
HAL Id: hal-03002568
https://hal.science/hal-03002568v1

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The first evidence for Late Pleistocene dogs in Italy
Francesco Boschin, Federico Bernardini, Elena Pilli, Stefania Vai, Clément
Zanolli, Antonio Tagliacozzo, Rosario Fico, Mariaelena Fedi, Julien Corny,

Diego Dreossi, et al.

To cite this version:
Francesco Boschin, Federico Bernardini, Elena Pilli, Stefania Vai, Clément Zanolli, et al.. The first
evidence for Late Pleistocene dogs in Italy. Scientific Reports, 2020, 10 (1), �10.1038/s41598-020-
69940-w�. �hal-03002568�

https://hal.science/hal-03002568v1
https://hal.archives-ouvertes.fr


1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13313  | https://doi.org/10.1038/s41598-020-69940-w

www.nature.com/scientificreports

The first evidence for Late 
Pleistocene dogs in Italy
Francesco Boschin 1*, Federico Bernardini2,3,14, Elena Pilli4,14, Stefania Vai 4,14, 
Clément Zanolli 5,14, Antonio Tagliacozzo6, Rosario Fico7, Mariaelena Fedi8, Julien Corny9, 
Diego Dreossi10, Martina Lari4, Alessandra Modi 4, Chiara Vergata4, Claudio Tuniz3,2,11, 
Adriana Moroni1,12,13, Paolo Boscato1, David Caramelli4 & Annamaria Ronchitelli1

The identification of the earliest dogs is challenging because of the absence and/or mosaic pattern of 
morphological diagnostic features in the initial phases of the domestication process. Furthermore, 
the natural occurrence of some of these characters in Late Pleistocene wolf populations and the 
time it took from the onset of traits related to domestication to their prevalence remain indefinite. 
For these reasons, the spatiotemporal context of the early domestication of dogs is hotly debated. 
Our combined molecular and morphological analyses of fossil canid remains from the sites of Grotta 
Paglicci and Grotta Romanelli, in southern Italy, attest of the presence of dogs at least 14,000 
calibrated years before present. This unambiguously documents one of the earliest occurrence of 
domesticates in the Upper Palaeolithic of Europe and in the Mediterranean. The genetic affinity 
between the Palaeolithic dogs from southern Italy and contemporaneous ones found in Germany also 
suggest that these animals were an important common adjunct during the Late Glacial, when strong 
cultural diversification occurred between the Mediterranean world and European areas north of the 
Alps. Additionally, aDNA analyses indicate that this Upper Palaeolithic dog lineage from Italy may 
have contributed to the genetic diversity of living dogs.

Dogs were the first animals domesticated by humans, long before the advent of  agriculture1. Besides occupying 
a special place in our present day lives, dogs had important functional and symbolic roles throughout human 
history. However, the spatiotemporal context of their early domestication is debated from both archaeological 
and genetic perspectives: there is scant consensus on the location of first domestication centres, and the presence 
of one or more domestication  events1–5, as well as a debate on the correct identification of the oldest archaeologi-
cal specimens considered to represent  dogs6–11. Latest genetic models suggest the presence of dogs in Europe 
at least 15,000 years ago, and a divergence between dogs and wolves between about 20,000 and 40,000 years 
 ago5,12. Earlier potential dog domestication attempts may be represented by canid remains from Northern and 
Eastern Europe, and  Russia6–9,13–15, even if their attribution to dogs or wolves is  debated5,10,16–20. The earliest 
archaeological specimens unequivocally attributed to dogs lived around 16,000 years  ago21–23, and were related 
to Magdalenian contexts in Western Europe. Available genetic evidence suggests that the domestication process 
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leading to the current diversity of dogs took place in  Europe12, even if a possible second event of domestication 
may also have occurred in Eastern  Asia5,24. We present here the first evidence for Late Pleistocene dogs from 
two Upper Palaeolithic sites in southern Italy: Grotta Paglicci (Apulia, Foggia) and Grotta Romanelli (Apulia, 
Lecce). This is the oldest evidence of dogs in the Mediterranean.

Grotta Paglicci opens at about 143 m a.s.l. on the south-western slope of the Gargano promontory (Apulia, 
southern Italy) (Supplementary Figure 1). The present-day cave and a rock shelter of this site were originally part 
of a larger hypogean system. Researches at Paglicci have been carried out for over 50 years, first by the Museo 
Civico di Storia Naturale di Verona and, since 1971, by the University of Siena, in collaboration with the Soprint-
endenza Archeologia, Belle Arti e Paesaggio per le Province di Barletta – Andria – Trani e Foggia 25. The sedi-
ments in the rock shelter yielded Early Middle Palaeolithic and Acheulean stone  tools26,27. A deep stratigraphic 
sequence is deposited in the cave, comprising Lower, Middle and Upper  Palaeolithic28–31. The Upper Palaeolithic 
sequence uncovered inside the cave is one of the most complete in Europe and spans from the Aurignacian (about 
39,000 years ago), notably characterized by the presence of marginally backed bladelets, to the Final Epigravettian 
(about 13,000 years ago)30. In addition to the large number of artifacts and faunal  remains31,32, Grotta Paglicci 
yielded several human  specimens33, as well as mobiliary symbolic objects (engraved stones and bones) and the 
only Upper Palaeolithic wall paintings discovered in Italy so  far34–37. Among the faunal remains, here we analyse 
twelve Canis remains that show remarkably small dimensions or a reduced size of the lower first molar (3150, 
3151, 1632, 1566, 2053, 5110, 7460, 13427, 17165, 21865, R4, R64; Fig. 1 and Supplementary Table 1). Almost all 
of them come from a secure stratigraphic context, with the exception of the mandible R4 and the atlas R64 that 
come from a reworked area of the deposit. Sieving of the reworked sediment from this area yielded materials 
exclusively related to the Evolved and Final Epigravettian. Direct 14C dating of the mandible R4 gave an age of 
15,800–11,200 cal. yr bp (Supplementary Table 2). Another direct 14C date was obtained for the third metatarsal 
3150 from the layer 4c (14,372–13,759 cal. yr bp).

Grotta Romanelli is located in Southern Apulia and opens at about 7 m a.s.l (Supplementary Figure 1). 
Cave stratigraphy is delimited at the bottom by a Tyrrhenian marine terrace (MIS 5) and consists of two main 
parts, the lowest of which is called “Terre rosse” and comprises all of the levels below the stalagmite F (dated to 
40,000 ± 3,250 by 230Th/238U method) 38–40. The upper part of the deposit is called “Terre brune” (dated between 
about 13,800 and at least 8,600 cal. yr BP)41 and yielded Final Epigravettian artefacts together with a vertebrate 
fauna dominated by red deer, European ass and aurochs among ungulates and Tetrax tetrax among  birds42,43. 
The three Canis remains discussed in this paper come from the “Terre brune” (6453, 5788 and P6450; Fig. 1 and 
Supplementary Table 1).

The fifteen dental and skeletal elements from Grotta Paglicci and Grotta Romanelli analysed here (Supple-
mentary Table 1) represent small-bodied individuals or individuals with a lower first molar of reduced size. In 
addition to these canid remains, Canis specimens from the Upper Palaeolithic levels of these two Italian sites also 
include large individuals, similar in size to the extant European wolves, resulting in a remarkable dimensional 
variation (Fig. 2). We measured and compared the size of the post-cranial elements from both sites. Whenever 
the epiphyses of long bones were lacking or if the bones were burned, we applied an ad-hoc X-ray microtomog-
raphy (μCT) protocol to evaluate the ontogeny of bone  tissues44 or the heat-induced  shrinkage45 (see "Methods" 
section). As a result, all long bones considered here were fully developed; among the burnt ones, only a first 
metacarpal (specimen 17165, Fig. 1) shows internal fractures compatible with shrinkage (Supplementary Fig-
ure 2). Wolves are predators characterized by fast body  growth46, and they reach the minimum adult size when 
about one year old. This is a relevant characteristic as the smallest bones studied here show complete skeletal 
development, meaning that they represent small-bodied adult individuals and do not belong to still-growing 
individuals of larger size. We compared postcranial biometric variables measured on Canis remains from Grotta 
Paglicci, Grotta Romanelli, and from other Pleistocene to Holocene European sites, as well as to extant popula-
tions of wild individuals with a standard (a complete skeleton of a present-day female wolf from Italy, Supple-
mentary Table 3) using a log-shape ratio method to estimate the relative body size of each  population47. Our 
results show that the Gravettian specimens from Grotta Paglicci, as well as the Epigravettian larger individuals 
from Grotta Paglicci and Grotta Romanelli, were similar to those of other wild populations (extant wolves from 
Portugal and Holocene archaeological specimens from Slovenia), while the Epigravettian smaller individuals 
from Southern Italy (Grotta Paglicci and Romanelli) showed dimensions comparable to those of Palaeolithic 
dogs from France (Fig. 2).

In order to extract the maximum information from the teeth, we applied approaches that are commonly used 
in virtual paleoanthropology to assess the internal tooth structural  signature48,49. The analysis of the tooth crown 
tissue proportions of P6450 from Grotta Romanelli was performed on a limited portion of the crown to avoid 
the influence of occlusal wear (see "Methods" section).

Nevertheless, using this method focusing on the protocone-paracone region (Fig. 3a), we detected significant 
differences in crown dentine proportions between the 21 dog and 23 wolf individuals of our comparative sample 
(Supplementary Table 4 and Supplementary Figure 3). The percent of crown dentine is statistically higher in 
wolves than in dogs (Mann–Whitney U test p-value < 0.05), including for the smaller wolf individuals showing 
a tooth size comparable to that of larger dogs. Our estimates for the specimen P6450 show low percent of crown 
dentine, falling closer to the average dog value than to the higher mean value of wolves (Fig. 3b).

We also performed geometric morphometric analyses of the crown occlusal outline of the lower carnassial 
tooth of the mandible R4 from Grotta Paglicci and of P6450 from Grotta Romanelli (see "Methods" section). 
This analysis reveals substantial differences in shape between domesticated and wild individuals, and discrimi-
nates the specimen R4 from Grotta Paglicci, characterized by reduced crown dimensions, as belonging to a dog 
while the specimen P6450 from Grotta Romanelli falls in the overlapping area between dogs and wolves (Fig. 4).

We carried out genetic analysis on a small 3rd metatarsal from layer 4c of Grotta Paglicci, sample 3150 (direct 
14C date: 14,372–13,759 cal. yr bp). A double-stranded library was prepared on the DNA extracted, and target 
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enrichment for the mitochondrial genome was performed, followed by high-throughput sequencing on Illu-
mina  platform50. The resulting DNA fragments showed typical features of ancient DNA: reduced length with an 
average of 57 bp and high rates of deamination with 38% of C to T and 48% G to A at the 5′ and 3′ ends of the 
molecules respectively (Supplementary Table 5 and Supplementary Figure 4). Around 91% of the mitochondrial 
genome was reconstructed and compared with data from 179 ancient and modern dogs and wolves, 4 coyotes 
and 3 dholes (see "Methods" section and Supplementary Data S4). A phylogenetic analysis based on a Bayesian 
approach attributes the specimen from Grotta Paglicci to Canis lupus and allows us to exclude its taxonomic 
attribution to Cuon alpinus. The tree (Fig. 5) shows a well-resolved mitochondrial phylogeny with dogs falling 
within four clades (DOG A–D) as previously described by Thalmann and  colleagues4. The sample 3150 from 
Grotta Paglicci is placed in the closest sister group of modern dogs’ clade DOG C. The lineage of the specimen 
branches off immediately after the dog from Oberkassel (Germany), dated to about 14,800–13,300 cal. yr bp, and 
before the other ancient dogs from Germany (Karstein dated to 12,500 cal. yr bp, Herxheim dated to 7,000 cal. yr 
bp and Cherry Tree Cave date to 4,700 cal. yr bp), Switzerland (dated to 14,100 cal. yr bp) and Czech Republic 
(dated to 2,800 cal. yr bp). The clade that includes the above-mentioned samples is therefore composed exclusively 
of modern dogs and ancient samples attributed to domestic forms, suggesting that sample 3150 from Grotta 
Paglicci is a dog. The most recent common ancestor (MRCA) of this clade is estimated to 28,510 cal. yr BP, 95% 

Figure 1.  Pictures of the fifteen canid specimens from Grotta Paglicci and Grotta Romanelli. The post-cranial 
elements are in dorsal view (with the exception of 7460, ventral view), while the mandible R4 and the first lower 
molar P6450 are in buccal view. Scale bar, 1 cm.
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HPD 25,827–31,314, very close to the MRCA between the lineage of the sample from Grotta Paglicci and the 
other dogs in clade C (28,048 cal. yr bp, 95% HPD 25,005–30,442).

Nowadays, very small wolves are observed only in warm and arid  contexts51,52, which are different to the Last 
Glacial Maximum and Late Glacial Southern Italy. In addition, the palaeontological record shows that if variations 
in body size of large canids occurred, populations with significant different body size are mainly stratigraphically 
or geographically  separated53,54, whilst the smallest and largest individuals found at Grotta Paglicci are from the 
same layers (the oldest dated to about 20,000 years ago—GrN-14874; Fig. 6). In addition, as far as we know, the 
Late Pleistocene bone record from Apulia reveals that OIS 2 small Canis individuals are not present in natural 
 accumulations55–57, whilst in the cases of Grotta Paglicci and Grotta Romanelli they are associated with human 
presence. In addition it has to be underlined that this small form shows genetic similarities with dogs at least at 
14,000 years ago at Grotta Paglicci, and already acquired dental traits that have to be considered typical for dogs 
at least at 13,800 years ago at Grotta Romanelli.

Small Canis individuals from Grotta Paglicci and Romanelli were about as big as those of the so-called West-
ern European Upper Palaeolithic small dogs  group22, which differs in size from the (sometimes  debated11) larger 
individuals from Eastern Europe and Russia. It is noteworthy that available data highlight similarities between 
an individual from Paglicci and a German Palaeolithic dog also from a genetic point of view (Fig. 5), possibly 
suggesting a common origin and a later dispersal across Europe. Our data (body size, genetics and dental internal 
structure) indicate that dog-like individuals were present in Apulia at least 14,000 years ago and likely as early 
as 20,000 years ago, as shown by the small dimensions of the phalanx 21865. This suggests that dogs may have 
represented a common cultural trait among human groups in an historical moment, when a strong cultural 
diversification occurred, between the Mediterranean world (e.g. the Italian Epigravettian) and the regions north 
of the Alps (e.g. Magdalenian)29.

Our results from archaeological evidence confirm the hypothesis based on genetic  models12, which con-
strained the timing of dog domestication to 20,000–40,000 years ago. In addition, the estimated most recent 
common ancestor between Paglicci and the other dogs of clade C is in agreement with this picture. Some authors 
consider domestication as related to selection for reduced aggressive behaviour, triggering several physiologi-
cal and anatomical changes (e.g. size reduction and changes in coat colour, reproductive cycles and hormonal 
activities)58,59; others are more cautious in defining the “domestication syndrome” and consider domestication as 
a possible result of an adaptation of animal species to a human-modified  environment60. In this perspective, the 
presence of Canis remains already showing noticeable body changes just after the Last Glacial Maximum can be 
related to the fact that wolves began to take advantage of a new niche in adverse ecological conditions, becom-
ing human-commensal scavengers. The occupation of this new niche, as well as the subsequent new selective 
pressure, might have led to a new social  ecology61 and a new evolutionary response, which triggered domestica-
tion. This might have been a key factor in the emergence of a closer relationship between wolves and humans. 
The earliest small individual (21865) from layer 17 of Grotta Paglicci (Early Epigravettian), appears just after 
the Last Glacial Maximum, while similar evidence began to appear only some millennia after in central Europe 

Figure 2.  Log-ratio diagram of postcranial elements showing dimension of Canis remains compared with 
a standard (Supplementary Data S1). Negative values: specimens smaller than the standard; positive values: 
specimens larger than the standard. Silhouettes on the left indicate the difference in size between the largest 
individuals (wolves, grey plots) and the smallest ones (dogs, red plots). The two specimens illustrated in the box 
represent the two extremes of variation found at Grotta Paglicci (Epigravettian). It is worth noting that both 
of these first phalanges (the largest is 21930 and the smallest is 21865) come from the layer 17 (dated to about 
20,000 cal. yr bp)31.
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Figure 3.  Tooth crown tissue proportions. (a) Virtual extraction of a tooth slice from the lower first molar. 
(b) Variability of the lower first molar percent of crown dentine (X-axis) and breadth of the tooth (Y-axis) in 
dogs and wolves. Tooth P6450 from Grotta Romanelli is represented by the three blue triangles (see "Methods" 
section and Supplementary Table 4).

Figure 4.  Geometric morphometric analyses of the lower first molar crown outline. (a) Between-group 
principal component analyses of the 2D landmark Procrustes-registered shape coordinates of the lower first 
molar outline of R4 and P6450 compared with dogs and wolves. (b) Extreme shapes along bgPC1 and bgPC2 
(see "Methods" section and Supplementary Table 10).
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Figure 5.  Phylogeny of modern and ancient canids based on mtDNA. The outgroups (three dholes, four 
coyotes and two Chinese wolf sequences) are not shown. Ancient individuals are labelled with their country 
of origin and their approximate calibrated 14C cal. yr bp age. Ancient dogs are labelled in blue. Monophyletic 
clusters are collapsed and coloured to highlight the four clades Dog A–D. Number of individuals in each cluster 
is indicated in brackets. Asterisks highlight nodes with posterior probability > 0.9
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Figure 6.  Calibrated 14C dates of early European domestic dogs from Apulia compared with other dogs from 
Europe. Dates of Grotta Paglicci are only related to layers where these remains were found. Layer D of Romanelli 
is the one where tooth P6450 is from.
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(Germany and Switzerland) and even later in France, eastern Europe, the Middle East and eastern Eurasia. The 
evidence for “incipient dogs” and “proto-dogs” dated to between about 36,000 and 26,000 years ago, have been 
 criticised6–11, and the peculiar cranial morphological features, considered as the proof of domestication, were 
also found in extinct wolf  ecomorphs62. Even if some scholars pointed to the possible benefits of  cynegetics23, 
behavioural studies on dogs revealed that breeds intensively selected in modern times for carrying out peculiar 
tasks are more skilled in using human social and communicative behaviour than wolves and “primitive”, less 
selected  breeds63,64. It is still controversial whether earliest Palaeolithic dogs were able to interact with humans at 
a level sufficient to play a key role in subsistence strategies. Anyway, whatever the reason for dogs’ domestication, 
their presence in Apulia from at least 14,000 years ago and probably as early as 20,000 years ago (Fig. 6) suggests 
that these animals might have played a critical role in Epigravettian cultures of the region.

Methods
Biometry. Measurements of dog and wolf bones from Grotta Paglicci (both), Grotta Romanelli (both), 
Upper Palaeolithic sites from France (Pont d’Ambon, Montespan, Le Closeau; only dogs)22, Grotta delle Ossa 
(Holocene, Slovenia,only wolves)65 and modern wild populations from  Portugal66 (Supplementary Data S1) 
were compared with a standard represented by a skeleton of a present adult female wolf individual from Italy 
stored at the University of Siena (specimen No. 361, shoulder height: 66.7 cm. In order to obtain as much reliable 
results as possible, we excluded three post-cranial elements from our biometric analysis (R64, from reworked 
sediments; 7460, not measurable; 17165, possibly shrunk due to combustion). Measurements of skeletal ele-
ments are from Von den  Driesch67 and expressed in mm. The comparative data are detailed in the Supplemen-
tary Tables 6, 7, and 8. Data from other extant wild individuals are not used in Fig. 2, because most of studied 
samples of wolves consist only in skull and mandibles. Out of the six extant wild wolves with available post 
cranial elements, three are young individuals from Italy (No. 353, 362, and 139), one (No. 138) is another Italian 
wolf (adult), one is the adult used as the standard and another (LLj) is from Slovenia. We consider that only a 
few individuals is not enough to represent the variability of a population (neither the Italian, nor the Slovenian 
one) and we preferred not to add them to Fig. 2. In any case, it does not affect the results and interpretations of 
this study as fossil wolves that are penecontemporaneous with the fossil dogs studied here are included and are 
more relevant for comparative purposes.

Wolf ontogeny. Complete ossification of epiphyses is reached in wolves (and dogs) at about one year of 
 age46. To support the idea that wolf long bones showing fused epiphyses belong to individual that already reached 
at least the minimum adult body size, we analysed body-size data of extant Italian wolves collected on the field 
by one of the authors (RF). The sample includes 99 individuals from 2 months-old to adult age (Supplementary 
Data S2). In the Supplementary Figure 5, it is shown that 6 to 10 months-old wolves (thus not mature from a 
skeletal point of view) already reached a body size comparable with that of older individuals. These results give 
further support to the hypothesis that small long bones from Grotta Paglicci and Grotta Romanelli belong to 
adult dogs, rather than to young wolves.

X‑ray microtomography. A total of 61 specimens, including 45 dog and wolf lower first molars, one dog 
phalanx and 15 first metacarpals (Supplementary Data S3), were analysed by X-ray microtomography (μCT) at 
the Multidisciplinary Laboratory of the Abdus Salam International Centre for Theoretical Physics (Trieste, Italy), 
using a system specifically designed for the study of archaeological and paleontological  materials68. The μCT 
acquisitions of the specimens were carried out by using a sealed X-ray source (Hamamatsu L8121-03) at variable 
voltage and current and with a focal spot size of 5 μm (Supplementary Table 9). Sets of 1,440 or 2,400 projections 
of the samples were recorded over a total scan angle of 360° by a flat panel detector (Hamamatsu C7942SK-25). 
The resulting μCT slices were reconstructed using the commercial software DigiXCT (DIGISENS) in 32-bit 
format. Acquisition parameters and the obtained isotropic voxel sizes are reported in the Supplementary Table 9 
for all the samples. A semi-automatic threshold-based segmentation was carried out to separate the bone tissue 
from the interstitial void in post cranial elements, and to separate enamel from  dentine69–71.

First metacarpal. A first metacarpal proximal epiphysis (13247) of a possible dog was identified. Its dimen-
sions are not compatible with those of an adult wolf, but the lack of distal epiphysis does not allow to exclude 
the presence of a young wolf. A total of 15 wolf and dog first metacarpals were analysed by means of μCT (Sup-
plementary Table 9) to detect the age of the individual 13247 from layer 10D of Grotta Paglicci (Evolved Epi-
gravettian). Comparative sample is composed of three young present-day wild individuals from Italy (353, 362 
and 139); three present-day zoo-wolves (52, 180 and 214); three adult present-day wild wolves from Italy and 
Slovenia (361, 138 and LLj); three wild individuals from Grotta Paglicci (1971, R23 and R24) and two present-
day domestic dogs (196 and CLj). After the segmentation, all bones were aligned to their longitudinal axis and 
the proximal epiphysis was separated from the rest of the bone using a transversal plane tangent to the distal 
ridge of the articular facet of the second metacarpal (Supplementary Figure 6). The ratio between Bone Volume 
and Total Volume (BV/TV) was calculated for each epiphysis. Even if the distal epiphysis is already attached (but 
still not completely fused) with the diaphysis, young not fully developed wolves show a more porous trabecular 
and cortical bone tissue (i.e. a low BV/TV value) and can be easily separated from the others (Supplementary 
Figure 6). The specimen 13247 from Paglicci shows a BV/TV compatible only with that of an adult individual 
of very small size.

Burned specimens. In a recent  study45, some of the authors of the present paper demonstrated that μCT imag-
ing can reveal bone fractures due to shrinkage caused by burning. The analysis of two burned specimens from 
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Grotta Paglicci (21875 and 17165 respectively) showed that a first phalanx from layer 17b (21875) does not show 
any fracture caused by deformation of bone tissues. The fractures visible in the Supplementary Figure 2 are due 
to post depositional agents (this specimen was found broken in several fragments during the excavation). The 
specimen 17165 (a calcined first metacarpal) shows a pattern of fractures within the compact bone tissue clearly 
compatible with bone deformation (and shrinkage) due to burning. Considering the level of bone shrinkage at 
high  temperatures72, its small dimension (distal breadth: 5.2 mm) would not be explained with the reduction 
of a skeletal element of a wolf-sized individual after burning. Nevertheless, it was excluded from the biometric 
analysis.

Percent of crown dentine in the lower first molar in dogs and wolves. Dentine percent of the lower first molar 
P6450 from Grotta Romanelli was analysed and compared with that of a sample of 21 dog and 23 wolf specimens 
(Supplementary Table 4). Among dogs, 18 are present-day individuals whose skeletal remains were collected on 
the field. The breed is unknown. Three remains, stored at the Natural History Museum of Trieste (NHMT), are 
archaeological and in particular Holocene individuals coming from the area of Škocjan (Slovenia—old excava-
tions, without clear context). Among wolves, the specimens that are part of the osteological collection of the 
University of Siena are represented by one present-day zoo-wolf of northern European provenance and by 7 
wild individuals coming from central Italy. Other three wild wolves from central Italy are part of the zoological 
collection of the Fisiocritici Academy of Siena and one is from north-eastern Italy and is part of the zoological 
collection of the NHMT. Among archaeological wolves, six are Holocene individuals from Grotta delle Ossa 
(Škocjan, Slovenia, Archaeological collection NHMT)65, two are from Grotta Paglicci (one Upper Palaeolithic 
and one Middle Palaeolithic) and three from Grotta Romanelli (two Upper Palaeolithic and one Middle Pal-
aeolithic). The Middle Palaeolithic specimen from Romanelli comes from the “Terre rosse” level (3596_3, Sup-
plementary Table 4). It was previously considered as belonging to Canis mosbachensis, but was recently reas-
sessed to belong to Canis lupus57. Given that the two Middle Palaeolithic specimens belong to small-bodied 
wild individuals, these specimens are relevant studied to control the pattern of crown dentine in a small wolves 
Pleistocene population. Image segmentation of all teeth was carried out using a semi-automatic threshold to 
separate different dental tissues (dentine and enamel). After adapting our own protocols, developed in virtual 
dental  paleoanthropology48, 49, we set a reference tooth cross-section whose orientation was fitted to the cervix. 
Moving this cross-section across the tooth crown we chose two cross-sections to separate a 3D tooth slice (Sup-
plementary Figure 7). Lower plan (cross-section 1) was set at the bottom of the fossa between the paraconid and 
the protoconid. The upper plan (cross-section 2) was set at the point where the paraconid and the protoconid 
separate from each other. We were thus able to carry out a study of the percent of crown dentine in a region cor-
responding to the middle part of the main cusps. The percent of crown dentine is expressed using the formula: 
(dentine volume/(dentine volume + enamel volume)) * 100, (Vcdp/Vc (%)). We selected only teeth that do not 
show wear in this part of teeth. Even if slight, wear is well visible in virtual models as one or more flat facets cor-
responding to a decrease in enamel thickness (Supplementary Figure 8). Once the obtained results demonstrated 
that dog lower first molar is characterized by a lower percent of crown dentine (Supplementary Table 4) than in 
wolves, we applied this methodology to one tooth from Grotta Romanelli (P6450). The tooth is slightly broken at 
the cervix on the mesial aspect. To correct the missing enamel, we aligned the preserved part of the cervix of the 
P6450 tooth with those of three other specimens: dog SC1 (archaeological specimen) and two wolves of different 
size (377 and 6445). In all three cases, when the tooth was oriented and the 3D slice was extracted and analysed, 
combining the percent of crown dentine with tooth size (breadth) the specimen from Grotta Romanelli falls 
within dog variability (Fig. 3b).

The possible presence of Cuon alpinus. The presence in Italy, during the Upper Palaeolithic, of another 
smaller wild canid, the dhole (Cuon alpinus), can be excluded on the basis of palaeontological evidence, since 
this species disappeared in the Apennine Peninsula during MIS  373. Among the specimens presented in this 
paper, the distal fragment of a tibia from layer 5a (1632, Final Epigravettian, ca. 15,000 years ago), smaller in size 
than a homologous fragment of an upper Palaeolithic dog from Pont d’Ambon (France) (specimen 22, table 4 in 
Pionnier-Capitan et al.22) shows a morphology that is not typical of a Cuon. In particular, both the prominent 
edge of malleolus, the rounder and regular margin of the distal articulation in its middle part (anterior view), 
and a small oblique groove in the lateral half of the distal articular border (anterior view) are well visible and 
differ from the morphological condition of  dholes22. In addition, the specimen 3150 from Grotta Paglicci was 
definitely attributed to a Canis by means of palaeogenetics (Fig. 5).

Lower first molar shape analysis. Employing a geometric morphometric approach, we performed a 
contour analysis of the outer enamel surface (OES) on a sample of 21 Holocene dogs and 23 Late Pleistocene 
and Holocene wolves lower first molars (LM1) (Supplementary Table 10). The occlusal plane is defined here 
as the perpendicular view of a virtual cross-section fitting the cervix. We defined two homologous landmarks 
in order to constrain the sliding of two curves of 80 and 60 semilandmarks linearly spaced along the outlines 
(Supplementary Figure 9). Sliding semilandmark  method74, based on the Procrustes superimposition algorithm, 
was used for generating shape  data75,76. We performed generalized Procrustes analyses, principal component 
analyses (PCA) and between-group principal component analyses (bgPCA) based on the Procrustes shape 
 coordinates77. The two canid specimens R4 and P6450 were included a posteriori in the bgPCA. Because one of 
the teeth (P6450) is slightly broken at the cervix on the mesial aspect, we have made three reconstructions for 
this specimens, aligning the preserved part of the crown with those of an archaeological dog (SC1), a modern 
wild wolf (377) and a fossil wolf from Grotta Romanelli (P6445). Then, employing the geometric morphometric 
approach, we performed the contour analysis. The analyses were performed using the package ade4 v.1.7-678 for 
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R v.3.467. Allometry was tested using multiple  regressions79 in which the explanatory variable is the centroid size 
and the dependent variables are the bgPC scores. There is a weak allometric signal along bgPC1 (p-value < 0.05; 
 R2 = 0.27), and no size-related variation is detected along bgPC2 (p-value > 0.05), the differences between speci-
mens in this analysis thus mostly representing shape-variation.

aDNA analysis. Only the small 3rd metatarsal 3150 from layer 4c of Grotta Paglicci (direct 14C date: 
14,372–13,759 cal. yr bp) was selected for aDNA analysis. The oldest specimens are too small to extract enough 
quantity of bone powder without significantly damaging them. DNA analysis was carried out in the Molecular 
Anthropology Laboratory of the University of Florence, exclusively dedicated to ancient DNA analysis. Blanks as 
negative controls were used in all of the experimental steps to monitor the absence of contaminants in reagents 
and environment. To remove potential contamination, the outer layer of the bone was mechanically taken out 
using a dentist drill with disposable tip. After brushing, sample was irradiated by ultraviolet light for 45 min in 
a Biolink DNA Crosslinker (Biometra). The DNA was extracted from approximately 50 mg of bone powder fol-
lowing a published silica-based  protocol50,80 and eluted in 100 µl of TET buffer (10 nM Tris, 1 mM EDTA and 
0.05% Tween-20). 20 μl of DNA extract were transformed into genetic library following a double-stranded DNA 
 protocol81 using a unique combination of two indexes. Sample and negative controls were checked with Agilent 
2100 Bioanalyzer DNA 1000 chip. Libraries were then enriched for mitochondrial DNA following a capture 
 protocol81,82 and sequenced on an Illumina MiSeq run for 2 × 75 + 8 + 8 cycles.

Bait production. Two overlapping long-range PCR products encompassing the whole mitochondrial canine 
genome were produced. Primers (Supplementary Table 11) were designed using the Primer3 program (https ://
frodo .wi.mit.edu/prime r3/input .htm). DNA was extracted from the saliva of a special dog of Akita Inu breed 
and used as template. The PCR purification and subsequent analytical steps to create the baits were carried out 
following Maricic et al.  protocol50.

Raw reads processing and mapping. The EAGER  pipeline82 was used for initial sequencing quality control, 
adapter trimming and paired-end read merging. Only reads with a minimum overlap of 10 bp and with a mini-
mum total length of 30 bp were kept. Filtered reads were mapped to the reference dog mtDNA (U96639)83 using 
BWA-0.7.1084 setting recommended parameters for ancient DNA molecules (“-l 1000 -n 0.01 -o 2”)85. After 
mapping, PCR duplicates were removed using SAMtools-1.3.186. Consensus sequence for mtDNA was called 
using mpileup and vcfutils.pl of the SAMtools package,only the reads with a mapping quality ≥ 30 were used to 
call confident bases. Finally, we reconstructed the 91.62% of the mitochondrial genome with an average coverage 
of 2.71 (Supplementary Table 5). Damage patterns were detected using mapDamage2.087: the sample shows a 
substitution rate at read termini higher than 30%, fully compatible with sample age (Supplementary Table 5 and 
Supplementary Figure 4). In addition, the low average fragment length (57.62 bp) provides a good indication 
that the mtDNA obtained is authentic (Supplementary Table 5).

Phylogenetic analysis. The assembled mitochondrial genome was used to reconstruct the canine phylogeny 
together with previously published sequences from 126 modern and 53 ancient dogs and  wolves88, 4 coyotes and 
3 dholes (Cuon alpinus) (Supplementary Data S4). Alignment of the mitochondrial genomes was performed by 
 Mega789 with the Muscle  algorithm90 following criteria proposed in Thalmann et al.4. BEAST v2.6.291 was used to 
determine a phylogenetic tree with Hasegawa-Kishino-Yano and gamma distributed rates (HKY + G) as substi-
tution model, estimated as the best model according to Mega  789. Strict clock model and constant population size 
were used as priors as suggested in Thalmann et al.4 and Skoglund et al.3. Tip dates for ancient samples were set 
according to their radiocarbon calibrated bp ages and used for calibrating and estimating the substitution rate. 
A MCMC run with 40,000,000 generations, sampling every 2,000 was performed. Effective sampling size (ESS) 
values and chain convergence were evaluated using Tracer v1.7.192. ESS values were higher than 200 for all the 
parameters. The first 10% of iterations were discarded as burn-in and TreeAnnotator v2.6.291 was used to pro-
duce a Maximum Clade Credibility tree, then visualized by FigTree (https ://tree.bio.ed.ac.uk/softw are/figtr ee/).

14C dates. Dates shown in Fig. 6 were calibrated with the software OxCal v.4.3.293 using the IntCal13  curve94. 
Date of Palaeolithic dogs (or relative contexts) from France, Germany and Switzerland are from Street et al.95. 
The radiocarbon date of Grotta Romanelli is from Calcagnile et al.41; among dates of Grotta Paglicci, four (GrN-
14874, F-65, F-66, F-68) are from Berto et al.30 and one (OxA-26316) is a previously unpublished direct date of 
sample 3150. It was carried out using the dating service of the Oxford Radiocarbon Accelerator Unit. The date 
was obtained by removing contaminations with a  pretreatment96. The uncalibrated date in radiocarbon years BP 
is 12,175 ± 55.

In addition, other new radiocarbon measurements were performed by one of the authors to better contextu-
alize some of the Final Epigravettian layers and to give an age to specimen R4. Analyses were carried out at the 
Accelerator Mass Spectrometry (AMS) dedicated beam line at LABEC accelerator in Florence (INFN-CHNet, 
Cultural Heritage Network)97. Samples were chemically treated to extract and purify the “good” carbon for 
the measurement, and finally this carbon was graphitised. Radiocarbon concentration in graphite pellets was 
obtained by measuring both 14C/12C and 13C/12C—to correct for isotopic fractionation—ratios along the beam 
line; chemistry and accelerator background was evaluated by measuring apparent radiocarbon abundance in 
blank samples. NIST Oxalic Acid II (SRM 4990C) was used as primary standard, while IAEA C7 was used as 
secondary standard to check measurement accuracy. Measured radiocarbon ages were calibrated using OxCal 
 software93 and IntCal13 calibration  curve94.

Four samples were selected from Grotta Paglicci to be dated:

https://frodo.wi.mit.edu/primer3/input.htm
https://frodo.wi.mit.edu/primer3/input.htm
https://tree.bio.ed.ac.uk/software/figtree/
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• #2269, humerus attributed to a wolf, collected in layer 5C (Final Epigravettian)[98];
• R4, mandible attributed to a canid (see discussion in the text), collected in an Epigravettian reworked layer, 

whose chronological context was not knowable a priori;
• #2992, radius, attributed to Cervus elaphus, collected in layer 4C (Final Epigravettian);
• #5090, second phalanx, attributed to Equus ferus, collected in layer 7B (Final Epigravettian).

Bones were treated to extract collagen, the carbonaceous fraction useful for dating. The mineral matrix was 
completely dissolved by gentle deacidification in HCl solution: a quite mild solution (0.5 M concentration) was 
employed to reduce the stress for the samples and to maintain the possibility of collagen recovery. The collected 
organic fraction was cleaned in NaOH solution, to remove possible contamination due to humic substances and 
it was then converted to gelatin. Unfortunately, the collagen extraction yield was not fully satisfactory. Sample 
#5090 gave no collagen at all; collagen collected from #2992 was too little to go further with sample preparation 
procedure. Regarding the sample R4, collagen yield was quite low, below the limit of 1% that is often indicated as 
a cut-off for good preserved bones, and in fact it gave a poor amount of  CO2 with respect to the typical samples 
treated and measured at INFN-LABEC. Considering the possible importance of this sample (no independent 
indication of the possible date of this sample was present), the collected  CO2 was anyway converted to graphite, 
adding a known amount of carbon dioxide produced by the combustion of a blank sample, in order to have a 
total mass of graphite as much uniform as possible. Sample #2269 gave a satisfied collagen recovery yield, so 
that two pellet samples were prepared. This gave us the possibility to check for the presence of possible contami-
nations. The Supplementary Table 2 summarizes the results of AMS measurements. The two graphite samples 
prepared from #2269 gave results that were consistent within the experimental error, thus the best estimation 
of its radiocarbon concentration was obtained as the weighted average of the two measured concentration. The 
conventional radiocarbon age and thus the calibrated age was derived accordingly (Supplementary Table 2).

The relatively high experimental uncertainty on the measured radiocarbon concentration of R4 is basically 
given by the experimental error on the  CO2 pressure measurement in the graphitization reactor.

Provenance of archaeological remains studied in this paper. Canis remains from Grotta Paglicci 
were excavated by the University of Siena (Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente) with 
permission of the local Heritage Office (Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di 
Barletta – Andria – Trani e Foggia). Remains from Grotta Romanelli are stored in the Bioarchaeology Section of 
Museo delle Civiltà, Museo Nazionale Preistorico Etnografico “Luigi Pigorini” and were studied with permission 
from the same Institution. Remains from Škocjan (Slovenia) are part of the collections of the Natural History 
Museum of Trieste and were studied with permission from the same Institution.

Data availability
In regards of genetic data, the consensus sequence is available at the National Center for Biotechnology [Gen-
eBank Accession Number: MH376892]. The other datasets generated during and/or analysed during the current 
study are available from the corresponding author on reasonable request.
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