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Abstract: We present an approach that improves the robustness of web service 
compositions enabling their recovery from failures that can happen at different 
execution times. We first present a taxonomy of failures as an overview of 
previous research works on the topic of fault recovery of service compositions. 
The resulting classification is used to propose our self-healing method for web 
service compositions. The proposed method, based on the refinement process 
of compositions, takes user preferences into account to generate the best 
possible recovering compositions. In order to validate our approach, we 
produced a prototype implementation capable of simulating and analysing 
different scenarios of faults. Our work introduces algorithms for generating 
synthetic compositions and web services. In this setting, the recovery time, the 
user preference degradation and the impact of different locations of failure are 
investigated under different strategies, namely local, partial or total recovery. 
These strategies represent different levels of intervention on the composition. 
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1 Introduction 

In the past decades, much effort has been driven to evolve the technology of web service 
composition and to increase the quality delivered by systems designed following the 
service-oriented architecture (SOA) paradigm. As for any distributed system, it becomes 
hard to guarantee the desired behaviour of a web service composition (Sheng et al., 
2014). The ability to manage the execution of web service compositions may improve the 
reliability and fault-tolerance of the deployed system. Devising mechanisms to recover 
from defects opens considerable research opportunities (Yu et al., 2008; Papazoglou  
et al., 2007; Sheng et al., 2014). 

Web service compositions operate on dynamic environments, prone to the occurrence 
of unpredictable disruptions and changes that can affect the execution of the system. 
These problems can appear at different levels of the service composition stack, ranging 
from defects at individual services to defects at the underlying infrastructure. The 



   

 

   

   
 

   

   

 

   

   174 R.F. Toledo et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

availability of the remotely located services, the quality attributes delivered by the 
services, and the operating condition of the network are intrinsic to SOA and may be the 
source of failures. According to Papazoglou et al. (2007), providing services capable of 
detecting and correcting faults, while preserving the runtime performance with a minimal 
dependency of human interaction is a research challenge. Also, failure recovery is crucial 
for the proper and effective delivery of web service functionalities (Yu et al., 2008). The 
temporary unavailability of a vital component service and changes of the quality 
attributes offered by a service are examples of failures. 

Classifying faults in the context of service compositions is a step towards the 
definition of more robust SOA applications. Several classifications exist, adopting 
different criteria, including functional and non-functional aspects, as well as different 
granularities of the composition (Fugini and Mussi, 2006; Bruning et al., 2007; Chan  
et al., 2007; Erradi et al., 2006; Liu et al., 2010; Wang et al., 2009; Yu et al., 2008). Most 
of these works propose the use of their taxonomy to define self-healing mechanisms for 
web service compositions. In this paper, we adapt the taxonomy proposed by Fugini and 
Mussi (2006) to define a novel self-healing mechanism, based on the composition 
refinement method presented in Ba et al. (2016). 

This paper describes the following contributions: 

 an overview of research works improving the robustness of web service 
compositions 

 a taxonomy characterising failures and classifying them according to the location of 
the fault in the web composition stack 

 the use of the proposed taxonomy to define a self-healing approach for web service 
compositions 

 a prototype implementing our recovery approach, as well as the generation of 
synthetic compositions and web services, used to validate our proposal. 

The remainder of the paper is organised as follows: Section 2 introduces some basic 
notions about SOA, service composition rewriting, as well as an overview of failure 
recovery approaches. Section 3 looks into related work. Section 4 presents a taxonomy of 
failures on service compositions. Section 5 introduces the main contribution of this paper, 
namely a self-healing mechanism for web service compositions based on a taxonomy of 
failures classifying them according to their location in the web composition stack. Our 
proposal validation is described in Section 6. Section 7 discusses the results of our work, 
as well as research opportunities for future work. 

2 Basic concepts 

This section gives an overview of the concepts behind web service composition upon 
which we defined our proposal. 

2.1 Notions of SOA 

SOA (Papazoglou et al., 2007) provides a way of designing software applications 
composed by services. Those services may be end-user or distributed applications 
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accessible via published and discoverable interfaces. According to Papazoglou et al. 
(2007), SOA can be viewed as key to fulfil the visionary promise of service oriented 
computing (SOC), where applications are built over loosely-coupled components, to 
create dynamic business processes and promote the agile development of software. 

As pointed out by Raines (2009), web service standards implement general SOA 
concepts. These standards have become practical tools used by enterprise engineers for 
SOA projects. IBM defines a web service as a breed of web applications that are  
self-contained, self-describing, modular and can be published, located and invoked across 
the web (Sheng et al., 2014; Shah and Patel, 2016). 

The SOA architecture is based on three elements: the service provider, the service 
registry and the service requester. The service provider publishes and implements the 
web service. The service requester invokes the service after retrieving its description 
from a service registry or repository (like UDDI), where the available web services are 
advertised and located (Sheng et al., 2014; Papazoglou et al., 2007; Sheng et al., 2006). 
Services with similar functionality may be implemented by different providers. Those 
services can appear at any repository and have distinct associated non-functional 
attributes. 

Atomic web services are applications that do not depend on another web service to 
respond to the service requesters. The composition of web services is the combination of 
services, to implement a set of functionalities of a more complex business process. Some 
concerns are directly related to the development of web service compositions, such as 
component access, conversation management, control flow, data flow and data 
transformation (Lemos et al., 2016). 

The life cycle of a service composition involves four phases (Sheng et al., 2014): 

 definition: the web service composition is specified by an abstract model, including 
service requirements and preferences 

 service selection: an available concrete service is selected to fulfil the requirements 
of each service specified by the abstract model 

 deployment: the selected services are integrated, so that the composition is deployed 
as an executable service 

 execution: the composition is executed together with monitoring and fault-handling 
mechanisms. 

These phases describe the process of combining concrete services to implement the 
desired behaviour of the application (Orriëns et al., 2003). In a previous work (Ba et al., 
2016), we introduced a refinement algorithm to be used in the service selection phase. 
This algorithm provides the basis for our self-healing approach. 

2.2 Service composition refinement 

Query rewriting techniques have been applied address the automatic selection and 
composition of web services (Barhamgi et al., 2010; Mesmoudi et al., 2011; Ba et al., 
2016; Costa et al., 2013; Zhao et al., 2012]. The automatic composition of web services 
may consider two main phases: the selection of available services to integrate the final 
composition, and the configuration of the selected components to build the application. 
The service composition rewriting must be able to identify the services that cover the 
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expected functionalities of the composition and generate a concrete composition 
consisting of the identified services. 

In Costa et al. (2013) and Ba et al. (2016) we propose and use an adapted version  
of the Minicon algorithm (Pottinger and Halevy, 2001) to produce concrete compositions 
from their abstract specification. In order to illustrate the method, let us consider a 
running example that defines a simple travel agency service. This example will be used 
throughout the paper. 

Example 1 (composition specification): the TravelAgency service is given by the 
following abstract specification: 

( , , , , ) ( , , , , )

( , ),

( , ),

( , , , )

TravelAgency org dst dep ret rcpt Flight org dst dep ret flnv

Hotel flnv hlnv

Car hlnv clnv

Payment flnv hlnv clnv rcpt



 

The TravelAgency service provides functionalities for booking a flight (given the 
departure and arrival places and dates), booking hotel and car and processing the 
payment. Each of these functionalities is represented by a predicate. The specification is 
defined by the predicates Flight, Hotel, Car and Payment. Figure 1 shows the 
specification of the TravelAgency composed service in a BPMN diagram (Wohed et al., 
2006). 

■ 

Figure 1 BPMN diagram for the TravelAgency specification 

 

Each predicate receives input data, such as preferred dates and flight for the trip. The 
variables fInv, hInv and cInv represent the invoices returned by each booking-related 
functionality. The service payment uses these invoices to calculate the due cost for the 
trip and perform the payment using the information on those invoices. The parameter rcpt 
is the overall receipt and indicates to the user the success of the booking operation. The 
workflow defined by the composition is implicitly defined by the data dependencies 
among functionalities. 

Each functionality is intended to be provided (or covered) by one or more web 
services. In SOA, services are expected to be indexed through a service registry. We 
assume that services are also specified by predicates, defining their functionalities. 

Example 2 (service specifications): in our example, we may have the following web 
services, specified using the same functionalities as the composition: 

( , , , , ) ( , , , , )Gol org dst dep ret flnv Flight org dst dep ret flnv  

( , , , , ) ( , , , , )Latam org dst dep ret flnv Flight org dst dep ret flnv  
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( , , , , , , ) ( , , , , ),

( , ),

( , )

Booking org dst dep ret flnv hlnv clnv Flight org dst dep ret flnv

Hotel flnv hlnv

Car hlnv clnv


 

( , ) ( , )Ibis flnv hlnv Hotel flnv hlnv  

( , ) ( , )Localiza hlnv clnv Car hlnv clnv  

( , , ) ( , )

( , )

Expedia flnv hlnv clnv Hotel flnv hlnv

Car hlnv clnv


 

( , , , ) ( , , , )Visa flnv hlnv clnv rcpt Payment flnv hlnv clnv rcpt  

The services Gol, Latam and Booking provide the Flight functionality. Notice that 
Booking also implements the Hotel and Car functionalities. 

■ 

Services may have different providers, and different quality parameters. The composition 
developer specifies their preferences during the refinement process by assigning a score 
to each concrete service available. The preference for each service is represented by a 
real number between zero (lowest preference) and one (highest preference). User 
preferences are used as selection criteria to favour the choice of services to be part of an 
actual composition. Preference values are used to represent any criteria for choosing an 
actual web service. Services with higher scores are preferred to those with lower scores. 

We assume that preference values are part of the input to our rewriting process. The 
definition of preference values for concrete services is outside the scope of this work. 

Example 3 (user preferences): in our travel agency scenario, the preference values 
associated to each service are: Gol (0.9), Booking (0.9), Latam (0.8), Ibis (0.9), Localiza 
(0.9), Expedia (0.7), Visa (0.9). 

■ 

During the service selection phase, the rewriting algorithm splits the abstract composition 
specification into blocks and looks for web services providing the functionality of each 
block. The result of this phase is a set of partial coverage descriptors (PCDs). Each PCD 
contains information on how to use a web service to be part of the concrete composition. 
This information includes variable mappings (to bind variables in the specification to the 
arguments of the services), as well as, the name of the predicates covered by the service. 
Table 1 summarises the PCDs for our running example. Notice that the preference of the 
service defines the preference of the PCD. 

The integration phase of the composition algorithm combines PCDs to produce actual 
compositions (Costa et al., 2013). The resulting compositions must comply with  
two restrictions: 

1 to provide all the required functionalities 

2 each functionality must be provided once in the composition. 

Notice that one concrete service may cover more than one functionality of the 
specification (this is the case of PCD2 and PCD6 in Table 1). 
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Table 1 PCDs based on concrete services 

PCD Service Coverage Preference 

PCD1 Gol Flight 0.9 

PCD2 Booking Flight, hotel, car 0.9 

PCD3 Latam Flight 0.8 

PCD4 Ibis Hotel 0.9 

PCD5 Localiza Car 0.9 

PCD6 Expedia Hotel, car 0.7 

PCD7 Visa Payment 0.9 

The integration phase may produce several compositions. The POTI algorithm in  
Ba et al. (2016) uses user preference values to classify the resulting compositions, using 
the Pareto order (Kießling, 2002). 

Example 4 (service composition): in the travel agency example, one of the most 
preferable compositions is formed as: 

( , , , , ) ( , , , , , , )

( , , , )

TravelAgency org dst dep ret rcpt Booking org dst dep ret flnv hlnv clnv

Visa flnv hlnv clnv rcpt


 

■ 

The POTI algorithm is done in two steps: 

 production of a set of PCDs: given an abstract specification A = {f1, …, fk},  
where each fi stands for a functionality, and a set   of web services available  
in the registry, this step generates the set of all PCDs that can be used to cover 
functionalities of A 

 combination of PCDs: this step selects PCDs from the previous phase and combines 
them produce actual compositions. 

For our running example, given the composition specified in Example 1 and the set of 
web services of Example 2, the first phase produces the PCDs in Table 1. Notice that one 
PCD may cover more than one functionality. 

During the combination phase, the rewriting process checks some constraints before 
integrating PCDs. These constraints include: 

1 all functionalities of the specification needs to be covered 

2 each functionality must be covered by just one PCD 

3 the use of parameters on the predicates must be consistent. 

For the sake of simplicity, the verification of these constraints are abstractly represented 
as a call of a function compatible, which take a set of PCDs as input and returns a 
Boolean value. The computational details of this function can be found in Costa et al. 
(2013). Once a set of compatible PCDs is found, it is integrated into a concrete 
composition. This integration is represented here by the function combine. 
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Several compositions may be produced by the method. User preferences are used to 
chose the most suitable rewritings. For the running example, the result of the second 
phase is given by the service composition of Example 4. 

In this paper we adapt the algorithm POTI to provide alternative services in case of 
failure of parts of a composition. Specifically, our method explores the PCDs generated 
at the selection phase of POTI to replace parts of the failed composition, while preserving 
the overall functionality. 

2.3 Self-healing of web services 

Faults, errors and failures are some of the terms used to define elements that affect the 
well-functioning of a given system. According to Avizienis et al. (2001), a failure is the 
deviation of the service from the correct behaviour. This unexpected behaviour is the 
consequence of the occurrence of errors that alter the service, being noticed by the user 
when the behaviour reaches the service interface. Faults are the possible causes of an 
error. 

Fault-tolerance is the preservation of correctness of a system in the presence of faults 
(Avizienis et al., 2001). Fault-tolerance is fundamental to self-healing, which is the 
ability of a system to discover, diagnose and react to faults without disrupting the runtime 
environment. A fault-tolerant mechanism is typically implemented by error detection and 
subsequent system recovery (Avizienis et al., 2001). A fault taxonomy for SOA helps 
refining possible reactions for runtime faults, guiding fault injection tests executed on 
services during development, and consequently improving robustness, reliability and 
availability of SOA components (Bruning et al., 2007). 

Recovery actions can be classified as service-oriented actions and data quality 
recovery actions (Fugini and Mussi, 2006). The former deals with invocation, 
orchestration and choreography aspects of web services. Data quality recovery actions 
can be achieved by methods like data cleaning by manual identification, multiple source 
identification and verification of data specifications. 

The application of recovery actions to correct the errors detected during execution 
contributes to achieving fault-tolerance in a web service composition. Basic failure 
reactions for web service composition are (Erradi et al., 2006; Wang et al., 2009; Liu, A., 
Li et al., 2010; Fugini and Mussi, 2006): 

 Notify: the system signals the occurrence of a failure, possibly adding entries to a log 
file. This reaction can be triggered by failures at any level of the taxonomy. 

 Ignore: the system does not actively interfere with the execution of the service.  
This reaction applies to failures that do not affect the main goal of the composition. 

 Retry: applies to transient failures due to instabilities of hardware or software. This 
action may be only offered for services that can be executed multiple times without 
affecting the consistency of the process. This reaction may consider deadlines such 
as a maximum number of tries or a time limit. Retry is suitable for failures on 
functional behaviour or mismatch on the output of the service. 

 Replace: the failed service is substituted with another. The new service is expected 
to be equivalent in terms of functionality and QoS. This reaction is usually triggered 
after the unavailability of a service or its inability to succeed. Replace strategies 
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depend on mechanisms to identify available compatible services to be integrated in 
the composition. The failed service may be replaced with an atomic or composed 
service. 

 Recompose: this action is adopted in the case of failure of all services in the 
composition. Recomposing a composition consists on establishing an alternative 
business process with the same primary goals of the failed composition. The 
execution of this reaction works as a replace action applied to all web services 
components. 

Both replace and recompose make use of compensation services, or rollbacks, to 
compensate partially executed faulty processes. They are usually considered  
pre-conditions of the recovery strategies in those cases (Wang et al., 2009). 

Self-adaptation methods for service compositions that can implement the listed 
reactions are classified as policy-based and replacement-based approaches (Yuan et al., 
2018). The former is defined as methods that follow policies defined during design time 
and cannot deal with context events beyond the policies. While, in case of unexpected 
changes, the replacement-based approaches substitute services by new selected ones 
according to the original specification. In Wang and Yang (2018) for example, propose 
the concept of dynamic Petri nets to describe fault-handling strategies for service 
compositions, considering dynamic replacement of transitions. The optimisation of the 
service matching process, as the one presented in the current work, is stated as a 
challenge for the implementation of the fault-handling strategies. 

3 Related work 

Many approaches have been proposed for the categorisation of faults in SOA systems. In 
Wang et al. (2009) define a fault taxonomy aiming to deal with business constraints 
violations, including business and technical faults. Based on the taxonomy, the authors 
provide an instrumentation template for constraint violation and runtime fault handling of 
business process execution language (BPEL) processes. Two approaches are considered: 

1 a basic replacement plan that replace services according to a static list provided by 
the user 

2 a more elaborated strategy that uses a service repository to discover possible 
replacing candidates. 

That repository saves composed services, annotated with fault ratio. Those services can 
be retrieved and selected for recomposition. 

The work in Bruning et al. (2007) defines a taxonomy for SOA based on the life cycle 
of the service composition. The taxonomy contributes to the methodology of using fault 
injections to test fault recovery in service compositions. The authors’ goal is to cover as 
many fault classes as possible while minimising the number of test cases. The 
categorisation of faults facilitates the testing approach by abstracting from concrete 
implementations. The taxonomy associates system development phases to faults at the 
higher-level. These levels are refined into atomic fault cases. The proposal does not 
categorise, relate or formulate runtime fault-handling strategies. 
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In Liu et al. (2010) present a framework for the fault-tolerant composition of 
transactional web services. The framework includes a fault-tolerant mechanism that 
combines exception handling and transaction techniques. This combination is based on 
the identification of fault models, a set of high-level exception handling strategies, a new 
taxonomy of transactional web services and critical features, including service transfer 
and vitality degree. The ultimate goal of the framework is to build an integrated 
environment for the specification, verification, and execution of fault-tolerant service 
compositions. The strategy for replacing faulty services is statically defined: the approach 
does not propose the automatic discovery of replacing services. 

The taxonomy in Chan et al. (2007) is used to contribute to dynamo (Baresi et al., 
2007), a toolset that proposes runtime monitoring and recovery strategies for BPEL. 
Dynamo uses a monitor to assess the quality of each service during runtime. Once a 
service fails, the system looks for a backup service. A backup service may be indicated 
by the user. Alternatively, the monitor may choose a replacement based on the quality 
assessment of previously used services. 

The work in Fugini and Mussi (2006) proposes a self-healing approach for web 
services and present a classification of faults. This categorisation is distributed in three 
different levels, namely web service, application and infrastructure. Their work proposes 
a self-healing platform that performs a semantic-based analysis to compare faulty 
services with candidates for substitution. Human intervention might be required when 
services have different signatures. 

The works cited above propose tools for web service composition that enable the 
monitoring of faults, the specification of recovery strategies and the execution of 
remedial actions. Most of these works consider the replacement of a faulty service as a 
reaction to failures, by replacing individual services. Substitute services are usually 
provided by the user that explicitly defines the candidate for replacement. Some solutions 
query a service registry on-the-fly. Some authors mention the use of semantic analysis to 
identify replacement services, without providing details about their approach. Differently 
from our proposal, these works do not consider the possibility of substituting the faulty 
service with a composition of services. 

4 Fault taxonomy 

We present a taxonomy of failures for web services. Our taxonomy results from the 
analysis of proposals in Chan et al. (2007), Bruning et al. (2007), Li et al. (2014), Wang 
et al. (2009), Fugini and Mussi (2006), Liu et al. (2010) and Simmonds et al. (2013). 
Similarly to Fugini and Mussi (2006) and Wang et al. (2009), failures are classified into 
three main levels: service, composition and infrastructure. 

The failures listed in this work are studied in the literature, and they are distributed in 
a way that contributes to the discussion of failure recovery of service compositions.  
Table 2 summarises our classification. 

Each level of failure has a set of conditions that should monitored by the runtime 
environment. The definition of levels in which the failure may arise helps to choose a 
recovery strategy. Recovery actions for each case can be executed by a recovery system. 
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Table 2 Fault taxonomy 

Level Violation Example 

Component Content Incorrect results 

Service provided different from expected 

Timing Time-out 

Composition Quality of service Low availability 

High rate of error 

Financial faults 

SLA violation 

Compatibility Missing parameter 

Mismatch data types 

Incorrect order 

Coverage Missing parts of the composition 

Infrastructure Platform Server crashed 

Network Missing connection 

Low bandwidth 

4.1 Service level 

This level is specifically related to aspects of each component service of the web service 
composition. This context may consider both the quality and the correctness of the 
service. Failures at this level are classified into content and timing (Wang et al., 2009; 
Chan et al., 2007; Fugini and Mussi, 2006; Li et al., 2014). 

Content violations are related to the definition and expected outputs of a web service. 
Content failures occur when there is a mismatch between the expected and the actual data 
produced by the service. Examples of failures in this category are the delivery of 
incorrect results from the service and the provision of a service different from expected. 
The former case results into the incoherent behaviour of the service and may compromise 
the final result of the composition. In the case where a wrong service is provided, the 
service output may be functionally compliant, but deviating from other aspects of the 
specification. This kind of problem may happen due to an incorrect service selection 
before the deployment of the composition. 

Timing failures are related with timeouts and other errors that may affect the time of 
arrival and delivery of data for the service that may impact the non-functional 
specifications of the web service composition (Chan et al., 2007). 

4.2 Composition level 

The composition level concerns the conversation between component services, as well as 
the compliance of the composition with regard to its specification (Fugini and Mussi, 
2006; Bruning et al., 2007; Wang et al., 2009). The requirements of a composition 
include functional and non-functional aspects, established during the definition phase. 
The concrete composition is expected to meet those requirements at runtime. In this way, 
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failures at the composition level include quality of service (QoS), compatibility and 
coverage failures. 

Compatibility failures are related to the mismatch of exchanged data between 
services. These failures may occur due to differences in the arguments or protocols 
considered by the services during the exchange of data (Wang et al., 2009). Examples of 
failures in this class are missing parameters or incorrect data types. 

Coverage failures are defined as violations of the specification regarding the binding 
between the expected functionalities and the component services. 

QoS failures are related to violations of non-functional requirements of the 
composition, such as those concerning availability, response time, throughput, security 
and price. These attributes and their expected values can be formalised in a service level 
agreement (Bianco et al., 2008). 

4.3 Infrastructure level 

This level focuses on failures at the runtime environment supporting the composition 
(Wang et al., 2009; Liu et al., 2010). Failures at this level impact the execution of the web 
services due to infrastructure problems. This category includes platform and network 
failures. 

Platform failures occur when a service is unavailable due to a problem in the client or 
in the device providing the service (Wang et al., 2009). Network failures are due to 
communication errors between services and clients, such as connectivity losses or low 
bandwidth. Both platform and network violations may cause unavailability of web 
service components and a consequent failure of the composition (Chan et al., 2007). 

5 Proposed self-healing approach 

We propose a self-healing mechanism for web service compositions. The proposal is 
intended to be part of a platform that: 

1 identify runtime failures 

2 propose reactions to the failures 

3 recover the system. 

We focus on the second item above, by introducing an algorithm to find most preferable 
compensation services to replace portions of the composition. Our algorithm is based on 
the composition refinement method POTI (Ba et al., 2016) for the orchestration of web 
services. 

Given a composition obtained as the result of POTI, the problem of replacing a failed 
service can be addressed by considering another rewriting, that complies to the original 
specification, such that the new composition replaces the failed service by one of the next 
preferable candidates. The collection of user preferences associated to the web services 
represents a particular challenge which is beyond the scope of the current work.  
In Tian et al. (2019), for example, address some of the difficulties of recommending 
services to an user with unknown explicit preferences. In the general context of 
recommendation systems, Parra et al. (2011) propose a method for mapping implicit 
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feedback of users, like the popularity of a given element, to explicit numerical user 
ratings. 

For a composition consisting of services S1, …, Sn, our algorithm considers three 
incremental recovery levels: local, partial and total. Given that a service Si fails, each 
recovery level defines which part of the composition must be replaced. At the local level, 
the algorithm tries to replace just the failed service Si. If it is not possible to recover 
locally, the algorithm steps to the partial level of recovery, by replacing Si and the 
subsequent services. This occurs when there is no possible substitution for the individual 
service. In this case, the algorithm tries to replace the sub-composition defined by Si, …, 
Sn. If there is no possible replacement at the partial level, the algorithm tries to obtain a 
rewriting for the whole composition. 

Local recovery 

It occurs when a single service of the composition is to be replaced. This service can 
cover one or more functionalities. These functionalities may be covered by one or more 
other services. In Example 5 we consider the case where the failed service covers more 
than one functionality. 

Example 5 (local recovery): consider the composition from Example 4: 

( , , , , ) ( , , , , , , )

( , , , )

TravelAgency org dst dep ret rcpt Booking org dst dep ret flnv hlnv clnv

Visa flnv hlnv clnv rcpt


 

In this composition, the service Booking covers the functionalities Flight, Hotel and Car. 
Visa covers the Payment functionality. In the case of failure of Booking, our algorithm 
tries to perform a local recovery to cover each of the functionalities of Booking with 
another service. Our algorithm considers the user preference of each service to obtain a 
new composition which does not include the failed service. In the case of the travel 
agency, the preferences defined in Example 3 are used to obtain the composition: 

( , , , , ) ( , , , , )

( , ),

( , ),

( , , , )

TravelAgency org dst dep ret rcpt Gol org dst dep ret flnv

Ibis flnv hlnv

Localiza hlnv clnv

Visa flnv hlnv clnv rcpt



 

Notice that Booking was locally replaced with three services that, combined, provides the 
same set of functionalities. These three services have the same combined preference as 
Booking. Since we are in the context of a local recovery, the service Visa was not 
replaced. 

■ 

Partial recovery 

This level of recovery is tried by the algorithm when the local recovery does not succeed. 
In this case, not only the faulty service Si is replaced, but all the subsequent services up to 
Sn. 
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Example 6 (partial recovery): let us consider the composition produced by the recovery 
process in Example 5. Suppose that the service Ibis fails. In this case, using the services 
described in Example 2, there is no possible local recovery, since there is no other service 
covering just the Hotel functionality. In this situation, we look for services covering the 
part of the composition that has not been executed yet. Notice that, except for the failed 
service, the only way to cover the Hotel functionality is by using the service Expedia, that 
also covers Car. The partial recovery produces the following composition: 

( , , , , ) ( , , , , )

( , , ),

( , , , )

TravelAgency org dst dep ret rcpt Gol org dst dep ret flnv

Expedia flnv hlnv clnv

Visa flnv hlnv clnv rcpt


 

The service Visa is part of the solution because it did not fail and the rewriting process 
chooses it to cover the Payment functionality. 

■ 

Total recovery 

When it is not possible to perform a partial recovery of the composition, our algorithm 
will try to find a replacement for the whole composition. Some functionalities may be  
re-executed. 

Example 7 (total recovery): again, consider the composition resulting from Example 5, 
but at this time, we assume that the failed service is Localiza, that covers the Car 
functionality. 

The alternative services covering Car are Booking and Expedia (Example 2). Since these 
alternative services also cover functionalities already executed, nor the local or partial 
recovery will succeed. The total recovery produces the following composition: 

( , , , , ) ( , , , , , , )

( , , , )

TravelAgency org dst dep ret rcpt Booking org dst dep ret flnv hlnv clnv

Visa flnv hlnv clnv rcpt


 

■ 

In our recovery algorithm, user preferences guide the selection of alternative services. 
Notice that due to the way in which replacement services are chosen, there is no 
degradation in terms of functionality in the composition after its recovery. Our method is 
based on the selection phase of POTI for choosing PDCs (see Section 2.2), thus 
preserving the functionality of the composition. Recall that PCDs represent sets of 
services that can be used as candidates for replacement. 

Our method preserves the functionality of the composition but it may cause 
degradation of the composition in terms of user preference. This is a consequence of 
choosing the replacement solutions by using the Pareto ordering for preference values. 
Notice that preference values may be used to express any criteria, such as time or space 
consumption, subjective preference, etc. In this way, the decrease of preference may 
indicate the degradation of any non-functional concern of the composition. 
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5.1 The self-healing approach 

Our method encompasses the composition rewriting process described in Ba et al. (2016). 
We suppose that the POTI algorithm is used to generate compositions for a given abstract 
specification. In this process, the set   of PCDs is produced. In our self-healing 
scenario, we consider that the most preferable composition C is the one initially 
deployed, being formed by the set of services {S1, …, Sn}. 

Algorithm 1 Self-healing 

Input: 

- The set   of all available PCDs. 

- The running composition C  {S1, …, Sn}. 

- The failed service Si. 

Output: 

- The recovering composition R. 

 1: function Heal( ,  C, Si) 

 2: C  ← PCDsOf(C) 

 3: ( [ ] )  L i CFunct S Ç  

 4: ( [ , ..., ] )  P i n CFunct S S Ç  

 5: ( ) T CFunct  

 6: Recover( , , , )   C i LR S  

 7: if R is the empty composition then 

 8: Recover( , , , )   C i PR S  

 9: end if 

 10: if R is the empty composition then 

 11: Recover( , , , )   C i TR S  

 12: end if 

 13: return R 

 14: end function 

Algorithm 1 describes our recovering approach. The algorithm receives the set   
containing the PCDs produced by POTI, the running composition C formed by the set of 
services {S1, …, Sn}, as well as the identification of the failed service Si. The subset of 
  that covers the composition C is denoted by C  (line 2). The , L P  and T  

sets (lines 3 to 5) contain the functionalities to be covered at local, partial and total 
recovery levels, respectively. The algorithm first tries a local recovery (line 6). If the 
local recovery does not succeed, the algorithm tries a partial recovery (line 8). Finally, if 
the partial recovery is not possible, a total one is tried (line 11). The algorithm returns a 
non-empty recovering composition R whenever a solution is found. 

Algorithm 2 produces new service compositions. It takes: 

1 the set (registry)   of all available PCDs 
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2 the set C  of PCDs used in the original composition C 

3 the identification of the failed service Si 

4 the set   of functionalities covered by services to be replaced in the recovering 
composition. 

Algorithm 2 Recover 

Input: 

- The set   of all available PCDs. 

- The set C  of PCDs used in C. 

- The failed service Si. 

- The set   of functionalities to be covered. 

Output: 

- The recovering composition. 

 1: function Recover ( , , , )  C iS  

 2:  \ { | }     F C Cp p covers f  

 3:  \ [ ]H iS    

 4:  { | }    U Hp p covers f  

 5:  for each 1{ , ..., }  m cP P  

 6:  such that 

 7:  (i) { } Funct  and 

 8:  (ii) . ( ) ( ) 0   r sr s Funct P Funct PÇ  

 9:  do 

 10:  if Compatible ( ) FÈ  then 

 11:  return Combine ( ) FÈ  

 12:  end if 

 13:  end for 

 14:  return empty; 

 15: end function 

This algorithm defines three sets of PCDs: 

1 The set F  of fixed PCDs (line 2). This set consists of all the PCDs of the 
original composition that will be maintained in the resulting composition. Notice  
that the contents of this set depends on the recovery level. This set is empty in total 
recoveries. 

2 The set H  of healthy PCDs (line 3), containing all the available PCDs, except 
those formed for the failed service Si. 

3 The set U  of usable PCDs (line 4), containing the healthy PCDs that can be 
used to cover the functionalities in .  
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The loop in line 5, iterates over those sets   of PCDs that may be used to recover the 
composition. Conditions at lines 7 and 8 state that each functionality in   must be 
covered just once by .� The body of the loop checks whether the � and F  form a 
suitable composition. In this case, these sets are combined (line 11) to produce a new 
composition. The algorithm finishes once a solution is found. 

As in POTI, user preferences define the order in which each combination of PCDs is 
produced. The Pareto order is used to ensure that the algorithm returns the next best 
solution. 

6 Validating the approach 

In order to validate our proposal we have implemented a prototype and conduct an 
experiment to: 

1 measure the recovery time of compositions in the presence of faults 

2 evaluate the compliance of the recovered composition with regard to the user 
preferences. 

6.1 Experimental settings 

We generate synthetic compositions and services to perform our experiment. This lets us 
explore a number of functionalities with different ‘complexities’ (in terms of number of 
services) and evaluate the scalability of our method. Algorithm 3 describes the workflow 
of the experiment. First, this algorithm defines the generation of synthetic cases for the 
experiment, and then it simulates failures and executes the recovery method. 

Algorithm 3 evaluates compositions of different sizes, ranging from Fmin to Fmax 
functionalities. For each composition, every possible failure is simulated for N times. In 
our setting, we have explored compositions ranging from Fmin = 4 to Fmax = 11, being 
each failure simulated for N = 5 times. 

For a given number of functionalities, Algorithm 3 generates the composition 
specification and a set of web services (lines 3 to 5). In the composition specification, the 
parameters xj, xj+1 of each Fj represents, respectively, input and output of the 
functionality, so imposing a sequential behaviour to the composition. The registry of 
available services   is generated as the result of calling the function 
BuildSyntheticWebServices (Algorithm 4). 

We next call the POTI algorithm, using the synthetic services to produce a set   of 
service compositions and the set   of PCDs generated along the rewriting process 
(line 6). These steps establish the basis for the simulation of failures and for the execution 
of our recovery method. Line 7 of Algorithm 3 calls the procedure SimulateFailures to 
run our healing algorithm. 

Let us now look at the generation of synthetic web services, for a given number n of 
functionalities, as described by Algorithm 4. This algorithm takes a value representing 
the number of functionalities to be covered and returns a set   containing the 
specification of all services that can be defined to cover functionalities F1, …, Fn. 
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Algorithm 3 General recovery process 

Input: 

- The minimum number of functionalities Fmin. 

- The maximum number of functionalities Fmax. 

- The number of times N to repeat each recovery. 

 1: procedure Monitor(Fmin, Fmax, N) 

 2:  for each i  {Fmin, …, Fmax} do 

 3:  Cspec ← C(x1, xi+1)  F1(x1, x2), …, Fi(xi, xi+1) 

 4:    ← BuildSyntheticWebServices(i) 

 5:  ( , )   ← POTI(Cspec,  ) 

 6:  SimulateFailures( , , ,    N) 

 7:  end for 

 8: end procedure 

Algorithm 4 begins by defining   as an empty registry, to be populated with the 
specifications of services S[r,s], where r and s are the first and last functionalities covered 
by the service. For instance, the service S[2,4] covers the interval of functionalities F2 to 
F4, being defined by the following specification: 

     
 

[2,4] 2 5 2 2 3 3 3 4

4 4 5

, , , ,

,

S x x F x x F x x

F x x


 

In this algorithm, each iteration of the loop at line 3 controls the generation of web 
services for a given number i of functionalities. In this manner, the first iteration builds 
services with one functionality, the second iteration builds services with two 
functionalities, and so on. The loop at line 4 is in charge of generating all the services 
with a number i of functionalities, whereas the loop at line 6 specifies the functionalities 
for a given web service. 

Let us now illustrate the construction of the synthetic cases of our experiment by 
assuming a number of four functionalities. 

Example 8 (registry with services covering four functionalities): let us consider a 
composition with four functionalities, as described by the following specification: 

         1 5 1 1 2 2 2 3 3 3 4 4 4 5, , , , , , , ,specC x x F x x F x x F x x F x x  

where Cspec describes a composition with functionalities F1, …, F4. For this specification, 
Algorithm 4 builds the synthetic services below: 

 Services with 1 functionality: 

   [1,1] 1 2 1 1 2, ,S x x F x x  

   [2,2] 2 3 2 2 3, ,S x x F x x  

   [3,3] 3 4 3 3 4, ,S x x F x x  
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   [4,4] 4 5 4 4 5, ,S x x F x x  

 Services with 2 functionalities: 

     [1,2] 1 3 1 1 2 2 2 3, , , ,S x x F x x F x x  

     [2,3] 2 4 2 2 3 3 3 4, , , ,S x x F x x F x x  

     [3,4] 3 5 3 3 4 4 4 5, , , ,S x x F x x F x x  

 Services with 3 functionalities: 

       [1,3] 1 4 1 1 2 2 2 3 3 3 4, , , , , ,S x x F x x F x x F x x  

       [2,4] 2 5 2 2 3 3 3 4 4 4 5, , , , , ,S x x F x x F x x F x x  

 Services with 4 functionalities: 

         [1,4] 1 5 1 1 2 2 2 3 3 3 4 4 4 5, , , , , , , ,S x x F x x F x x F x x F x x  

Notice that these services cover all the combinations of functionalities F1, …, F4. 

■ 

Given the specifications of a composition and of the available services, the rewriting 
algorithm POTI produces a set of service compositions   and a set ,  containing all 
the PCDs used to generate the compositions in .  

Algorithm 4 Build synthetic web services 

Input: 

- The number of functionalities n. 

Output: 

- All the possible web services for n functionalities. 

 1: function BuildSyntheticWebServices(n) 

 2: 0   

 3: for each i  {1, …, n} do 

 4: for each j  {1, …, n – i + 1} do 

 5: 0   

 6: for each k  {j, …, j + i – 1} do 

 7: 1{ ( , )}  k k kF x xÈ  

 8: end for 

 9: [ , 1]{ ( , ) }j j i j j iS x x     È  

 10: end for 

 11: end for 

 12: return   

 13: end function 
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Algorithm 5 is the core of our experiment. This algorithm defines the procedure 
SimulateFailures, called by Algorithm 3 (line 7). The procedure SimulateFailures takes: 

1 the set (or registry)   of services 

2 the set of compositions ,  generated by POTI 

3 the set ,  also generated by POTI 

4 the number N of times to execute each recovery. 

In our case, we defined N = 5. 

Algorithm 5 Simulation of failures 

Input: 

- The set   of available web services. 

- The set   of service compositions. 

- The set   of available PCDs. 

- The number of times N to repeat each recovery. 

 1: procedure SimulateFailures( , , ,    N) 

 2: for each C  such that 

 3: C(x1, xi+1)  

  S[1,a](x1, xa+1),…,S[b,i](xb, xi+1) 

 4: do 

 5: C  ← PCDsOf(C) 

 6: for each j  {1, …, N} do 

 7: SetPreferences ( , ) C  

 8: for each S[k,l]{S[1,a],…,S[b,i]} do 

 9: [ , ] ,      a bS k a b l  

 10: [ , ]( , , ) C k lHeal S  

 11: [ , ] ,       a bS k a l b l  

 12: [ , ]( , , ) C k lHeal S  

 13: [ , ]     a bS a k  

 14: [ , ]( , , ) C k lHeal S  

 15: end for 

 16: end for 

 17: end for 

 18: end procedure 

The procedure SimulateFailures tries to recover from failures in each composition C in 
  (line 2). Each composition C is assumed to be the composition with the highest 
preference during the simulation of their failures. In this way, the algorithm assigns the 
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maximum possible preference for C. The preference of a composition is calculated as the 
mean of the preference scores of its component services. Thus, we assign the value 1.0 to 
the services that participate in C, so its preference score will be 1.0. Then, Algorithm 5 
randomly assigns preference scores between 0.01 and 0.99 to the remaining services  
(line 7). Thus, the remaining compositions will have a mean preference score smaller 
than 1.0. 

The inner loop of Algorithm 5 simulates the failure of each service S[k,l] in the 
definition of C (line 8). The algorithm uses the available services for addressing the three 
levels of recovery, one after the other. This is done by filtering the set   to ensure that 
the right subset of services is offered to the procedure heal: 

 the set   is a registry which contains all the services in   that may be used to 
substitute S[k,l] in   (i.e., to perform a local recovery of S[k,l]) 

 the set   is a registry containing all the services in   that may be used to 
substitute S[k,l] and all those services appearing in   after S[k,l]] (i.e., to perform a 
partial recovery after the failure of S[k,l]) 

 the set   is a registry that contains all the services in   that may be used to build a 
new composition from scratch, not using S[k,l] (i.e., to perform a total recovery after 
the failure of S[k,l]). 

In our validation, the Heal procedure is feed with registry sets ,   and .  The time 

spent for each kind of recovery is registered. 
Our experiments were executed on top of an Ubuntu 18.04 LTS Bionic Beaver, Linux 

kernel 4.15, 8GB RAM, AMD Phenom II X4 820 2.8GHz Quad-Core, Java 8. The size of 
the abstract compositions considered ranged from Fmin = 4 to Fmax = 11 distinct 
functionalities. The experiment was executed N = 10 times for each abstract composition. 

6.2 Running the experiment 

We investigate the time required for healing compositions at each recovery level, as well 
as the impact of recoveries on the preference value of compositions. The influence of the 
locality of the fault on the time cost and the preference impact is also investigated during 
the experiment. For each composition generated by POTI, we define its preference as 1.0 
and then simulate failures at each of its component services. The recovery of each failure 
is tried at the local, partial and total levels, using, respectively, the registry sets ,   and 

.  After that, we calculate the preference value of the replacing composition. This 
strategy is applied ten times for each composition, in order to obtain a consistent time 
measurement. We experimented with compositions containing from 4 to  
12 functionalities. 

6.2.1 Recovery time 

Figure 2 shows the average time taken by the healing algorithm to perform one local, 
partial or total recovery, for each size of composition. The recoveries executed in 
compositions of four functionalities are represented as more expensive than recoveries in 
some larger compositions. This behaviour is explained by the time spent by the Java 
virtual machine (JVM) to start up. As expected, local recoveries are less expensive than 
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partial and total recoveries. Indeed, the local recovery simply tries to substitute the failed 
service for other services providing the same functionalities. 

Partial recoveries involve the substitution of the failed service, as well as the 
rebuilding of the part of the composition which has not been executed yet. Total 
recoveries imply in the substitution of the whole composition. Partial and total recoveries 
have a combinatorial nature, since they choose a combination of PCDs to cover more 
than one functionality. These facts explain the increase in the time of recoveries at these 
levels, as shown in Figure 2. 

Figure 3 shows the average time spent for the execution of total recoveries for each 
composition size. As previously shown in Figure 2, the total recovery demands more time 
for recovering than the other levels of recovery. This difference is particularly evident in 
the cases where compositions with have ten or more functionalities. The data of Figure 3 
considers the accumulation of time cost of the unsuccessful attempts of the previous 
levels of recovery, local and partial. 

Figure 2 Average recovery time of all levels of recovery (see online version for colours) 

 

Figure 3 Total recovery – average recovery time (see online version for colours) 

 

Figure 3 also shows that, for more complex compositions, the time spent to search a 
solution for total recovery is considerably smaller in comparison with the time taken by 
the algorithm to conclude the failed attempts of local and partial recovery. Indeed, the 
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problem of recovering a service composition becomes more flexible when all services are 
eligible for substitution. This flexibility eases the search of solutions at the total level in 
comparison with the other levels that present restrictions for their combinatorial 
problems. 

6.2.2 Preference degradation 

This section explores the results in terms of user preference of the recovered 
compositions. Figure 4 shows the mean preference degradation achieve by the healing 
algorithm when performing local, partial or total recoveries, for each size of the 
composition. The values of degradation were obtained as the difference between 1.0  
(the preference of each most preferred composition, as generated by POTI) and the mean 
preference value of the recovering composition produced for each level of recovery. 

Note that, for all recovery levels, the degradation of preferences reduces as the 
number of functionalities increases. This behaviour is explained by the fact that the 
higher the number of functionalities, the smaller the relative contribution of the failed 
service for the overall preference value of a composition. We can also notice that local 
recovery consistently provokes a greater preference degradation. The partial recovery 
delivers better results but they are close to the ones reached by the local level. The best 
results are obtained by using the total recovery, which is more flexible since the 
algorithm may substitute all the services in the original composition. 

Figure 4 Average preference degradation of all levels of recovery (see online version for colours) 

 

Considering Figures 2 and 4 we observe that, for smaller compositions, the time cost does 
not differ significantly between the levels but the total recovery delivers the lowest 
preference degradation. Additionally, in the case of more complex compositions, the total 
recovery still deliver the smallest preference degradation. In all cases, the total recovery 
represents the most expensive level. As seen in Figure 3, the unsuccessful attempt of the 
partial recovery is the primary cost of the total recovery. These observations suggest that 
the adoption of total recoveries for small compositions is the best option. 

In the case of larger compositions, the recovery mechanism could skip the attempt of 
partial recovery in order to reduce time costs. In that way, the local recovery is initially 
tried, but if this level of recovery is not successful the total recovery is initiated. These 
results also show that different levels of recovery may be suitable for different priorities 
on the time cost and preference degradation. The total recovery may be desirable for a 
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situation that prioritises the lower degradation of preference over the time cost. Whereas 
local recovery is suitable for cases that demand the fastest solutions for failures 
independently of the resulting preference degradation. 

6.2.3 Locality of faults 

This section is dedicated to analysing how the locality of the faults within the 
composition impacts on the recovery time and preference degradation. 

In Figure 5, we show the average time cost for the total recovery depending on the 
locality of fault for different compositions. Notice that the time cost for total recovery 
reduces if the failed service is close to the end of the composition. Whereas faults in the 
initial portion of the composition demand more time for recovery. 

Figure 5 Total recovery – average recovery time (ms) considering the locality of faults  
(see online version for colours) 

 

Figure 6 Total recovery – average recovery time (ms) considering the locality of faults – 
unsuccessful attempt of local recovery (see online version for colours) 
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We wanted to investigate the contribution of the attempts of other levels to the resulting 
time cost, considering the influence of the unsuccessful attempt of partial recovery on the 
final cost of total recovery. Figures 6, 7 and 8 show the time spent in each level of 
recovery while experimenting the total recovery of failures. 

In Figure 6, we note that the same stable behaviour with regards to the locality of 
faults is maintained when reaching unsuccessful responses at the local level of recovery. 
These data also show that the local recovery has a minor influence on the average time 
cost of total recovery. 

Figure 7 Total recovery – average recovery time (ms) considering the locality of faults – 
unsuccessful attempt of partial recovery (see online version for colours) 

 

Figure 8 Total recovery – average recovery time (ms) considering the locality of faults – 
successful attempt of total recovery (see online version for colours) 

 

Figure 7 shows that failures that occurred at the beginning of the composition demands 
much more time for partial recovery. The values also enforce that the partial recovery 
represents the greatest contribution to the time cost of the overall time spent in total 
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recovery. Therefore, the partial level of recovery directly influences the time cost of total 
recovery with regards to the locality of faults. For example, for compositions with  
12 functionalities, the time cost of a failure at the second service represents more than 
360 ms than a failure at the last service of the composition. 

Figure 8 shows the time spent to find a solution that may replace all the service 
composition on the total level. Note that for small compositions the time cost does not 
present a relevant difference when considering the failure in different portions of the 
composition. However, in the case of more complex compositions, when the first 
functionalities are involved in the failure, the time cost is slightly greater than the 
occurrence of failures at the last functionalities of the composition. For example, in the 
case of a composition of 12 functionalities, a failure at the second functionality would 
require 17 ms more than a failure at the last functionality. 

7 Conclusions 

In this paper, we have shown an overview of the research area of fault recovery of web 
service compositions. A taxonomy based on the locality of faults was presented as part of 
the research overview. We have proposed a recovery method based on the locality of the 
fault by considering different levels of impact caused by the substitution of components 
in the faulty composition. The proposed approach was validated by means of the 
execution of synthetic compositions and services, that explored a variety of scenarios of 
failures regarding the size the of initial composition, the user preference assigned to the 
involved services, and the locality of the fault occurred within the composition of 
services. 

The recovery approach can be extended to address failures of services composition 
with other control flow patterns. We aim at extending our experimentation tools to 
develop a service-composition recovery testbed. The testbed will automatise the 
generation of synthetic compositions with different control flow patterns and an 
associated service registry. It will also provide a failure simulation environment that can 
follow the recovery process and estimate its cost within the execution. 
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