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ABSTRACT

We evaluate an adaptive Gaussian quadrature integration scheme suitable for the numerical evaluation of generalized redistribution in
frequency functions. The latter are indispensable ingredients for “full non-LTE” radiation transfer computations, assuming potential
deviations of the velocity distribution of massive particles from the usual Maxwell–Boltzmann distribution. A first validation is made
with computations of the usual Voigt profile.
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1. Introduction
Radiation transfer is, by essence, a difficult problem (e.g., Rutily
& Chevallier 2006), as well as a question of very large rel-
evance in astrophysics. It relies indeed on complex nonlinear
light-matter interactions (see e.g., Hubeny & Mihalas 2014;
Rutten 2003).

At the very heart of the problem lies the issue of how
photons may scatter on these moving massive particles constitut-
ing the atmosphere being studied. The usual literature classifies
these processes as either, “complete” redistribution in frequency
(CRD), or “partial” redistribution in frequency (PRD). Com-
plete redistribution in frequency means complete decorrelation
of absorbed and emitted photons, while PRD considers a frac-
tion of coherent scattering, up to the limit of full coherence (see,
e.g., Sect. 10 of Hubeny & Mihalas 2014). The vast majority
of astrophysical problems are solved, still, within the frame of
CRD, for which further simplifications are the equality of emis-
sion and absorption profiles – the latter also usually known a
priori – which also leads to the independence of the so-called
source function vs. frequency.

Besides, and more generally, while nonequilibrium distribu-
tions of photons, meaning potential departures from the Planck
law, have been routinely considered since the late 60’s, a very
limited number of studies tried to further push the description
of the physical problem, by questioning to what extent the most
often assumed Maxwell–Boltzmann velocity distribution of the
massive particles onto which photons scatter may remain valid?
(see e.g., Oxenius & Simonneau 1994, and references therein).

Non-Maxwellian velocity distribution functions (hereafter,
VDF) have been studied (e.g., Scudder 1992, and further cita-
tions) or evidenced in natural plasma (see e.g., Jeffrey et al.
2017, for a recent study about solar flares). Such departures
from Maxwell–Boltzmann VDFs have also been considered in
the radiative modeling of spectral lines formed in neutral plan-
etary exospheres (e.g., Chaufray & Leblanc 2013), where these
authors introduced so-called κ VDFs into their photon scattering
physical model.

However, such non-Maxwellian VDFs are still known ab
initio before solving the radiation transfer problem. The more
general issue of computing self-consistent nonequilibrium dis-
tributions for both photons and massive particles – for whose
associated problem we coined the phrase “full non-LTE radia-
tion transfer” – remains quite an open question in astrophysics,
although a few studies have already been conducted in the past
(see e.g., Borsenberger et al. 1986, 1987).

Hereafter, we provide a first numerical tool that allows us
to go further in this direction, enabling further computations
of generalized redistribution functions. Moreover, the numeri-
cal scheme we evaluated may also be of more general interest,
for other topics of numerical (astro)physics.

2. Redistribution in frequency
As an illustrative but important example, we focus here on the
case of coherent scattering in the atomic frame of reference, for a
spectral line of central wavelength ν0. We also assume that only
“natural” broadening is at play for the upper energy level of,
typically, a resonance line with an infinitely sharp lower level.
Therefore, we consider an elementary frequency redistribution
function r(ξ′, ξ) such that:

r(ξ′, ξ) = ϕ(ξ′)δ(ξ′ − ξ), (1)

where ξ′ and ξ are, respectively, the incoming and the outgoing
frequencies of a photon, and δ is the usual Dirac distribution,
together with:

ϕ(ξ′) =

(
Γ

π

)
1

(ξ′ − ν0)2 + Γ2 · (2)

The latter is a Lorentzian profile, with damping parameter Γ,
resulting from the “natural width” of the upper atomic state of
the transition at ν0.

If we assume that the angular redistribution associated with
the scattering event is isotropic, such a case of radiation damping
and coherence in the atom’s frame refers to the standard case
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Fig. 1. Failure of a standard Gauss–Hermite quadrature of order k = 70
(green), as compared to the almost superimposed results from, respec-
tively, the method using the Faddeeva complex function (dark), and our
alternative double adaptive Gaussian quadrature scheme, for a normal-
ized Voigt profile with a = 10−2.

“II-A” in the nomenclature of Hummer (1962; see also Hubeny
& Mihalas 2014).

Once the elementary scaterring processes have been defined
in the atomic frame of reference, we have to consider, for a fur-
ther practical implementation into a radiative transfer problem,
the collective effects induced by the agitation of a pool of mas-
sive particles populating the atmosphere. This is precisely in this
“jump” to the observer’s frame of reference, because of Doppler
shifts such as:

ν = ξ +
ν0

c
n.u, (3)

where ν is the observed frequency, n may be either the incoming
or the outgoing direction of a photon, and u the velocity of the
massive particle onto which the scattering takes place, that some
assumption has to be made about the VDF of the massive atoms
(or molecules) present in an atmosphere, under given physical
conditions.

Detailed derivations of RII-A can be found in the classical
literature about redistribution functions, from Henyey (1940)1

to Hummer (1962). Standard redistribution functions have been
first derived assuming that the VDF of the atoms scattering light
is a Maxwell–Boltzmann distribution. Then, but more generally,
any macroscopic redistribution function in the observer’s frame
suitable for implementation into the numerical radiative trans-
fer problem would result from the further integration along each
velocity components ui (hereafter normalized to the most prob-
able velocity vth. =

√
2kT/m), characterizing the movement of

the scattering atoms, and therefore considering these changes of
frequencies due to the associated Doppler shifts as expressed by
Eq. (3). The latter phenomenon is usually refered to as Doppler,
or thermal, broadening.

3. The numerical problem

We aim to generalize computations of redistribution functions
in order to be able to compute VDFs self-consistently with the
radiation field. Therefore, we need a robust numerical approach
to repeatedly perform numerical integrations like:

1 It should be noted that there is a “typo” or mistake in this article,
more specifically in its Eq. (3). A cos2(α/2) term appears, instead of the
correct csc2(α/2), where his α is our γ.

H1(x′, x, γ) =

∫ +∞

−∞

f (u1)du1[
( x+x′

2 ) sec(γ/2) − u1

]2
+

[
a

∆νD
sec(γ/2)

]2 ,

(4)

where x′ and x are the usual incoming and outgoing reduced2 fre-
quencies in the observer’s frame, ∆νD the Doppler width defined
as (ν0/c)vth., and γ the diffusion angle between incoming and
outgoing directions in the plane defined by u1 and u2. For the
Maxwell–Boltzmann case, we should indeed use:

f (u1) =
1
√
π

e−u2
1 , (5)

but we would need to consider f (u1) to be non-analytic, and,
at first, (slightly) departing from the Maxwellian standard VDF.
Indeed, physical conditions leading to small departures from a
Gaussian VDF were already identified and discussed by Oxenius
(1986), and they would correspond to a non-LTE gas of moderate
optical thickness. It should also be noted that, for a preliminary
study, we assume a self-consistent VDF solution of the problem
that may still be decomposed as f1(u1) f2(u2) f3(u3).

However, before exploring potential departures from Gaus-
sianity, we need to adopt a robust enough numerical strategy in
order to numerically evaluate integrals such as Eq. (4), a task
which is notoriously difficult even with Maxwell–Boltzmann
VDFs. It is very easy to verify that, for instance, a standard
Gauss–Hermite (GH) quadrature, even at high rank k, fails at
properly computing a somewhat simpler expression like the
Voigt3 function given in Eq. (13). We display, in Fig. 1, the com-
parison between a GH integration and the new numerical scheme
that is presented hereafter.

4. Adaptive Gaussian quadrature

We start by following the scheme proposed by Liu & Pierce
(1994), which is based on the classical GH quadrature. The latter
is indeed suitable for integrations such as:

I =

∫ +∞

−∞

f (y)e−y2
dy. (6)

Then, the GH quadrature is:∫ +∞

−∞

f (y)e−y2
dy '

k∑
i=1

wi f (yi), (7)

where the nodes yi are the zeros of the kth order Hermite polyno-
mial, and wi the corresponding weights. Tabulated values of both
nodes and weights can be found very easily, and they are also
available for various programming language. We use numpy’s
(Oliphant 2006) function polynomial.hermite.hermgauss,
and a GH of order k = 70 for all results presented hereafter.

The main drawback of such a standard quadrature is that
function f is scanned at the very nodes yi irrespective of the
range where it may have its most significant variations.

However, Liu & Pierce (1994) proposed that, should a func-
tion g be integrated, one may define:

h(y) =
g(y)

N(y; µ̂, σ̂)
, (8)

2 The usual reduced frequency x is the difference between frequency ν
in the observer’s frame and the central frequency ν0 of a spectral line,
divided by the Doppler width ∆νD.
3 The original article of W. Voigt (1912) published Sitz. Ber. Bayer.
Akad. München (in German) can be found online at http://
publikationen.badw.de/de/003395768
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Fig. 2. Example of distribution of nodes for an initial Gauss–Hermite
quadrature of order k = 70 (dots), and for our adaptive Gaussian quadra-
ture centered at the Lorentzian peak (crosses).

Fig. 3. Respective distributions of nodes, marked by crosses of different
colors, from an initial Gauss–Hermite quadrature of order k = 70 when
the Gaussian and Lorentzian peaks are of comparable amplitude, here
for u around three.

where N is the usual Gaussian function:

N(y; µ̂, σ̂) =
1

σ̂
√

2π
e−

1
2 ( y−µ̂

σ̂ )2
, (9)

so that one can write:∫ +∞

−∞

g(y)dy =

∫ +∞

−∞

h(y)N(y; µ̂, σ̂)dy, (10)

and, finally:∫ +∞

−∞

g(y)dy '
k∑

i=1

wi
√
π

h(µ̂ +
√

2σ̂yi). (11)

This adaptive Gaussian quadrature scheme (AGQ) makes it
possible to use the original nodes and weights of the GH quadra-
ture, but somewhat zooms in on these domains where function g
has its most significant variations.

The choice of µ̂ and σ̂ is of importance. Liu & Pierce sug-
gested adopting µ̂ to be the mode of g, and σ̂ = 1/

√
j, where:

j = −
∂2

∂y2 log g(y = µ̂). (12)

We come back to this choice in the following section, and show
that a somewhat larger σ̂ value is more suitable for the special
case of the Voigt profile.

5. AGQ tests with the Voigt function

We now consider the normalized Voigt function hereafter
defined as:

H(a, u) =
1
√
π

(a
π

) ∫ +∞

−∞

e−y2
dy

(u − y)2 + a2 , (13)

and which satisfies:∫ +∞

−∞

H(a, u)du = 1. (14)

We highlight that several authors use H for the Voigt profile
normalized to

√
π, but U instead of our H normalized to unity

(see e.g., Hubeny & Mihalas 2014, their Sect. 8). We also use
h(y; a, u) for the integrand of Eq. (13).

For this numerical integration, three main regimes should
be considered, depending on the values of u, according to the
respective amplitudes of the Gaussian and the Lorentzian com-
ponents of the integrand. For the line core region such as |u| < 2,
we use a slightly modified AGQ, for which we use a value of
σ̂ larger than the one suggested in the original article of Liu &
Pierce (1994), given that, for the Voigt function, j = 2(1 + 1/a2).
We display, in Fig. 2, the new quadrature nodes, marked with
crosses, centered at the Lorentzian peak located at y ≈ 1.7 and
using 3σ̂ instead of the value suggested in the original prescrip-
tion of Liu & Pierce (1994). The nodes of the standard GH
quadrature (at the same order) are displayed as dots. They extend
too far away and clearly “miss” the large amplitude Lorentzian
peak, and therefore the dominant contribution to the integral.

Secondly, we perform a double AGQ scheme for the near
wing regions such as 2 < |u| < 4, and for which two discern-
able peaks of comparable amplitudes result from, respectively,
the Lorentzian and the Gaussian components of the convolution
(we hereafter refer to u2 and u4 for these two boundary values).
In such a case, we use both the centering and integration range
controls provided by the original AGQ for evaluating the con-
tribution from each component of the integrand separately. For
the Lorentzian component, we therefore do the same as when
|u| < 2, but we add to this part of the integral the contribution
of the nearby Gaussian peak using another AGQ, centered at 0,
and of specific σ̂G adapted to the width of the known Gaussian
component of the integrand. More generally, it should be eval-
uated using criteria allowing a significant covering of the VDF
component of the integrand; a relevant ∆y may be such that, at
this value, the VDF contribution is already down to a few per-
cent of its maximum amplitude. This also depends, according to
Eq. (11), on the maximum value of the nodes coming along with
the GH quadrature, at a given order. Finally, overlap with the
nearby Lorentzian component should be avoided. For our exam-
ple, for which the larger node yi ' 11 (at order k = 70), we
used σ̂G = 1/8. With such a value, the Gaussian component of
the VDF was reasonably well covered, without overlap with the
nearby Lorentzian contribution. In Fig. 3, the two distinct sets
of nodes, based on the same original GH quadrature nodes, at
same order, are displayed by different colored crosses. Finally,
for the far wing, where |u| > u4, and when the Lorentzian peaks
fade out, the usual Gauss–Hermite quadrature is satisfactory.

Results obtained using our double AGQ quadrature scheme
are displayed in Fig. 4, for different values of a ranging
from 0.001 to 10−6, that is more likely regimes expected for
our next computations. Maximum relative error computations
using the Faddeeva function method as a benchmark, and the
scipy.special.wofz Python function, are at most of a few
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Fig. 4. Voigt profiles H(a, u) computed with our double AGQ scheme
for, respectively, a = 0.001, 10−4, 10−5 and 10−6 (and decreasing wing
values). Small discontinuities are still noticeable at the transition val-
ues about two and four. This should not, however, impair any standard
scattering integral computation.

percent, as displayed in Fig. 5. It should also be noted that the
latter was obtained using a u4 value of 4.25, instead of the fidu-
cial value of four, also indicating in which direction a further
fine-tuning could be worked out, if necessary, by considering u2
and u4 as slowly varying functions of a. Sometimes, we can still
notice small discontinuities at the changes of regimes, at u2 and
u4. We believe, however, that should our procedure be used for
Voigt profile computations and radiative modeling, such small
and very local discontinuities will not impair further computa-
tions of these scattering integrals entering the equations of the
statistical equilibrium.

This new numerical scheme is particularly efficient for small
values of a, typically lower than 0.01, where other schemes may
fail (see for instance the discussion in Schreier 2018 about the
implementation of Voigt1D in the astropy package in Python,
using the McLean et al. 1994 method). But, first of all, it is
certainly suitable for our next applications of such a numerical
integration scheme, and for physical conditions leading to very
sharp Lorentzian peaks. We could also test the sensitivity of our
scheme to the order of the initial Gauss–Hermite quadrature. For
instance, for a < 0.01, we could go down to orders 40–50 with-
out any significant loss of accuracy.

For larger values of a, typically more than 0.1, we noticed
that no intermediate scheme between the original Liu & Pierce
(1994) at line core, and the Gauss–Hermite in the wings appears
necessary. However, the transition value between the two regimes
should be adapted to the value of a, in a two to four range.

6. Conclusion

We have tested a suitable numerical strategy for our first step
towards “fully non-LTE” radiative transfer calculations, and the
computation of generalized frequency redistribution functions.
We modified the original strategy of Liu & Pierce (1994), but
also applied it to a non-unimodal distribution.

Our numerical scheme does not pretend to compete with
these numerical methods implemented for the very accurate
computation of the Voigt function (see, e.g., Schreier 2018,
and references therein) since our aim lies elsewhere, such as in
exploring departures from Gaussian VDFs. It is, however, pro-
viding very good results as compared to reference computations,
such as the one using the Faddeeva complex function. Relative

Fig. 5. Relative error between our computations with the double AGQ
method, for a = 10−4, and a reference computation using the Faddeeva
complex function.

errors down to a few percent are systematically reported in the
near wings region, and we believe that further fine tuning could
be achieved to reach an even better accuracy.

This is, however, not the scope of our study, which aims
to compute generalized redistribution functions, after self-
consistent computations of respective distributions of both mas-
sive particles and photons under various physical conditions.
In that respect, our main concern is for a proper “capture”
of the expected very sharp, and therefore very large-amplitude
Lorentzian peaks. And we believe that the principle of our
numerical integration scheme should remain valid for the more
easy to track contribution from the velocity distribution function,
even for computed perturbations from a Gaussian shape.

As a final remark, we are also aware that computations
with non-Gaussian functions convolved with a Lorentzian
may also be doable, using a Fourier transform-based method
(e.g., Mendenhall 2007).
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