obstructions for the feedback vertex set. Electronic Notes in Discrete Mathematics,
34:167–171, 2009.

[54] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Minimal acyclic forbidden minors
for the family of graphs with bounded path-width. Disc. Math., 127(1-3):293–304, 1994.
Graph theory and applications (Hakone, 1990).

[55] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Minimal forbidden minors for the
family of graphs with proper-path-width at most two. IEICE Trans. Fundamentals,
E78-A:1828–1839, 1995.

[56] Dimitrios M. Thilikos. Algorithms and obstructions for linear-width and related search
parameters. Discrete Applied Mathematics, 105:239–271, 2000.

[57] Robin Thomas. A Menger-like property of tree-width: The finite case. Journal of
Combinatorial Theory, Series B, 48(1):67 – 76, 1990.

34

	Introduction
	A more general result
	The FII property
	Graph decompositions
	The main theorem
	Proof of Theorem 1
	Outline of the proof of Theorem 2

	Basic concepts and results
	Sets and functions
	Graphs
	Trees
	Rooted trees
	Pair collectons

	Graph decompositions
	Protrusion decompositions

	Tree-decompositions of boundaried graphs
	Treewidth of boundaried graphs
	(,)-rooted tree-decompositions

	The proof of Theorem 2
	Some functions
	A lemma on the compression of admissible pairs
	Replacements
	Compressible and admissible pairs

	Compressing transition pairs
	The minor relation for boundaried graphs
	Transition pairs
	Weak leanness and linkedness
	Looking for transition pairs
	Compressing transition pairs

	Boundaried graph compression
	Rich protrusions
	Bounding graphs without rich protrusions

	Compressing a null-transition pair
	Bounding potentials
	A combinatorial lemma on pair collections
	Protrusion compression
	The proof of Theorem 2

	Conclusions and open problems

