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Abstract
In this paper, we proposed a novel finger knuckle pattern (FKP) based personal authentication system using multilayer deep 
rule based (DRB) classifier. The presented approach is completely data-driven and fully automatic. However, the DRB 
classifier is generic and can be used in variety of classification or prediction problems. In particular, from the input finger 
knuckle, two kinds of features (i.e., Binarized Statistical Image Features and Gabor Filer bank) are extracted, which are then 
fed to fuzzy rules based DRB classifier to determine whether the user is genuine or impostor. Experimental results in the 
form of accuracy, error equal rate (EER) and receiver operating characteristic (ROC) curves demonstrate that presented DRB 
classifier is a powerful tool in FKP based biometric identification system. Experiments are reported using publicly avail-
able FKP PolyU database provided by University of Hong Kong. Experiments using this database show that the presented 
framework, in this study, can attain performance better than previously proposed methods. Moreover, score level fusion of 
all FKP modalities with BSIF + DRB yielded an equal error rate of 0.19% and an accuracy of 99.65%.

Keywords Deep rule based classifier · BSIF · Gabor filter bank · Finger knuckle pattern

1 Introduction

In today’s highly interconnected society, automated personal 
identification methods have become crucial for security and 
privacy (Angelov and Gu 2018; Bao et al. 2018; Angelov 
and Sperduti 2016). One of person recognition methods 
is biometrics, which is considered as an alternative secu-
rity system to traditional authentication and identification 
methods such as ID card, passwords, code PIN. Biomet-
rics facilitate the process of recognizing a person based on 
their physiological, behavioral or chemical characteristics 

(Adeoye 2010). Numerous biometric traits have been used in 
diverse applications ranging from border crossing to mobile 
authentication (Zhang et al. 2018; Akhtar et al. 2011a, b). In 
fact, many different biometric traits have been investigated 
widely such as fingerprint, iris, ear, finger knuckle print, 
palm print, face etc. (Chaa et al. 2017; Jaswal et al. 2017a). 
Recently, finger knuckle print (FKP) (Cappelli et al. 2010), 
which is included in the hand based biometric traits, have 
been studied in order to improve the consistent authentica-
tion system with higher accuracy (Jaswal et al. 2016). FKP 
has distinctive anatomical structures that can be recorded 
with low cost and small size imaging devices without using 
an extra hardware (Cappelli et al. 2010).

Generally, FKP biometrics system can be operated either 
in identification or verification mode. In identification mode, 
the given FKP sample is compared with all the available 
samples to determine the true identity of the subject. In veri-
fication mode, the given FKP sample is compared with sam-
ples of the claimed identity to determine whether it belongs 
to the same person. In addition, the FKP verification task is 
more difficult than the FKP identification because in match-
ing stage it is required to give a global threshold in order to 
make a decision (Zhang et al. 2011; Aoyama et al. 2014).
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The FKP recognition system over recent years has been 
attracting considerable attention of researchers. The first 
team of researchers who introduced the use of finger knuckle 
surface in biometric systems are Woodard and Flynn (2005). 
Ferrer et al. (2005) have proposed a ridge features-based 
algorithm that extracted ridge features from FKP images 
and evaluated their similarity by applying Hidden Markov 
Model (HMM) or Support Vector Machine (SVM). Zeinali 
et al. (2014) have proposed a FKP recognition system, where 
directional filter bank (DFB) was used to extract feature 
followed by linear discriminate analysis (LDA) to reduce 
the dimensionality of the large feature vector. Attia et al. 
(2018) studied bank of binarized statistical image features 
(B-BSIF) on FKP trait. Zhang et al. (2012) developed a new 
computation framework focused on mounting new efficient 
feature extraction method for FKP recognition. The authors 
analyzed three commonly used local features, the local ori-
entation, the local phase, and the phase congruency system-
atically. Also, they presented a method for computing all 
features efficiently using the phase congruency. Moreover, 
Hammouche et al. (2020) have proposed a new system for 
FKP authenticate based on phase congruency with Gabor 
Filter bank. Heidari and Chalechale (2020) introduced 
a novel FKP biometric system, where the feature extrac-
tion is combination of the entropy-based pattern histogram 
(EPH) and a set of statistical texture features (SSTF). The 
genetic algorithm (GA) was employed to locate the superior 
features among the extracted features. This has been tested 
on PolyU FKP dataset. While, Muthukumar and Kavipriya 
(2019) investigated Gabor feature with SVM classifier for 
FKP identification system. Singh and Kant (2019) have 
designed a multimodal biometric system based on FKP and 
iris traits for person authentication, where the PCA method 
has been used for feature extraction with the Neuro fuzzy 
neural network (NFNN) classifier in identification step. 
Malarvizhi et al. (2019) proposed a system named adaptive 
fuzzy genetic algorithm (AFGA) for Biometric authentica-
tion. Wang et al. (2014) investigated depth neural network 
for finger print classification. Lately, deep learning (i.e., 
deep neural networks) (Angelov and Soares 2020) have 
been explored for classification (Gu and Angelov 2018; Sar-
gano et al. 2017) and FKP based biometrics (Chalabi et al. 
2020). For instance, Qian et al. (2016) have proposed novel 
biometric image feature representation technique for FKP, 
known as deep gradient information (DGI). Jaswal et al. 
(2017b) considered a new FKP based biometric system that 
extracted the Region Of Interest (ROI) of FKP trait. Then, 
the ROI image has been improved and transformed by the 
invented several methods including, Bubble Ordinal Pattern 
(BOP), Star Ordinal Pattern (SOP), and Image Ray Trans-
form (IRT). Furthermore, a new Deep Matching method has 
been used in the matching stage. Zhai et al. (2018) have 
been planned a new batch-normalized Convolutional Neural 

Network (CNN) for FKP authentication system. The data 
augmentation techniques of random histogram equalization 
and dropout layer have been implemented to prevent over 
fitting during training of the proposed scheme.

Thapar et al. (2019) designed a scheme based on deep 
learning named FKIMNet for Finger Dorsal Image Matching 
Network. Chlaoua et al. (2019) have investigated a simple 
deep learning method named principal component analysis 
Network (PCANet) with SVM classifier. In the proposed 
scheme, PCA has been used to learn two-stages of filter 
banks then a simple binary hashing and block histograms for 
clustering of feature vectors. The output features are finally 
fed to classification step.

This paper introduces a new FKP system for person 
authentication based on multilayer deep rule-based classifier. 
The DRB Classifier is a novel approach that has not been 
applied before on a biometric system. Further, DRB gen-
erates a set of self-organized, transparent IF…THEN FRB 
(Fuzzy Rule Based) system structure. Each IF…THEN… 
fuzzy rule of the DRB system contains a various number 
of prototypes (templates stored in database) that are not 
pre-determined, recognized via a fully independent, online, 
non-iterative and non-parametric training process. Also, to 
their simplicity, the used technique provides a reasonable 
prototype (templates stored in database), which are then fed 
to fuzzy rules based of DRB classifier to determine whether 
the user is genuine or impostor.

The rest of this paper is organized as follows. Section 2 
describes the architecture of the DRB classifier. The pro-
posed FKP recognition methodology is outlined in Sect. 3. 
Section 4 presents the experimental results. The conclusions 
and future work are given in Sect. 5.

2  The DRB classifier architecture 
and algorithm

The presented system consists of four principle stages: pre-
processing of FKP trait, feature extraction, (training) the 
DRB classification scheme and decision making. These 
stages are explained in detail in the following section.

2.1  The architecture of DRB classifier

The architecture of DRB classifier was first proposed by 
Angelov and Gu (2018). Figure 1 depicts the architecture of 
DRB classifier. In Fig. 1, it can be seen that the DRB clas-
sifier consists of four layers: (i) pre-processing block—the 
pre-processing block of the DRB classifier generally requires 
just the basic and commonly used pre-processing methods 
such as normalization, scaling, rotation and image segmenta-
tion; (ii) feature extraction layer—the feature extraction layer 
of the DRB classifier can use (any) diverse type of feature 
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descriptors, which are used in the field of biometric systems. 
The feature descriptors have some advantages and some 
limitations (Soltanpour et al. 2017); (iii) fuzzy rule based 
layer—massively parallel ensemble of highly interpretable 
IF…THEN… rules. These rules are based on the in paral-
lel self-developing fuzzy rule-based models (Angelov and 
Yager 2012; Gu et al. 2018) that has been also expressed in 
Angelov and Gu (2017) by singletons in the consequent part 
(0-order models); and (iv) the decision-maker layer—its role 
is to decide the class label that won based on the partial sug-
gestions of the massively parallel local/sub-decision makers 
as per IF…THEN… rule/per class. This layer is only used 
during the validation stage and it applies the “winner-takes-
all” principle. As a result, one can see that the proposed 

DRB classifier actually utilizes a two-stage decision-making 
structure. The validation process is described in Sect. 3.

2.2  The DRB classifier algorithm

The general architecture of the DRB classifier is illustrated 
in Fig. 1. The DRB classifier algorithm consists of four 
steps, which are detailed below. Before that, for simplicity, 
we describe the key notations used in DRB classifier algo-
rithm in Table 1 (Angelov and Gu 2018). For the interested 
reader, the source code for DRB classifier algorithm can find 
at (https ://www.mathw orks.com/matla bcent ral/filee xchan 
ge/67772 -deep-rule-based -class ifier ). 

Main steps of DRB classifier algorithm:

Fig. 1  General architecture of the DRB classifier (Angelov and Gu 2018)

Table 1  Description of the key 
notations used in the algorithm Notations Description

C The number of classes in dataset
d The dimensionality of the feature vector
k The number of the observed training images/current time instance
I A single image
x The corresponding feature vector of I
Nc The number of identified prototypes of the cth class
!c The global mean of feature vectors of the training images of the cth class
Ic,k The kth training image of the cth class
xc,k The corresponding feature vector of  Ic,k
Pc,i The ith prototype of the cth class
Pc,i The mean of feature vectors of the training images associated with !c,i

Sc,i The number of training images associated with !c,i

rc,i The radius of the area of influence of data cloud associated with !c,i

The score of confidence given by the local decision-maker of the cth fuzzy rule
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Step 1.  Pre-processing block: DRB classifier generally 
requires just the basic and commonly used pre-
processing methods, including normalization, scal-
ing, and rotation and image segmentation.

Step 2.  Feature extraction layer: DRB classifier can 
employ diverse type of feature descriptors.

Step 3.  Massively Parallel Fuzzy Rule Base (FRB) layer: 
This step is based on four stages, i.e., initialization, 
preparation, update of the system, and Fuzzy rules 
generation.

Stage 0: Initialization
Initialize all parameters of DRB classifier algorithm such 

as:

Stage 2: Updating system
After preparation stage, for each image of stage 1, DRB 

algorithm checks two conditions to update their parameters. 
If condition one is verified, add a new data cloud else find 
the nearest prototype Pc,n corresponding to Ic,k and go to the 
condition two. For the condition two, if it is verified Update 
Pc,n, Sc,n, and r2

c,n
. If condition two is not satisfied add a new 

data cloud.
Condition 1

D(Pc,i) =
1

1 + ‖C − !c‖
2 ∕"2

c

Stage 1: Preparation
For each image  Ic,k: xc,k,!c , and D(Pc,i) is calculated such 

as:

k ← 1;!c ← x̄cl;Nc ← 1;Pc,Nc ← Ic,1;Pc,Nc ← x̄cl;Sc,Nc ← 1;rc,Nc ← r0;

xc,k =
xc,k

‖xc,k‖
;!c =

k − 1

k
!c + xc,k

Condition 2

Stage 3: Fuzzy rules generation
Generate rule type
Rulec: IF

(
I ∼ Pc,1

)
OR…OR

(
I ∼ Pc,Nc

)
THEN(classe c)

Stage 4: Decision maker layer
After the generation of C fuzzy rules to the C classes, for 

each image I in test data, generate a score of confidence 
 based on the feature vector of image I such as:
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3  The proposed FKP biometric system based 
on DRB classifier

The global architecture of the proposed FKP biometric sys-
tem, including BSIF and Gabor based methods as main fea-
ture extractions and DRB classifier, is illustrated in Fig. 2, 
the global architecture of the proposed method is composed 
of a sequence of four main phases starting with the acquisi-
tion of FKP images, ROI extraction operations, and then the 
extraction of descriptive features that are fed to the proposed 
classifier multilayer deep rule based (DRB) to determine 
whether the user is genuine or impostor.

3.1  ROI extraction

The extraction the region of interest ROI for FKP (Jas-
wal et al. 2017a) consists of few steps. Firstly, the Gauss-
ian smoothing operation is applied to the original image, 
and then the smoothed image is down sampled to 150 dpi. 
Secondly, the x-axis of the coordinate system fitted from 
the bottom boundary of the finger is determined; note that 
the bottom boundary of the finger can be easily extracted 
by a canny edge detector. Thirdly, the y-axis of the coordi-
nate system is selected by applying a canny edge detector 
on the cropped sub-image that is previously extracted from 
the original image base on x-axis, then the convex direc-
tion coding scheme is found. Finally, the ROI is extracted, 

Fig. 2  The architecture of the 
proposed recognition system

ROI extraction
Preprocessing block

Feature extraction (structural features)

BSIF/ GABOR

FKP acquisition

FKP recognition /classification

Training Process
Stage 2 Stage 3Stage 1

Parameters

in itializatio n

K<- 1; Uc <- Xc,1;

Nc<-1;

Pc,Nc <- Ic,1;

Pc,Nc<-XC,1;

Sc,Nc<-1 ;rc,N< r0

Preparation and

calcul of D (Pn,Nc)

and D (Ic,k)

Tw o
conditions
checked

Stage 4

Generation of
the fuzzy rules:

[IF….OR……..
THEN......Rules]

Decision -maker

Recognizedperson

DRB Classifier

Fig. 3  The steps of extraction of FKP ROI image
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where the rectangle indicates the area of the ROI, which will 
be extracted and used further user recognition as shown in 
Fig. 3.

3.2  Feature extraction

Feature extraction is another important stage. There are vari-
ous kinds of feature descriptors presented in the literature. 
However, in this paper we chose the BSIF descriptor (bina-
rized statistical image features) and Gabor feature extraction 
because these two have been successfully employed widely 
for object detection and recognition.

3.2.1  BSIF descriptor (binarized statistical image features)

Binarized statistical image feature (BSIF) is a textural local 
descriptor presented in Kannala and Rahtu (2012a). This 
feature descriptor basically utilizes a set of filters of fixed 
size that describes the neighborhood configuration of the 
central pixel. BSIF filters a given image J of size m × n with 
a set of filters !k×k

i
 then the responses are binarized. The 

filter response is obtained as follows:

(1)ri =
∑

m,n

!
k×k
i

J(m, n)

where !k×k
i

 is a linear filter of size k and i = {1,2,…,n} 
denotes the number of statistically independent filters whose 
response can be computed together and binarized to obtain 
the binary string as follows (Kannala and Rahtu 2012b):

Lastly, the BSIF features are obtained as the histogram 
of pixel’s binary codes that can effectively characterizes 
the texture components in the FKP image. There are two 
important factors in BSIF descriptor namely: the filter size 
k and the filter length (n). The corresponding BSIF code 
(https ://www.ee.oulu.fi/~jkann ala/bsif/bsif.html) depth and 
intensity images are shown in Fig. 4. Thus, Fig. 4a indicates 
the input ROI FKP image. Figure 4b shows the learned BSIF 
filter with a size 11 × 11 and of length 12. Figure 4c shows 
the results of the individual convolution of the ROI FKP 
image with BSIF filter. Figure 4d shows the final BSIF fea-
ture encoded.

3.2.2  Gabor feature extraction

Gabor wavelet is another useful tool in image analysis and 
computer vision thanks to its optimal localization proper-
ties in spatial analysis as well as frequency domain. Broadly 
speaking, the family of 2D Gabor wavelets (https ://es.mathw 

(2)bi =

{
1 if ri < 0

0 otherwise

Fig. 4  a Sample of the FKP 
ROI image, b BSIF filter with a 
size 11 × 11 and of length 12, c 
BSIF features d final BSIF
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orks.com/matla bcent ral/filee xchan ge/44630 -gabor -featu re-
extra ction ) can be described in the spatial domain (Liu and 
Wechsler 2002; Shen and Bai 2006) as follows:

w h e r e  xp = x ∙ cos
(
!
"

)
+ y ∙ sin

(
!
"

)
, yp = − x ∙ sin

(
!
"

)

+ y ∙ cos
(
!
"

)
, f
#
= fmax∕2

(#∕2) and !
"
= #$∕8 with f

!
 and 

fmax are the center and the maximal frequency of Gabor fil-
ter, respectively, and !

"
 denotes the orientation. The param-

eters η and λ explain the size of the Gaussian envelope 
along x-axis and y-axis correspondingly. The factors of the 
Gabor filter bank are experimentally selected as: fmax = 0.25 
and! = " =

√
2 . The Gabor representation of a J-image can 

be done by convolving this image with the bank of Gabor 
filter (5 scales, 8 orientations) as defined by:

where J(x,y) is considered as complex structure of two 
images real and imaginary denoted as R-image or I-image 
and * is the product convolution. The output Yμ,! has the 
complex structure; the augmented magnitude feature vector 
of the J-image is extracted.

First for each J-image, special Gabor filter bank is applied 
with 5 scales (μ) and 8 orientations (υ) to obtain 40 filtered 
images. Then, the calculation of 40 magnitudes responses 
from 40 filtered image where each magnitude response is 
then down-sampling by a factor ρ = 64 and preprocessed by 
normalization to zero mean with unit variance Fig. 5 shows 
an example. Lastly, each down-sampled magnitude response 
M

!," is reorganized into a vector W
!," by scan columns. The 

40 vectors are concatenated to construct the feature vector 
of R-image or I-image as it can be seen in the following 
equation:

(3)H
!," =

f2
!

#n$
exp

[

−

(
f2
!

n2

)

x2
p
−

(
f2
!

$2

)

y2
p

]

exp
(
j2 #xp

)

(4)Y
!," = J(x, y) ∗ H

!,"

3.3  Classification

Once the selection of the discriminative and pertinent char-
acteristics of each image is done, the different classes are 
separated, and the decision is made in order to accept the 
user as genuine or reject as an impostor.

In order to carry out this stage in our system, we have 
employed Deep Rule-Based (DRB) based classification 
technique.

3.3.1  DRB training architecture

Deep Rule-Based classifier is a process that works with 
four main phases representing its global system mechanism 
(Angelov and Gu 2018), which are initialization phase, prep-
aration phase, updating phase, fuzzy rules generation phase.

(5)Y =
[
W0.0,W0.1 ,⋯ ,W4.7

]T

Fig. 5  a original FKP image, b 40 Gabor filter bank with different scales and orientations, c magnitude of the image filtered by every Gabor 
filter

Table 2  Parameters initialization

Parameter Description

! ← 1; k is the current time instance
!" ← # ",1; μc is the global mean of all the observed data 

of the class c
!" ← 1; Nc is the number of prototypes
Pc,Nc

← Ic,1;Pc,Nc
← 

 XC,1;
Pc,Nc

 prototypes of the class c

Sc,Nc ← 1; Sc,Nc number of images of the data cloud
rc,Nc ← r0 rc,Nc is the radius of the area of the data cloud
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3.3.2  Initialization phase

In this phase, the classifier begins with a vector normaliza-
tion operation Xc,1 applied to the global feature vector of the 
first image of the class “c”  Ic,1 with an initialization of the 
different meta-parameters of the system as shown in Table 2:

3.3.3  Preparation phase

For all the images of all the classes Ic,k,Xc,k is the normali-
zation vector applied to its corresponding feature vectors, 
the global mean μc is updated as shown in the following 
instruction:

Then, the density of all the existing prototypes Pc,Nc of 
the new image Ic,k is calculated as denoted by: D(Pc,Nc

 ) and 
D(Ic,k).

3.3.4  Updating stage

From the previously calculated μc , D(Pc,Nc
 ) and D(Ic,k ), two 

conditions are identified:
Condition 1: IF [D(Ic,k) > max D(Pc,Nc

 )] OR [D(Ic,k
) < min D(Pc,Nc

 )] THEN ( Ic,k ) is set to a new prototype and 
initializes a new data cloud.however if this condition is not 
verified, Pc,n look for the nearest prototype to Ic,k as shown 
in Eq. 7:

where argmin is function that gives the nearest prototype 
by minimizing the distance between the normalized feature 
vector denoted by X̄c,k and the mean of feature vectors of the 
training images Pc,j.

Condition 2: IF [ ‖Xc,k − Pc,n‖<rc,Nc
 ] THEN  [Ic,k is 

assigned to  Pc,n] ELSE [ Ic,k is out of the area of Pc,n].
A new data cloud is added, the next image is grabbed at 

phase 2 (preparation phase) with the processing of all the 
training samples.

3.3.5  Fuzzy rules generation stage

In this last phase, the system generate one Anaya rule based 
on the identified prototypes

where ‘ ~ ’denotes similarity; I is a particular image with its 
corresponding vector feature vector x; P is the prototype; Nc 
is the number of prototypes of the cth class;

(6)!c =
K − 1

K
!c +

1

K
Xc,k

(7)Pc,n = argmin
(
‖Xc,k − Pc,j‖

)
where j= 1, 2,… .,Nc

(8)R ∶ IF
(
I ∼ Pc,1

)
OR…OR

(
I ∼ Pc,Nc

)
THEN(classc)

4  Experiments

In this section, we provide an experimental evaluation of the 
proposed FKP based person recognition system.

4.1  FKP database

The proposed method has been tested on the publicly avail-
able FKP dataset that provided by Hong Kong Polytechnic 
University (PolyU) (2010). This database has 7920 images 
collected from 165 persons with 125 males and 40 females, 
their age is in the range of 20–50 years old. The images were 
captured in two sessions, 48 different FKP images of each 
individual. Four finger types of every person have been col-
lected that are: Left Index Finger (LIF), Left Middle Finger 
(LMF), Right Index Finger (RIF) and Right Middle Fin-
ger (RMF). Every finger type has 6 images in each session. 
There are total 1980 number of images for each finger type.

4.2  Experiment results

In this section, we report two different experiments: Experi-
ment I—where we tested the approach on single modality, 
and Experiment II—where we tested the approach on Multi-
trait (Multi modalities) FKP system.

4.3  Experiment I: single modality

The main goal of this experiment is to test and evaluate the 
introduced scheme on FKP single modality (LIF, RIF, RMF, 
LMF) using DRB classifier with different distances such as 
Euclidean, Cos, Correlation as well as Gabor filter bank and 
BSIF descriptor. In this sets of experiments, we highlight the 

Table 3  Single modalities results

Modality Distance Gabor-DRB BSIF-DRB
Acc (%) EER (%) Acc (%) EER (%)

RIF Euclidean 93.43 5.55 93.94 4.20
Cosine 93.08 5.61 93.43 4.10
Correlation 93.08 5.61 93.08 6.63

RMF Euclidean 94.09 5.21 94.14 4.13
Cosine 94.19 5.10 92.98 3.99
Correlation 94.19 5.10 93.28 6.98

LIF Euclidean 94.34 4.95 92.73 4.72
Cosine 93.94 4.99 91.46 5.23
Correlation 93.94 4.99 91.77 8.34

LMF Euclidean 93.43 5.96 93.54 4.19
Cosine 93.08 5.91 92.47 4.40
Correlation 93.08 5.91 92.78 6.77
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Fig. 6  RMF modality results: a ROC, b EER curves

Fig. 7  RIF modality results: a ROC, b EER curves

Fig. 8  LMF modality results: a ROC, b EER curves
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comparison between distances and descriptors that achieve 
good accuracy.

The results of BSIF-DRB and Gabor-DRB on individ-
ual FKP traits are presented in Table 3. We can observe in 
Table 3 that BSIF-DRB performs better than Gabor-DRB. 
The proposed method using BSIF-DRB achieves higher 
accuracy on the RIF, LMF, and RMF, modalities, e.g., on 
RMF modality the system achieved EER = 4.13% and accu-
racy = 94.14% using Euclidean distance in verification and 
identification modes, respectively. Gabor-DRB performs 
better than BISF-DRB on the LIF modality using the three 
distances.

To further explore our findings, the BSIF-DRB and 
Gabor-DRB comparison results are also presented in term 
of EER and ROC curves, which can be seen in Figs. 6, 7, 8, 
9. These graphs also report comparison study between the 
proposed method BSIF-DRB and Gabor-DRB with different 
distances using FKP modality. The results clearly show that 
the performance is better when the system uses the features 
of the BSIF descriptor with Euclidean distance.

To further demonstrate the efficacy of the proposed sys-
tem, the comparison of the proposed framework has been 
done with prior works in the literature on individual FKP 
modalities, as shown in Table 4. The proposed scheme 
achieves accuracy in range of 91.46% to 94.34%, which is a 
good result compared to the existing FKP person recognition 

systems. For instance, the proposed method on LIF modality 
is able to attain 94.34% in identification mode. While, FKP 

Fig. 9  LIF modality results: a ROC, b EER curves

Table 4  Comparative of 
proposed personal recognition 
method with the existing 
approaches for FKP using 
PolyU dataset

Our achieved results are indicated in bold

Identification (Rank-1)
References Year LMF (%) LIF (%) RIF (%) RMF (%)

El-Tarhouni et al. (2014) 2014 94.70 93.80 92.20 94.80
Shariatmadar and Faez (2013) 2013 95.54 94.33 95.93 96.72
Zeinali et al. (2014) 2014 90.30 88.68 89.79 89.79
Proposed method 2020 93.54 94.34 93.94 94.19

Table 5  Two fingers fusion results using min rule score level fusion

Modality Distance Gabor-DRB BSIF-DRB
Acc (%) EER (%) Acc (%) EER (%)

RIF-RMF Euclidean 98.43 2.17 97.27 2.21
Cosine 98.48 2.21 96.52 2.67
Correlation 98.48 2.21 95.91 3.69

RIF-LMF Euclidean 97.63 2.93 96.82 1.97
Cosine 97.42 2.83 96.52 2.27
Correlation 97.42 2.83 96.67 2.70

RIF-LIF Euclidean 98.28 2.28 96.67 2.67
Cosine 98.08 2.51 95.76 2.84
Correlation 98.08 2.51 94.95 2.51

RMF-LMF Euclidean 98.08 2.27 97.37 1.99
Cosine 97.63 2.37 96.82 2.16
Correlation 97.63 2.37 96.36 2.43

RMF-LIF Euclidean 98.08 2.24 97.32 2.68
Cosine 97.73 2.42 96.82 2.42
Correlation 97.73 2.42 95.61 3.54

LMF-LIF Euclidean 96.87 2.13 96.62 2.84
Cosine 96.72 2.29 95.86 2.86
Correlation 96.72 2.29 95.05 3.02

Author's personal copy



Evolving Systems 

1 3

based person recognition systems proposed in El-Tarhouni 
et al. (2014) achieved 93.80%.

4.4  Experiment II: multi-traits (multimodal) 
biometrics system

Our main aim for this experiment is to investigate the perfor-
mance of proposed system in the case of information fusion, 
given that multimodal systems that combine information 
from different sources are able to over some limitations (e.g., 
accuracy, noise, etc.) of the unimodal biometric systems. 
Thus, further tests were carried out, where we studied dif-
ferent scenarios when the information presented by differ-
ent finger types (LIF, LMF, RIF, and RMF) modality are 
integrated.

The experiments were performed using level score fusion, 
where the information were fused by applying two score 
rules min rule and sum rule. We distinguish three experi-
mental investigation were conducted by (i) fusing only two 
types of fingers as shown in Tables 5, 6, (ii) three types 
fingers as revealed in Tables 7, 8, (iii) all types of fingers 
as it can be seen in Tables 7, 8. Finally, a comparison with 
existing FKP multimodal methods in reported in Table 9.

4.4.1  Experiment 1: two fingers

In this experiment, we have used 6 different combinations 
of two fingers: RIF-RMF, RIF-LMF, RIF-LIF, RMF-
LMF, RMF-LIF employing DRB classifier with different 
distances such as Euclidean, Cos, Correlation as well as 
Gabor filter bank and BSIF descriptor, and two rules, i.e., 
min and sum score level fusion. From the results of BSIF-
DRB and Gabor-DRB of two fingers presented in Table 5, 

Table 6  Two finger fusion results using sum rule score level fusion

Modality Distance Gabor-DRB BSIF-DRB
Acc (%) EER (%) Acc (%) EER (%)

RIF-RMF Euclidean 98.03 1.84 97.63 2.37
Cosine 97.32 2.13 97.17 2.63
Correlation 97.32 2.13 97.17 2.93

RIF-LMF Euclidean 97.53 2.34 97.58 2.11
Cosine 96.52 2.63 96.62 2.74
Correlation 96.52 2.63 96.52 2.24

RIF-LIF Euclidean 98.13 1.44 97.93 2.43
Cosine 97.78 1.98 96.82 2.82
Correlation 97.78 1.98 97.37 1.99

RMF-LMF Euclidean 97.78 1.92 98.32 1.82
Cosine 97.42 2.24 97.42 2.07
Correlation 97.42 2.24 96.72 2.69

RMF-LIF Euclidean 97.73 1.79 98.13 1.47
Cosine 97.22 2.44 97.07 2.83
Correlation 97.22 2.44 97.12 2.69

LMF-LIF Euclidean 97.32 2.08 97.12 2.01
Cosine 96.92 2.34 96.92 2.13
Correlation 96.92 2.34 96.21 2.57

Table 7  Three finger and all fingers fusion results using min rule 
score level fusion

Modality Distance Gabor-DRB BSIF-DRB
Acc (%) EER (%) Acc (%) EER (%)

RIF-RMF-
LMF

Euclidean 99.34 1.17 98.48 1.51
Cosine 98.99 1.22 97.68 1.58
Correlation 98.99 1.22 97.53 2.22

RIF-RMF-LIF Euclidean 99.29 1.47 98.13 1.17
Cosine 99.29 1.41 97.53 1.97
Correlation 99.29 1.41 96.31 2.38

RIF-LMF-LIF Euclidean 98.48 1.92 98.48 1.82
Cosine 98.33 1.87 97.53 1.67
Correlation 98.33 1.87 96.57 2.44

RMF-LMF-
LIF

Euclidean 99.14 1.51 98.64 1.92
Cosine 98.64 1.56 98.03 1.58
Correlation 98.64 1.56 97.02 2.61

All finger Euclidean 99.65 0.91 99.09 1.51
Cosine 99.39 0.91 98.28 1.42
Correlation 99.39 0.91 97.42 1.69

Table 8  Three finger and all fingers fusion results using sum rule 
score level fusion

Modality Distance Gabor-DRB BSIF-DRB
Acc (%) EER (%) Acc (%) EER (%)

RIF-RMF-
LMF

Euclidean 98.89 1.07 98.94 1.47
Cosine 98.33 1.43 98.69 1.47
Correlation 98.33 1.43 98.59 1.69

RIF-RMF-LIF Euclidean 98.84 1.12 98.99 1.52
Cosine 98.28 1.57 98.84 1.92
Correlation 98.28 1.57 98.79 1.68

RIF-LMF-LIF Euclidean 98.69 1.19 99.19 1.81
Cosine 98.13 1.82 98.28 1.12
Correlation 98.13 1.82 98.43 1.67

RMF-LMF-
LIF

Euclidean 98.38 1.27 99.24 1.02
Cosine 97.98 1.93 98.84 1.87
Correlation 97.98 1.93 98.38 1.14

All finger Euclidean 99.24 0.82 99.65 0.19
Cosine 98.64 1.58 99.44 0.40
Correlation 98.64 1.58 98.89 1.48
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we can observe that one modality trait using BSIF-DRB 
performs better than Gabor-DRB. Here, the proposed 
method using Gabor-DRB achieves higher accuracy on 
all combination of two fingers (RIF-RMF, RIF-LMF, RIF-
LIF, RMF-LMF, RMF-LIF) by applying min rules score 
level fusion. The accuracy ranges from 96.72 to 98.48% 
including all distances, and in comparison, to BSIF-DRB 
where the accuracy ranges from 95.05 to 97.37% includ-
ing all distances. We also can see that the best fusion 
of two fingers according to the accuracy belongs to the 
first combination that is RIF-RMF for Gabor-DRB. The 
EER ranges from 2.17 to 2.93% including all distances 
for Gabor-DRB, and EER that ranges from 1.97 to 3.69% 
including all distances for BSIF-DRB, where we can see 
that the best EER achieved belongs to BSIF-DRB that 
equals to 1.99% but over all Gabor-DRB results were 
better.

The results of BSIF-DRB and Gabor-DRB of two fin-
gers are presented in Table 6 using sum rule score level 
fusion. We can see that results over all are quite simi-
lar for both Gabor-DRB and BSIF-DRB including all 
distances, where the best accuracy belongs to RIF-RMF 
using Euclidean distance by accuracy equals to 98.03% 
for Gabor-DRB. While, for BSIF-DRB, the best accuracy 
is attained by RMF-LMF Euclidean distance, i.e., 98.32% 
EER. We can observe more stability regarding Gabor-
DRB, where it ranges from 1.79 to 2.63% for all distances 
and combinations. While, BSIF-DRB ranges from 1.47 to 
2.83% for all distances and combinations. We can state 
that the best EER achieved belongs to BSIF-DRB by 
RMF-LM Fusing Euclidean distance.

Overall in comparison of min score level fusion results 
in Table 5 and sum rule score level fusion results in Table 6. 
For two fingers, it appears that min rule has achieved slightly 
better results in general; it was able to get an accuracy of 
98.48% as best, while sum rule got 98.32%.

4.4.2  Experiment 2 and 3: three fingers and all fingers

In this experiment, we have used 4 different combinations 
of three fingers: RIF-RMF-LMF, RIF-RMF-LIF, RIF-LMF-
LIF, RMF-LMF-LIF and all fingers combined employing 
DRB classifier with different distances such as Euclidean, 
Cos, Correlation as well as Gabor filter bank and BSIF 
descriptor and two rules, i.e., min and sum score level fusion.

In Table 7, we can see clearly the catching increase in the 
accuracy, regardless of the descriptor employed, using three 
fingers and all fingers fusion by applying min rule score level 
fusion. The best accuracy achieved by three fingers equals 
to 99.34% with RIF-RMF-LMF fingers fusion using Gabor-
DRB and Euclidean distance, and 98.64% using BSIF-DRB 
and Euclidean distance by RMF-LMF-LIF three fingers. 
Whereas, the best EER equals to 1.17% with RIF-RMF-
LMF three finger fusion using Gabor-DRB and Euclidean 
distance, and 1.51% using BSIF_DRB and Euclidean dis-
tance by RIF-RMF-LMF fingers fusion. All in all, we can 
conclude that the Gabor-DRB is better than BSIF-DRB.

For all fingers fusion, we can observe in Table 7 that fusion 
using min score level fusion rule was able to attain the highest 
results, where the accuracy reached 99.65% using Gabor-DRB 
and Euclidean distance and EER equals to 0.91%.

Table 8 shows the accuracy and EER achieved using 
three finger and all fingers fusion by applying sum rule. The 
best accuracy via three fingers equals to 98.89% with RIF-
RMF-LMF fingers fusion using Gabor-DRB and Euclid-
ean distance, and 99.24% using BSIF-DRB and Euclidean 
distance by RMF-LMF-LIF three fingers. While, the best 
EER equals to 1.07% for RIF-RMF-LMF three finger fusion 
using Gabor-DRB and Euclidean distance, and 1.62% using 
BSIF-DRB and Euclidean distance by RIF-RMF-LMF fin-
gers fusion. Therefore, we can conclude that BSIF-DRB is 
better than Gabor-DRB using sum score level fusion rule. 
For all fingers fusion, we can observe in Table 8 that fusion 

Table 9  Comparison of the 
proposed multimodal system 
with the existing approaches 
for FKP

Our achieved results are indicated in bold

References Year Method Performance LIF-RIF LIF-LMF All finger

Thapar et al. (2019) 2019 FKIMNet EER (%) – – 2.03%
Rank-1 (%) – – 94.02%

Zeinali et al. (2014) 2014 DFB + LDA Rank-1 (%) 97.27% 95.55% 99.29%
Chlaoua et al. (2019) 2019 PCANet + SVM EER (%) – 0.404% 0.00%

Rank-1 (%) – 97.84% 100%
Jaswal et al. (2017b) 2017 DeepMatching EER – – 0.92%
Proposed system 2020 Gabor-DRB EER (%) 2.44% 3.01% 1.82%

Rank-1 (%) 98.13% 97.32% 99.24%
BISF-DRB EER (%) 2.33% 3.08% 0.19%

Rank-1 (%) 97.93% 97.12% 99.65%
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utilizing sum score level fusion rule has shown best results, 
where the accuracy reached 99.65% using BSIF_DRB and 
Euclidean distance and EER equals to 0.19%.

By comparing the min score level fusion rule results in 
Table 7 with sum score level fusion rule results in Table 8 
for three fingers, we can state that min rule has achieved 
better results in general where it was able to get an accuracy 
of 99.34% as the best, while sum rule reached 99.65% as 
highest accuracy. But overall min rule performed better. For 
all fingers, it was able to top all results obtained using two 
and three finger fusion such that it was able to get a 99.65% 
accuracy for both rules.

For further analysis of the results, we have obtained ROC 
curves to report comparison between the proposed method 
BSIF-DRB and Gabor-DRB with different distances utiliz-
ing FKP modality fusion and min rule in Fig. 10 and sum 
rule in Fig. 11. The results clearly show that the performance 

is better when the system uses the features of the Gabor filter 
bank with Euclidean distance.

Lastly, we can conclude from the previous experiment 
of single modality and the experiment using multi-trait 
(multimodal) that a multi-trait system has improved the 
performance of the proposed method, and as the number of 
modalities increases as the accuracy of the system.

4.4.3  Comparison with prior studies on FKP

The comparison of proposed multimodal system with exist-
ing systems in the literature is presented in Table 9. We can 
notice in Table 9 that the proposed system under verification 
mode attained lowest EER that is 0.19%. compared to EER 
by systems in Jaswal et al. (2017b) and Thapar et al. (2019) 
for all fingers. In identification mode, for the modalities 
(LIF-RIF), (LIF-LMF) and all finger the proposed system 

Fig. 10  Curve ROC for all min 
score level fusion

Fig. 11  Curve ROC for all sum 
score level fusion
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achieved highest recognition rate (rank-1) compared to 
scheme designed in Zeinali et al. (2014). In addition, the 
presented system in this study achieved 99.65% of rank-1, 
which is better than FKIMNet proposed in Thapar et al. 
(2019). It can also be noted that work in Chlaoua et al. 
(2019) achieved the highest recognition rate 100% for all fin-
gers, but if we observe for two fingers (e.g., LIF-RIF or LIF-
LMF) the proposed system reached a good performance.

5  Conclusion

This paper presents a new method for recognizing individu-
als based on their finger knuckle patterns (FKP). Specifi-
cally, the proposed method applied deep rule based (DRB) 
classifier on FKP. Together with DRB, two different feature 
extraction methods (i.e., Binarized Statistical Image Features 
and Gabor Filer bank) have be used. The results obtained 
on public PolyU dataset are quite impressive. Extensive 
empirical analyses were performed, in this study, using sin-
gle modality and multi-traits/multimodal (two fingers and 
three fingers and all finger fusion) based on min and sum 
score level fusion rules. The obtained results demonstrated 
that DRB classifier is a powerful tool in person identification 
biometrics systems, especially in the case of multi-trait. The 
proposed method was able to attain accuracy comparable 
with existing schemes. Future work aims to realize a modi-
fied DRB classifier in computing similarities between fea-
tures based on map diffusion. Also, the effectiveness of the 
proposed method under adversarial attacks will be studied.
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