
HAL Id: hal-03002552
https://hal.science/hal-03002552v1

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-healing of web service compositions: a specification
rewriting approach

Rafael Ferreira Toledo, Umberto Souza Da Costa, Martin Musicante,
Genoveva Vargas-Solar

To cite this version:
Rafael Ferreira Toledo, Umberto Souza Da Costa, Martin Musicante, Genoveva Vargas-Solar. Self-
healing of web service compositions: a specification rewriting approach. International Journal of Web
and Grid Services, 2020, 16 (2), pp.172-199. �10.1504/IJWGS.2020.107923�. �hal-03002552�

https://hal.science/hal-03002552v1
https://hal.archives-ouvertes.fr

 172 Int. J. Web and Grid Services, Vol. 16, No. 2, 2020

 Copyright © 2020 Inderscience Enterprises Ltd.

Self-healing of web service compositions:
a specification rewriting approach

Rafael Ferreira Toledo
Cheriton School of Computer Science,
University of Waterloo,
Waterloo, Canada
Email: rftoledo@uwaterloo.ca

Umberto Souza da Costa* and
Martin A. Musicante
Computer Science Department (DIMAp),
Federal University of Rio Grande do Norte,
Natal, Brazil
Email: umberto@dimap.ufrn.br
Email: mam@dimap.ufrn.br
*Corresponding author

Genoveva Vargas-Solar
LIG-LAFMIA,
CNRS,
Grenoble INP,
University Grenoble Alpes,700 avenue Centrale,
Domaine Universitaire, 38401 Saint-Martin-d’Hères, France
Email: genoveva.vargas@imag.fr

Abstract: We present an approach that improves the robustness of web service
compositions enabling their recovery from failures that can happen at different
execution times. We first present a taxonomy of failures as an overview of
previous research works on the topic of fault recovery of service compositions.
The resulting classification is used to propose our self-healing method for web
service compositions. The proposed method, based on the refinement process
of compositions, takes user preferences into account to generate the best
possible recovering compositions. In order to validate our approach, we
produced a prototype implementation capable of simulating and analysing
different scenarios of faults. Our work introduces algorithms for generating
synthetic compositions and web services. In this setting, the recovery time, the
user preference degradation and the impact of different locations of failure are
investigated under different strategies, namely local, partial or total recovery.
These strategies represent different levels of intervention on the composition.

Keywords: web services; self-healing; user preferences; service composition
rewriting; fault handling; service composition maintenance; adaptive error
recovery; service replacement; specification requirements; service composition
specification.

 Self-healing of web service compositions 173

Reference to this paper should be made as follows: Toledo, R.F.,
da Costa, U.S., Musicante, M.A. and Vargas-Solar, G. (2020) ‘Self-healing of
web service compositions: a specification rewriting approach’, Int. J. Web and
Grid Services, Vol. 16, No. 2, pp.172–199.

Biographical notes: Rafael Ferreira Toledo received his BS in Control and
Automation Engineering from the Federal Fluminense Institute in 2016. He
obtained his MS in Systems and Computation from the Federal University of
Rio Grande do Norte in 2018. He is currently pursuing his PhD in Computer
Science from the University of Waterloo. His academic interests include
service-oriented computing, features interaction, and programming languages.

Umberto Souza da Costa received his BS in Computer Science from the
Federal University of Rio Grande do Norte in 1998. He obtained his MS in
Systems and Computation from the Federal University of Rio Grande do Norte
in 2000. He received his PhD in Computer Science from the University Federal
de Minas Gerais in 2005. He is currently an Associate Professor in
the Department of Informatics and Applied Mathematics (DIMAp) at the
Federal University of Rio Grande do Norte. His academic interests include
programming languages, service-oriented computing and cloud computing.

Martin A. Musicante received his BSc at the ESLAI, Argentina, in 1988
and MSc and PhD in Computer Science at the Universidade Federal de
Pernambuco, Brazil, in 1990 and 1996, respectively. He is a Professor at the
Universidade Federal do Rio Grande do Norte-UFRN in Natal, Brazil. He is
part of the graduate program in Computer Science at the UFRN. He was an
Associate Researcher at the LI – Université François Rabelais Tours in
2002–2011 and at the LIFO – Université d’Orléans, France, since 2008.

Genoveva Vargas-Solar received her first PhD on Computer Science from the
University Joseph Fourier and her second PhD from the University Stendhal.
She obtained her Habilitation à Diriger des Recherches (HDR – tenure) from
the University of Grenoble. Her research interests in computer science concern
distributed and heterogeneous databases, reflexive systems and service-based
database systems. She contributes to the construction of service-based database
management systems.

1 Introduction

In the past decades, much effort has been driven to evolve the technology of web service
composition and to increase the quality delivered by systems designed following the
service-oriented architecture (SOA) paradigm. As for any distributed system, it becomes
hard to guarantee the desired behaviour of a web service composition (Sheng et al.,
2014). The ability to manage the execution of web service compositions may improve the
reliability and fault-tolerance of the deployed system. Devising mechanisms to recover
from defects opens considerable research opportunities (Yu et al., 2008; Papazoglou
et al., 2007; Sheng et al., 2014).

Web service compositions operate on dynamic environments, prone to the occurrence
of unpredictable disruptions and changes that can affect the execution of the system.
These problems can appear at different levels of the service composition stack, ranging
from defects at individual services to defects at the underlying infrastructure. The

 174 R.F. Toledo et al.

availability of the remotely located services, the quality attributes delivered by the
services, and the operating condition of the network are intrinsic to SOA and may be the
source of failures. According to Papazoglou et al. (2007), providing services capable of
detecting and correcting faults, while preserving the runtime performance with a minimal
dependency of human interaction is a research challenge. Also, failure recovery is crucial
for the proper and effective delivery of web service functionalities (Yu et al., 2008). The
temporary unavailability of a vital component service and changes of the quality
attributes offered by a service are examples of failures.

Classifying faults in the context of service compositions is a step towards the
definition of more robust SOA applications. Several classifications exist, adopting
different criteria, including functional and non-functional aspects, as well as different
granularities of the composition (Fugini and Mussi, 2006; Bruning et al., 2007; Chan
et al., 2007; Erradi et al., 2006; Liu et al., 2010; Wang et al., 2009; Yu et al., 2008). Most
of these works propose the use of their taxonomy to define self-healing mechanisms for
web service compositions. In this paper, we adapt the taxonomy proposed by Fugini and
Mussi (2006) to define a novel self-healing mechanism, based on the composition
refinement method presented in Ba et al. (2016).

This paper describes the following contributions:

 an overview of research works improving the robustness of web service
compositions

 a taxonomy characterising failures and classifying them according to the location of
the fault in the web composition stack

 the use of the proposed taxonomy to define a self-healing approach for web service
compositions

 a prototype implementing our recovery approach, as well as the generation of
synthetic compositions and web services, used to validate our proposal.

The remainder of the paper is organised as follows: Section 2 introduces some basic
notions about SOA, service composition rewriting, as well as an overview of failure
recovery approaches. Section 3 looks into related work. Section 4 presents a taxonomy of
failures on service compositions. Section 5 introduces the main contribution of this paper,
namely a self-healing mechanism for web service compositions based on a taxonomy of
failures classifying them according to their location in the web composition stack. Our
proposal validation is described in Section 6. Section 7 discusses the results of our work,
as well as research opportunities for future work.

2 Basic concepts

This section gives an overview of the concepts behind web service composition upon
which we defined our proposal.

2.1 Notions of SOA

SOA (Papazoglou et al., 2007) provides a way of designing software applications
composed by services. Those services may be end-user or distributed applications

 Self-healing of web service compositions 175

accessible via published and discoverable interfaces. According to Papazoglou et al.
(2007), SOA can be viewed as key to fulfil the visionary promise of service oriented
computing (SOC), where applications are built over loosely-coupled components, to
create dynamic business processes and promote the agile development of software.

As pointed out by Raines (2009), web service standards implement general SOA
concepts. These standards have become practical tools used by enterprise engineers for
SOA projects. IBM defines a web service as a breed of web applications that are
self-contained, self-describing, modular and can be published, located and invoked across
the web (Sheng et al., 2014; Shah and Patel, 2016).

The SOA architecture is based on three elements: the service provider, the service
registry and the service requester. The service provider publishes and implements the
web service. The service requester invokes the service after retrieving its description
from a service registry or repository (like UDDI), where the available web services are
advertised and located (Sheng et al., 2014; Papazoglou et al., 2007; Sheng et al., 2006).
Services with similar functionality may be implemented by different providers. Those
services can appear at any repository and have distinct associated non-functional
attributes.

Atomic web services are applications that do not depend on another web service to
respond to the service requesters. The composition of web services is the combination of
services, to implement a set of functionalities of a more complex business process. Some
concerns are directly related to the development of web service compositions, such as
component access, conversation management, control flow, data flow and data
transformation (Lemos et al., 2016).

The life cycle of a service composition involves four phases (Sheng et al., 2014):

 definition: the web service composition is specified by an abstract model, including
service requirements and preferences

 service selection: an available concrete service is selected to fulfil the requirements
of each service specified by the abstract model

 deployment: the selected services are integrated, so that the composition is deployed
as an executable service

 execution: the composition is executed together with monitoring and fault-handling
mechanisms.

These phases describe the process of combining concrete services to implement the
desired behaviour of the application (Orriëns et al., 2003). In a previous work (Ba et al.,
2016), we introduced a refinement algorithm to be used in the service selection phase.
This algorithm provides the basis for our self-healing approach.

2.2 Service composition refinement

Query rewriting techniques have been applied address the automatic selection and
composition of web services (Barhamgi et al., 2010; Mesmoudi et al., 2011; Ba et al.,
2016; Costa et al., 2013; Zhao et al., 2012]. The automatic composition of web services
may consider two main phases: the selection of available services to integrate the final
composition, and the configuration of the selected components to build the application.
The service composition rewriting must be able to identify the services that cover the

 176 R.F. Toledo et al.

expected functionalities of the composition and generate a concrete composition
consisting of the identified services.

In Costa et al. (2013) and Ba et al. (2016) we propose and use an adapted version
of the Minicon algorithm (Pottinger and Halevy, 2001) to produce concrete compositions
from their abstract specification. In order to illustrate the method, let us consider a
running example that defines a simple travel agency service. This example will be used
throughout the paper.

Example 1 (composition specification): the TravelAgency service is given by the
following abstract specification:

(, , , ,) (, , , ,)

(,),

(,),

(, , ,)

TravelAgency org dst dep ret rcpt Flight org dst dep ret flnv

Hotel flnv hlnv

Car hlnv clnv

Payment flnv hlnv clnv rcpt

The TravelAgency service provides functionalities for booking a flight (given the
departure and arrival places and dates), booking hotel and car and processing the
payment. Each of these functionalities is represented by a predicate. The specification is
defined by the predicates Flight, Hotel, Car and Payment. Figure 1 shows the
specification of the TravelAgency composed service in a BPMN diagram (Wohed et al.,
2006).

■

Figure 1 BPMN diagram for the TravelAgency specification

Each predicate receives input data, such as preferred dates and flight for the trip. The
variables fInv, hInv and cInv represent the invoices returned by each booking-related
functionality. The service payment uses these invoices to calculate the due cost for the
trip and perform the payment using the information on those invoices. The parameter rcpt
is the overall receipt and indicates to the user the success of the booking operation. The
workflow defined by the composition is implicitly defined by the data dependencies
among functionalities.

Each functionality is intended to be provided (or covered) by one or more web
services. In SOA, services are expected to be indexed through a service registry. We
assume that services are also specified by predicates, defining their functionalities.

Example 2 (service specifications): in our example, we may have the following web
services, specified using the same functionalities as the composition:

(, , , ,) (, , , ,)Gol org dst dep ret flnv Flight org dst dep ret flnv

(, , , ,) (, , , ,)Latam org dst dep ret flnv Flight org dst dep ret flnv

 Self-healing of web service compositions 177

(, , , , , ,) (, , , ,),

(,),

(,)

Booking org dst dep ret flnv hlnv clnv Flight org dst dep ret flnv

Hotel flnv hlnv

Car hlnv clnv

(,) (,)Ibis flnv hlnv Hotel flnv hlnv

(,) (,)Localiza hlnv clnv Car hlnv clnv

(, ,) (,)

(,)

Expedia flnv hlnv clnv Hotel flnv hlnv

Car hlnv clnv

(, , ,) (, , ,)Visa flnv hlnv clnv rcpt Payment flnv hlnv clnv rcpt

The services Gol, Latam and Booking provide the Flight functionality. Notice that
Booking also implements the Hotel and Car functionalities.

■

Services may have different providers, and different quality parameters. The composition
developer specifies their preferences during the refinement process by assigning a score
to each concrete service available. The preference for each service is represented by a
real number between zero (lowest preference) and one (highest preference). User
preferences are used as selection criteria to favour the choice of services to be part of an
actual composition. Preference values are used to represent any criteria for choosing an
actual web service. Services with higher scores are preferred to those with lower scores.

We assume that preference values are part of the input to our rewriting process. The
definition of preference values for concrete services is outside the scope of this work.

Example 3 (user preferences): in our travel agency scenario, the preference values
associated to each service are: Gol (0.9), Booking (0.9), Latam (0.8), Ibis (0.9), Localiza
(0.9), Expedia (0.7), Visa (0.9).

■

During the service selection phase, the rewriting algorithm splits the abstract composition
specification into blocks and looks for web services providing the functionality of each
block. The result of this phase is a set of partial coverage descriptors (PCDs). Each PCD
contains information on how to use a web service to be part of the concrete composition.
This information includes variable mappings (to bind variables in the specification to the
arguments of the services), as well as, the name of the predicates covered by the service.
Table 1 summarises the PCDs for our running example. Notice that the preference of the
service defines the preference of the PCD.

The integration phase of the composition algorithm combines PCDs to produce actual
compositions (Costa et al., 2013). The resulting compositions must comply with
two restrictions:

1 to provide all the required functionalities

2 each functionality must be provided once in the composition.

Notice that one concrete service may cover more than one functionality of the
specification (this is the case of PCD2 and PCD6 in Table 1).

 178 R.F. Toledo et al.

Table 1 PCDs based on concrete services

PCD Service Coverage Preference

PCD1 Gol Flight 0.9

PCD2 Booking Flight, hotel, car 0.9

PCD3 Latam Flight 0.8

PCD4 Ibis Hotel 0.9

PCD5 Localiza Car 0.9

PCD6 Expedia Hotel, car 0.7

PCD7 Visa Payment 0.9

The integration phase may produce several compositions. The POTI algorithm in
Ba et al. (2016) uses user preference values to classify the resulting compositions, using
the Pareto order (Kießling, 2002).

Example 4 (service composition): in the travel agency example, one of the most
preferable compositions is formed as:

(, , , ,) (, , , , , ,)

(, , ,)

TravelAgency org dst dep ret rcpt Booking org dst dep ret flnv hlnv clnv

Visa flnv hlnv clnv rcpt

■

The POTI algorithm is done in two steps:

 production of a set of PCDs: given an abstract specification A = {f1, …, fk},
where each fi stands for a functionality, and a set of web services available
in the registry, this step generates the set of all PCDs that can be used to cover
functionalities of A

 combination of PCDs: this step selects PCDs from the previous phase and combines
them produce actual compositions.

For our running example, given the composition specified in Example 1 and the set of
web services of Example 2, the first phase produces the PCDs in Table 1. Notice that one
PCD may cover more than one functionality.

During the combination phase, the rewriting process checks some constraints before
integrating PCDs. These constraints include:

1 all functionalities of the specification needs to be covered

2 each functionality must be covered by just one PCD

3 the use of parameters on the predicates must be consistent.

For the sake of simplicity, the verification of these constraints are abstractly represented
as a call of a function compatible, which take a set of PCDs as input and returns a
Boolean value. The computational details of this function can be found in Costa et al.
(2013). Once a set of compatible PCDs is found, it is integrated into a concrete
composition. This integration is represented here by the function combine.

 Self-healing of web service compositions 179

Several compositions may be produced by the method. User preferences are used to
chose the most suitable rewritings. For the running example, the result of the second
phase is given by the service composition of Example 4.

In this paper we adapt the algorithm POTI to provide alternative services in case of
failure of parts of a composition. Specifically, our method explores the PCDs generated
at the selection phase of POTI to replace parts of the failed composition, while preserving
the overall functionality.

2.3 Self-healing of web services

Faults, errors and failures are some of the terms used to define elements that affect the
well-functioning of a given system. According to Avizienis et al. (2001), a failure is the
deviation of the service from the correct behaviour. This unexpected behaviour is the
consequence of the occurrence of errors that alter the service, being noticed by the user
when the behaviour reaches the service interface. Faults are the possible causes of an
error.

Fault-tolerance is the preservation of correctness of a system in the presence of faults
(Avizienis et al., 2001). Fault-tolerance is fundamental to self-healing, which is the
ability of a system to discover, diagnose and react to faults without disrupting the runtime
environment. A fault-tolerant mechanism is typically implemented by error detection and
subsequent system recovery (Avizienis et al., 2001). A fault taxonomy for SOA helps
refining possible reactions for runtime faults, guiding fault injection tests executed on
services during development, and consequently improving robustness, reliability and
availability of SOA components (Bruning et al., 2007).

Recovery actions can be classified as service-oriented actions and data quality
recovery actions (Fugini and Mussi, 2006). The former deals with invocation,
orchestration and choreography aspects of web services. Data quality recovery actions
can be achieved by methods like data cleaning by manual identification, multiple source
identification and verification of data specifications.

The application of recovery actions to correct the errors detected during execution
contributes to achieving fault-tolerance in a web service composition. Basic failure
reactions for web service composition are (Erradi et al., 2006; Wang et al., 2009; Liu, A.,
Li et al., 2010; Fugini and Mussi, 2006):

 Notify: the system signals the occurrence of a failure, possibly adding entries to a log
file. This reaction can be triggered by failures at any level of the taxonomy.

 Ignore: the system does not actively interfere with the execution of the service.
This reaction applies to failures that do not affect the main goal of the composition.

 Retry: applies to transient failures due to instabilities of hardware or software. This
action may be only offered for services that can be executed multiple times without
affecting the consistency of the process. This reaction may consider deadlines such
as a maximum number of tries or a time limit. Retry is suitable for failures on
functional behaviour or mismatch on the output of the service.

 Replace: the failed service is substituted with another. The new service is expected
to be equivalent in terms of functionality and QoS. This reaction is usually triggered
after the unavailability of a service or its inability to succeed. Replace strategies

 180 R.F. Toledo et al.

depend on mechanisms to identify available compatible services to be integrated in
the composition. The failed service may be replaced with an atomic or composed
service.

 Recompose: this action is adopted in the case of failure of all services in the
composition. Recomposing a composition consists on establishing an alternative
business process with the same primary goals of the failed composition. The
execution of this reaction works as a replace action applied to all web services
components.

Both replace and recompose make use of compensation services, or rollbacks, to
compensate partially executed faulty processes. They are usually considered
pre-conditions of the recovery strategies in those cases (Wang et al., 2009).

Self-adaptation methods for service compositions that can implement the listed
reactions are classified as policy-based and replacement-based approaches (Yuan et al.,
2018). The former is defined as methods that follow policies defined during design time
and cannot deal with context events beyond the policies. While, in case of unexpected
changes, the replacement-based approaches substitute services by new selected ones
according to the original specification. In Wang and Yang (2018) for example, propose
the concept of dynamic Petri nets to describe fault-handling strategies for service
compositions, considering dynamic replacement of transitions. The optimisation of the
service matching process, as the one presented in the current work, is stated as a
challenge for the implementation of the fault-handling strategies.

3 Related work

Many approaches have been proposed for the categorisation of faults in SOA systems. In
Wang et al. (2009) define a fault taxonomy aiming to deal with business constraints
violations, including business and technical faults. Based on the taxonomy, the authors
provide an instrumentation template for constraint violation and runtime fault handling of
business process execution language (BPEL) processes. Two approaches are considered:

1 a basic replacement plan that replace services according to a static list provided by
the user

2 a more elaborated strategy that uses a service repository to discover possible
replacing candidates.

That repository saves composed services, annotated with fault ratio. Those services can
be retrieved and selected for recomposition.

The work in Bruning et al. (2007) defines a taxonomy for SOA based on the life cycle
of the service composition. The taxonomy contributes to the methodology of using fault
injections to test fault recovery in service compositions. The authors’ goal is to cover as
many fault classes as possible while minimising the number of test cases. The
categorisation of faults facilitates the testing approach by abstracting from concrete
implementations. The taxonomy associates system development phases to faults at the
higher-level. These levels are refined into atomic fault cases. The proposal does not
categorise, relate or formulate runtime fault-handling strategies.

 Self-healing of web service compositions 181

In Liu et al. (2010) present a framework for the fault-tolerant composition of
transactional web services. The framework includes a fault-tolerant mechanism that
combines exception handling and transaction techniques. This combination is based on
the identification of fault models, a set of high-level exception handling strategies, a new
taxonomy of transactional web services and critical features, including service transfer
and vitality degree. The ultimate goal of the framework is to build an integrated
environment for the specification, verification, and execution of fault-tolerant service
compositions. The strategy for replacing faulty services is statically defined: the approach
does not propose the automatic discovery of replacing services.

The taxonomy in Chan et al. (2007) is used to contribute to dynamo (Baresi et al.,
2007), a toolset that proposes runtime monitoring and recovery strategies for BPEL.
Dynamo uses a monitor to assess the quality of each service during runtime. Once a
service fails, the system looks for a backup service. A backup service may be indicated
by the user. Alternatively, the monitor may choose a replacement based on the quality
assessment of previously used services.

The work in Fugini and Mussi (2006) proposes a self-healing approach for web
services and present a classification of faults. This categorisation is distributed in three
different levels, namely web service, application and infrastructure. Their work proposes
a self-healing platform that performs a semantic-based analysis to compare faulty
services with candidates for substitution. Human intervention might be required when
services have different signatures.

The works cited above propose tools for web service composition that enable the
monitoring of faults, the specification of recovery strategies and the execution of
remedial actions. Most of these works consider the replacement of a faulty service as a
reaction to failures, by replacing individual services. Substitute services are usually
provided by the user that explicitly defines the candidate for replacement. Some solutions
query a service registry on-the-fly. Some authors mention the use of semantic analysis to
identify replacement services, without providing details about their approach. Differently
from our proposal, these works do not consider the possibility of substituting the faulty
service with a composition of services.

4 Fault taxonomy

We present a taxonomy of failures for web services. Our taxonomy results from the
analysis of proposals in Chan et al. (2007), Bruning et al. (2007), Li et al. (2014), Wang
et al. (2009), Fugini and Mussi (2006), Liu et al. (2010) and Simmonds et al. (2013).
Similarly to Fugini and Mussi (2006) and Wang et al. (2009), failures are classified into
three main levels: service, composition and infrastructure.

The failures listed in this work are studied in the literature, and they are distributed in
a way that contributes to the discussion of failure recovery of service compositions.
Table 2 summarises our classification.

Each level of failure has a set of conditions that should monitored by the runtime
environment. The definition of levels in which the failure may arise helps to choose a
recovery strategy. Recovery actions for each case can be executed by a recovery system.

 182 R.F. Toledo et al.

Table 2 Fault taxonomy

Level Violation Example

Component Content Incorrect results

Service provided different from expected

Timing Time-out

Composition Quality of service Low availability

High rate of error

Financial faults

SLA violation

Compatibility Missing parameter

Mismatch data types

Incorrect order

Coverage Missing parts of the composition

Infrastructure Platform Server crashed

Network Missing connection

Low bandwidth

4.1 Service level

This level is specifically related to aspects of each component service of the web service
composition. This context may consider both the quality and the correctness of the
service. Failures at this level are classified into content and timing (Wang et al., 2009;
Chan et al., 2007; Fugini and Mussi, 2006; Li et al., 2014).

Content violations are related to the definition and expected outputs of a web service.
Content failures occur when there is a mismatch between the expected and the actual data
produced by the service. Examples of failures in this category are the delivery of
incorrect results from the service and the provision of a service different from expected.
The former case results into the incoherent behaviour of the service and may compromise
the final result of the composition. In the case where a wrong service is provided, the
service output may be functionally compliant, but deviating from other aspects of the
specification. This kind of problem may happen due to an incorrect service selection
before the deployment of the composition.

Timing failures are related with timeouts and other errors that may affect the time of
arrival and delivery of data for the service that may impact the non-functional
specifications of the web service composition (Chan et al., 2007).

4.2 Composition level

The composition level concerns the conversation between component services, as well as
the compliance of the composition with regard to its specification (Fugini and Mussi,
2006; Bruning et al., 2007; Wang et al., 2009). The requirements of a composition
include functional and non-functional aspects, established during the definition phase.
The concrete composition is expected to meet those requirements at runtime. In this way,

 Self-healing of web service compositions 183

failures at the composition level include quality of service (QoS), compatibility and
coverage failures.

Compatibility failures are related to the mismatch of exchanged data between
services. These failures may occur due to differences in the arguments or protocols
considered by the services during the exchange of data (Wang et al., 2009). Examples of
failures in this class are missing parameters or incorrect data types.

Coverage failures are defined as violations of the specification regarding the binding
between the expected functionalities and the component services.

QoS failures are related to violations of non-functional requirements of the
composition, such as those concerning availability, response time, throughput, security
and price. These attributes and their expected values can be formalised in a service level
agreement (Bianco et al., 2008).

4.3 Infrastructure level

This level focuses on failures at the runtime environment supporting the composition
(Wang et al., 2009; Liu et al., 2010). Failures at this level impact the execution of the web
services due to infrastructure problems. This category includes platform and network
failures.

Platform failures occur when a service is unavailable due to a problem in the client or
in the device providing the service (Wang et al., 2009). Network failures are due to
communication errors between services and clients, such as connectivity losses or low
bandwidth. Both platform and network violations may cause unavailability of web
service components and a consequent failure of the composition (Chan et al., 2007).

5 Proposed self-healing approach

We propose a self-healing mechanism for web service compositions. The proposal is
intended to be part of a platform that:

1 identify runtime failures

2 propose reactions to the failures

3 recover the system.

We focus on the second item above, by introducing an algorithm to find most preferable
compensation services to replace portions of the composition. Our algorithm is based on
the composition refinement method POTI (Ba et al., 2016) for the orchestration of web
services.

Given a composition obtained as the result of POTI, the problem of replacing a failed
service can be addressed by considering another rewriting, that complies to the original
specification, such that the new composition replaces the failed service by one of the next
preferable candidates. The collection of user preferences associated to the web services
represents a particular challenge which is beyond the scope of the current work.
In Tian et al. (2019), for example, address some of the difficulties of recommending
services to an user with unknown explicit preferences. In the general context of
recommendation systems, Parra et al. (2011) propose a method for mapping implicit

 184 R.F. Toledo et al.

feedback of users, like the popularity of a given element, to explicit numerical user
ratings.

For a composition consisting of services S1, …, Sn, our algorithm considers three
incremental recovery levels: local, partial and total. Given that a service Si fails, each
recovery level defines which part of the composition must be replaced. At the local level,
the algorithm tries to replace just the failed service Si. If it is not possible to recover
locally, the algorithm steps to the partial level of recovery, by replacing Si and the
subsequent services. This occurs when there is no possible substitution for the individual
service. In this case, the algorithm tries to replace the sub-composition defined by Si, …,
Sn. If there is no possible replacement at the partial level, the algorithm tries to obtain a
rewriting for the whole composition.

Local recovery

It occurs when a single service of the composition is to be replaced. This service can
cover one or more functionalities. These functionalities may be covered by one or more
other services. In Example 5 we consider the case where the failed service covers more
than one functionality.

Example 5 (local recovery): consider the composition from Example 4:

(, , , ,) (, , , , , ,)

(, , ,)

TravelAgency org dst dep ret rcpt Booking org dst dep ret flnv hlnv clnv

Visa flnv hlnv clnv rcpt

In this composition, the service Booking covers the functionalities Flight, Hotel and Car.
Visa covers the Payment functionality. In the case of failure of Booking, our algorithm
tries to perform a local recovery to cover each of the functionalities of Booking with
another service. Our algorithm considers the user preference of each service to obtain a
new composition which does not include the failed service. In the case of the travel
agency, the preferences defined in Example 3 are used to obtain the composition:

(, , , ,) (, , , ,)

(,),

(,),

(, , ,)

TravelAgency org dst dep ret rcpt Gol org dst dep ret flnv

Ibis flnv hlnv

Localiza hlnv clnv

Visa flnv hlnv clnv rcpt

Notice that Booking was locally replaced with three services that, combined, provides the
same set of functionalities. These three services have the same combined preference as
Booking. Since we are in the context of a local recovery, the service Visa was not
replaced.

■

Partial recovery

This level of recovery is tried by the algorithm when the local recovery does not succeed.
In this case, not only the faulty service Si is replaced, but all the subsequent services up to
Sn.

 Self-healing of web service compositions 185

Example 6 (partial recovery): let us consider the composition produced by the recovery
process in Example 5. Suppose that the service Ibis fails. In this case, using the services
described in Example 2, there is no possible local recovery, since there is no other service
covering just the Hotel functionality. In this situation, we look for services covering the
part of the composition that has not been executed yet. Notice that, except for the failed
service, the only way to cover the Hotel functionality is by using the service Expedia, that
also covers Car. The partial recovery produces the following composition:

(, , , ,) (, , , ,)

(, ,),

(, , ,)

TravelAgency org dst dep ret rcpt Gol org dst dep ret flnv

Expedia flnv hlnv clnv

Visa flnv hlnv clnv rcpt

The service Visa is part of the solution because it did not fail and the rewriting process
chooses it to cover the Payment functionality.

■

Total recovery

When it is not possible to perform a partial recovery of the composition, our algorithm
will try to find a replacement for the whole composition. Some functionalities may be
re-executed.

Example 7 (total recovery): again, consider the composition resulting from Example 5,
but at this time, we assume that the failed service is Localiza, that covers the Car
functionality.

The alternative services covering Car are Booking and Expedia (Example 2). Since these
alternative services also cover functionalities already executed, nor the local or partial
recovery will succeed. The total recovery produces the following composition:

(, , , ,) (, , , , , ,)

(, , ,)

TravelAgency org dst dep ret rcpt Booking org dst dep ret flnv hlnv clnv

Visa flnv hlnv clnv rcpt

■

In our recovery algorithm, user preferences guide the selection of alternative services.
Notice that due to the way in which replacement services are chosen, there is no
degradation in terms of functionality in the composition after its recovery. Our method is
based on the selection phase of POTI for choosing PDCs (see Section 2.2), thus
preserving the functionality of the composition. Recall that PCDs represent sets of
services that can be used as candidates for replacement.

Our method preserves the functionality of the composition but it may cause
degradation of the composition in terms of user preference. This is a consequence of
choosing the replacement solutions by using the Pareto ordering for preference values.
Notice that preference values may be used to express any criteria, such as time or space
consumption, subjective preference, etc. In this way, the decrease of preference may
indicate the degradation of any non-functional concern of the composition.

 186 R.F. Toledo et al.

5.1 The self-healing approach

Our method encompasses the composition rewriting process described in Ba et al. (2016).
We suppose that the POTI algorithm is used to generate compositions for a given abstract
specification. In this process, the set of PCDs is produced. In our self-healing
scenario, we consider that the most preferable composition C is the one initially
deployed, being formed by the set of services {S1, …, Sn}.

Algorithm 1 Self-healing

Input:

- The set of all available PCDs.

- The running composition C {S1, …, Sn}.

- The failed service Si.

Output:

- The recovering composition R.

 1: function Heal(, C, Si)

 2: C ← PCDsOf(C)

 3: ([]) L i CFunct S Ç

 4: ([, ...,]) P i n CFunct S S Ç

 5: () T CFunct

 6: Recover(, , ,) C i LR S

 7: if R is the empty composition then

 8: Recover(, , ,) C i PR S

 9: end if

 10: if R is the empty composition then

 11: Recover(, , ,) C i TR S

 12: end if

 13: return R

 14: end function

Algorithm 1 describes our recovering approach. The algorithm receives the set
containing the PCDs produced by POTI, the running composition C formed by the set of
services {S1, …, Sn}, as well as the identification of the failed service Si. The subset of
 that covers the composition C is denoted by C (line 2). The , L P and T

sets (lines 3 to 5) contain the functionalities to be covered at local, partial and total
recovery levels, respectively. The algorithm first tries a local recovery (line 6). If the
local recovery does not succeed, the algorithm tries a partial recovery (line 8). Finally, if
the partial recovery is not possible, a total one is tried (line 11). The algorithm returns a
non-empty recovering composition R whenever a solution is found.

Algorithm 2 produces new service compositions. It takes:

1 the set (registry) of all available PCDs

 Self-healing of web service compositions 187

2 the set C of PCDs used in the original composition C

3 the identification of the failed service Si

4 the set of functionalities covered by services to be replaced in the recovering
composition.

Algorithm 2 Recover

Input:

- The set of all available PCDs.

- The set C of PCDs used in C.

- The failed service Si.

- The set of functionalities to be covered.

Output:

- The recovering composition.

 1: function Recover (, , ,) C iS

 2: \ { | } F C Cp p covers f

 3: \ []H iS

 4: { | } U Hp p covers f

 5: for each 1{ , ..., } m cP P

 6: such that

 7: (i) { } Funct and

 8: (ii) . () () 0 r sr s Funct P Funct PÇ

 9: do

 10: if Compatible () FÈ then

 11: return Combine () FÈ

 12: end if

 13: end for

 14: return empty;

 15: end function

This algorithm defines three sets of PCDs:

1 The set F of fixed PCDs (line 2). This set consists of all the PCDs of the
original composition that will be maintained in the resulting composition. Notice
that the contents of this set depends on the recovery level. This set is empty in total
recoveries.

2 The set H of healthy PCDs (line 3), containing all the available PCDs, except
those formed for the failed service Si.

3 The set U of usable PCDs (line 4), containing the healthy PCDs that can be
used to cover the functionalities in .

 188 R.F. Toledo et al.

The loop in line 5, iterates over those sets of PCDs that may be used to recover the
composition. Conditions at lines 7 and 8 state that each functionality in must be
covered just once by .� The body of the loop checks whether the � and F form a
suitable composition. In this case, these sets are combined (line 11) to produce a new
composition. The algorithm finishes once a solution is found.

As in POTI, user preferences define the order in which each combination of PCDs is
produced. The Pareto order is used to ensure that the algorithm returns the next best
solution.

6 Validating the approach

In order to validate our proposal we have implemented a prototype and conduct an
experiment to:

1 measure the recovery time of compositions in the presence of faults

2 evaluate the compliance of the recovered composition with regard to the user
preferences.

6.1 Experimental settings

We generate synthetic compositions and services to perform our experiment. This lets us
explore a number of functionalities with different ‘complexities’ (in terms of number of
services) and evaluate the scalability of our method. Algorithm 3 describes the workflow
of the experiment. First, this algorithm defines the generation of synthetic cases for the
experiment, and then it simulates failures and executes the recovery method.

Algorithm 3 evaluates compositions of different sizes, ranging from Fmin to Fmax
functionalities. For each composition, every possible failure is simulated for N times. In
our setting, we have explored compositions ranging from Fmin = 4 to Fmax = 11, being
each failure simulated for N = 5 times.

For a given number of functionalities, Algorithm 3 generates the composition
specification and a set of web services (lines 3 to 5). In the composition specification, the
parameters xj, xj+1 of each Fj represents, respectively, input and output of the
functionality, so imposing a sequential behaviour to the composition. The registry of
available services is generated as the result of calling the function
BuildSyntheticWebServices (Algorithm 4).

We next call the POTI algorithm, using the synthetic services to produce a set of
service compositions and the set of PCDs generated along the rewriting process
(line 6). These steps establish the basis for the simulation of failures and for the execution
of our recovery method. Line 7 of Algorithm 3 calls the procedure SimulateFailures to
run our healing algorithm.

Let us now look at the generation of synthetic web services, for a given number n of
functionalities, as described by Algorithm 4. This algorithm takes a value representing
the number of functionalities to be covered and returns a set containing the
specification of all services that can be defined to cover functionalities F1, …, Fn.

 Self-healing of web service compositions 189

Algorithm 3 General recovery process

Input:

- The minimum number of functionalities Fmin.

- The maximum number of functionalities Fmax.

- The number of times N to repeat each recovery.

 1: procedure Monitor(Fmin, Fmax, N)

 2: for each i {Fmin, …, Fmax} do

 3: Cspec ← C(x1, xi+1) F1(x1, x2), …, Fi(xi, xi+1)

 4: ← BuildSyntheticWebServices(i)

 5: (,) ← POTI(Cspec,)

 6: SimulateFailures(, , , N)

 7: end for

 8: end procedure

Algorithm 4 begins by defining as an empty registry, to be populated with the
specifications of services S[r,s], where r and s are the first and last functionalities covered
by the service. For instance, the service S[2,4] covers the interval of functionalities F2 to
F4, being defined by the following specification:

[2,4] 2 5 2 2 3 3 3 4

4 4 5

, , , ,

,

S x x F x x F x x

F x x

In this algorithm, each iteration of the loop at line 3 controls the generation of web
services for a given number i of functionalities. In this manner, the first iteration builds
services with one functionality, the second iteration builds services with two
functionalities, and so on. The loop at line 4 is in charge of generating all the services
with a number i of functionalities, whereas the loop at line 6 specifies the functionalities
for a given web service.

Let us now illustrate the construction of the synthetic cases of our experiment by
assuming a number of four functionalities.

Example 8 (registry with services covering four functionalities): let us consider a
composition with four functionalities, as described by the following specification:

 1 5 1 1 2 2 2 3 3 3 4 4 4 5, , , , , , , ,specC x x F x x F x x F x x F x x

where Cspec describes a composition with functionalities F1, …, F4. For this specification,
Algorithm 4 builds the synthetic services below:

 Services with 1 functionality:

 [1,1] 1 2 1 1 2, ,S x x F x x

 [2,2] 2 3 2 2 3, ,S x x F x x

 [3,3] 3 4 3 3 4, ,S x x F x x

 190 R.F. Toledo et al.

 [4,4] 4 5 4 4 5, ,S x x F x x

 Services with 2 functionalities:

 [1,2] 1 3 1 1 2 2 2 3, , , ,S x x F x x F x x

 [2,3] 2 4 2 2 3 3 3 4, , , ,S x x F x x F x x

 [3,4] 3 5 3 3 4 4 4 5, , , ,S x x F x x F x x

 Services with 3 functionalities:

 [1,3] 1 4 1 1 2 2 2 3 3 3 4, , , , , ,S x x F x x F x x F x x

 [2,4] 2 5 2 2 3 3 3 4 4 4 5, , , , , ,S x x F x x F x x F x x

 Services with 4 functionalities:

 [1,4] 1 5 1 1 2 2 2 3 3 3 4 4 4 5, , , , , , , ,S x x F x x F x x F x x F x x

Notice that these services cover all the combinations of functionalities F1, …, F4.

■

Given the specifications of a composition and of the available services, the rewriting
algorithm POTI produces a set of service compositions and a set , containing all
the PCDs used to generate the compositions in .

Algorithm 4 Build synthetic web services

Input:

- The number of functionalities n.

Output:

- All the possible web services for n functionalities.

 1: function BuildSyntheticWebServices(n)

 2: 0

 3: for each i {1, …, n} do

 4: for each j {1, …, n – i + 1} do

 5: 0

 6: for each k {j, …, j + i – 1} do

 7: 1{ (,)} k k kF x xÈ

 8: end for

 9: [, 1]{ (,) }j j i j j iS x x È

 10: end for

 11: end for

 12: return

 13: end function

 Self-healing of web service compositions 191

Algorithm 5 is the core of our experiment. This algorithm defines the procedure
SimulateFailures, called by Algorithm 3 (line 7). The procedure SimulateFailures takes:

1 the set (or registry) of services

2 the set of compositions , generated by POTI

3 the set , also generated by POTI

4 the number N of times to execute each recovery.

In our case, we defined N = 5.

Algorithm 5 Simulation of failures

Input:

- The set of available web services.

- The set of service compositions.

- The set of available PCDs.

- The number of times N to repeat each recovery.

 1: procedure SimulateFailures(, , , N)

 2: for each C such that

 3: C(x1, xi+1)

 S[1,a](x1, xa+1),…,S[b,i](xb, xi+1)

 4: do

 5: C ← PCDsOf(C)

 6: for each j {1, …, N} do

 7: SetPreferences (,) C

 8: for each S[k,l]{S[1,a],…,S[b,i]} do

 9: [,] , a bS k a b l

 10: [,](, ,) C k lHeal S

 11: [,] , a bS k a l b l

 12: [,](, ,) C k lHeal S

 13: [,] a bS a k

 14: [,](, ,) C k lHeal S

 15: end for

 16: end for

 17: end for

 18: end procedure

The procedure SimulateFailures tries to recover from failures in each composition C in
 (line 2). Each composition C is assumed to be the composition with the highest
preference during the simulation of their failures. In this way, the algorithm assigns the

 192 R.F. Toledo et al.

maximum possible preference for C. The preference of a composition is calculated as the
mean of the preference scores of its component services. Thus, we assign the value 1.0 to
the services that participate in C, so its preference score will be 1.0. Then, Algorithm 5
randomly assigns preference scores between 0.01 and 0.99 to the remaining services
(line 7). Thus, the remaining compositions will have a mean preference score smaller
than 1.0.

The inner loop of Algorithm 5 simulates the failure of each service S[k,l] in the
definition of C (line 8). The algorithm uses the available services for addressing the three
levels of recovery, one after the other. This is done by filtering the set to ensure that
the right subset of services is offered to the procedure heal:

 the set is a registry which contains all the services in that may be used to
substitute S[k,l] in (i.e., to perform a local recovery of S[k,l])

 the set is a registry containing all the services in that may be used to
substitute S[k,l] and all those services appearing in after S[k,l]] (i.e., to perform a
partial recovery after the failure of S[k,l])

 the set is a registry that contains all the services in that may be used to build a
new composition from scratch, not using S[k,l] (i.e., to perform a total recovery after
the failure of S[k,l]).

In our validation, the Heal procedure is feed with registry sets , and . The time

spent for each kind of recovery is registered.
Our experiments were executed on top of an Ubuntu 18.04 LTS Bionic Beaver, Linux

kernel 4.15, 8GB RAM, AMD Phenom II X4 820 2.8GHz Quad-Core, Java 8. The size of
the abstract compositions considered ranged from Fmin = 4 to Fmax = 11 distinct
functionalities. The experiment was executed N = 10 times for each abstract composition.

6.2 Running the experiment

We investigate the time required for healing compositions at each recovery level, as well
as the impact of recoveries on the preference value of compositions. The influence of the
locality of the fault on the time cost and the preference impact is also investigated during
the experiment. For each composition generated by POTI, we define its preference as 1.0
and then simulate failures at each of its component services. The recovery of each failure
is tried at the local, partial and total levels, using, respectively, the registry sets , and

. After that, we calculate the preference value of the replacing composition. This
strategy is applied ten times for each composition, in order to obtain a consistent time
measurement. We experimented with compositions containing from 4 to
12 functionalities.

6.2.1 Recovery time

Figure 2 shows the average time taken by the healing algorithm to perform one local,
partial or total recovery, for each size of composition. The recoveries executed in
compositions of four functionalities are represented as more expensive than recoveries in
some larger compositions. This behaviour is explained by the time spent by the Java
virtual machine (JVM) to start up. As expected, local recoveries are less expensive than

 Self-healing of web service compositions 193

partial and total recoveries. Indeed, the local recovery simply tries to substitute the failed
service for other services providing the same functionalities.

Partial recoveries involve the substitution of the failed service, as well as the
rebuilding of the part of the composition which has not been executed yet. Total
recoveries imply in the substitution of the whole composition. Partial and total recoveries
have a combinatorial nature, since they choose a combination of PCDs to cover more
than one functionality. These facts explain the increase in the time of recoveries at these
levels, as shown in Figure 2.

Figure 3 shows the average time spent for the execution of total recoveries for each
composition size. As previously shown in Figure 2, the total recovery demands more time
for recovering than the other levels of recovery. This difference is particularly evident in
the cases where compositions with have ten or more functionalities. The data of Figure 3
considers the accumulation of time cost of the unsuccessful attempts of the previous
levels of recovery, local and partial.

Figure 2 Average recovery time of all levels of recovery (see online version for colours)

Figure 3 Total recovery – average recovery time (see online version for colours)

Figure 3 also shows that, for more complex compositions, the time spent to search a
solution for total recovery is considerably smaller in comparison with the time taken by
the algorithm to conclude the failed attempts of local and partial recovery. Indeed, the

 194 R.F. Toledo et al.

problem of recovering a service composition becomes more flexible when all services are
eligible for substitution. This flexibility eases the search of solutions at the total level in
comparison with the other levels that present restrictions for their combinatorial
problems.

6.2.2 Preference degradation

This section explores the results in terms of user preference of the recovered
compositions. Figure 4 shows the mean preference degradation achieve by the healing
algorithm when performing local, partial or total recoveries, for each size of the
composition. The values of degradation were obtained as the difference between 1.0
(the preference of each most preferred composition, as generated by POTI) and the mean
preference value of the recovering composition produced for each level of recovery.

Note that, for all recovery levels, the degradation of preferences reduces as the
number of functionalities increases. This behaviour is explained by the fact that the
higher the number of functionalities, the smaller the relative contribution of the failed
service for the overall preference value of a composition. We can also notice that local
recovery consistently provokes a greater preference degradation. The partial recovery
delivers better results but they are close to the ones reached by the local level. The best
results are obtained by using the total recovery, which is more flexible since the
algorithm may substitute all the services in the original composition.

Figure 4 Average preference degradation of all levels of recovery (see online version for colours)

Considering Figures 2 and 4 we observe that, for smaller compositions, the time cost does
not differ significantly between the levels but the total recovery delivers the lowest
preference degradation. Additionally, in the case of more complex compositions, the total
recovery still deliver the smallest preference degradation. In all cases, the total recovery
represents the most expensive level. As seen in Figure 3, the unsuccessful attempt of the
partial recovery is the primary cost of the total recovery. These observations suggest that
the adoption of total recoveries for small compositions is the best option.

In the case of larger compositions, the recovery mechanism could skip the attempt of
partial recovery in order to reduce time costs. In that way, the local recovery is initially
tried, but if this level of recovery is not successful the total recovery is initiated. These
results also show that different levels of recovery may be suitable for different priorities
on the time cost and preference degradation. The total recovery may be desirable for a

 Self-healing of web service compositions 195

situation that prioritises the lower degradation of preference over the time cost. Whereas
local recovery is suitable for cases that demand the fastest solutions for failures
independently of the resulting preference degradation.

6.2.3 Locality of faults

This section is dedicated to analysing how the locality of the faults within the
composition impacts on the recovery time and preference degradation.

In Figure 5, we show the average time cost for the total recovery depending on the
locality of fault for different compositions. Notice that the time cost for total recovery
reduces if the failed service is close to the end of the composition. Whereas faults in the
initial portion of the composition demand more time for recovery.

Figure 5 Total recovery – average recovery time (ms) considering the locality of faults
(see online version for colours)

Figure 6 Total recovery – average recovery time (ms) considering the locality of faults –
unsuccessful attempt of local recovery (see online version for colours)

 196 R.F. Toledo et al.

We wanted to investigate the contribution of the attempts of other levels to the resulting
time cost, considering the influence of the unsuccessful attempt of partial recovery on the
final cost of total recovery. Figures 6, 7 and 8 show the time spent in each level of
recovery while experimenting the total recovery of failures.

In Figure 6, we note that the same stable behaviour with regards to the locality of
faults is maintained when reaching unsuccessful responses at the local level of recovery.
These data also show that the local recovery has a minor influence on the average time
cost of total recovery.

Figure 7 Total recovery – average recovery time (ms) considering the locality of faults –
unsuccessful attempt of partial recovery (see online version for colours)

Figure 8 Total recovery – average recovery time (ms) considering the locality of faults –
successful attempt of total recovery (see online version for colours)

Figure 7 shows that failures that occurred at the beginning of the composition demands
much more time for partial recovery. The values also enforce that the partial recovery
represents the greatest contribution to the time cost of the overall time spent in total

 Self-healing of web service compositions 197

recovery. Therefore, the partial level of recovery directly influences the time cost of total
recovery with regards to the locality of faults. For example, for compositions with
12 functionalities, the time cost of a failure at the second service represents more than
360 ms than a failure at the last service of the composition.

Figure 8 shows the time spent to find a solution that may replace all the service
composition on the total level. Note that for small compositions the time cost does not
present a relevant difference when considering the failure in different portions of the
composition. However, in the case of more complex compositions, when the first
functionalities are involved in the failure, the time cost is slightly greater than the
occurrence of failures at the last functionalities of the composition. For example, in the
case of a composition of 12 functionalities, a failure at the second functionality would
require 17 ms more than a failure at the last functionality.

7 Conclusions

In this paper, we have shown an overview of the research area of fault recovery of web
service compositions. A taxonomy based on the locality of faults was presented as part of
the research overview. We have proposed a recovery method based on the locality of the
fault by considering different levels of impact caused by the substitution of components
in the faulty composition. The proposed approach was validated by means of the
execution of synthetic compositions and services, that explored a variety of scenarios of
failures regarding the size the of initial composition, the user preference assigned to the
involved services, and the locality of the fault occurred within the composition of
services.

The recovery approach can be extended to address failures of services composition
with other control flow patterns. We aim at extending our experimentation tools to
develop a service-composition recovery testbed. The testbed will automatise the
generation of synthetic compositions with different control flow patterns and an
associated service registry. It will also provide a failure simulation environment that can
follow the recovery process and estimate its cost within the execution.

References

Avizienis, A., Laprie, J-C. and Randell, B. (2001) ‘Fundamental concepts of computer system
dependability’, in Workshop on Robot Dependability: Technological Challenge of Dependable
Robots in Human Environments, pp.1–16.

Ba, C., Cerqueira, T., Costa, U., Ferrari, M.H., Musicante, M.A. and Robert, S. (2016)
‘Experiments on service composition refinement on the basis of preference-driven
recommendation’, International Journal of Web and Grid Services, Vol. 12, No. 2,
pp.182–214.

Baresi, L., Guinea, S. and Pasquale, L. (2007) ‘Self-healing BPEL processes with dynamo and the
JBoss rule engine’, in International Workshop on Engineering of Software Services for
Pervasive Environments: in Conjunction with the 6th ESEC/FSE Joint Meeting, pp.11–20.

Barhamgi, M., Benslimane, D. and Medjahed, B. (2010) ‘A query rewriting approach for web
service composition’, IEEE Transactions on Services Computing, Vol. 3, No. 3, pp.206–222.

 198 R.F. Toledo et al.

Bianco, P., Lewis, G.A. and Merson, P. (2008) Service Level Agreements in Service-Oriented
Architecture Environments, Technical Report, Carnegie-Mellon University, Software
Engineering Inst., Pittsburgh PA.

Bruning, S., Weissleder, S. and Malek, M. (2007) ‘A fault taxonomy for service-oriented
architecture’, in 10th IEEE High Assurance Systems Engineering Symposium, HASE’07,
IEEE, pp.367–368.

Chan, K.S.M., Bishop, J., Steyn, J., Baresi, L. and Guinea, S. (2007) ‘A fault taxonomy for web
service composition’, in International Conference on Service-Oriented Computing, Springer,
pp.363–375.

Costa, U.S., Ferrari, M.H., Musicante, M.A. and Robert, S. (2013) ‘Automatic refinement of
service compositions’, in International Conference on Web Engineering, Springer,
pp.400–407.

Erradi, A., Maheshwari, P. and Tosic, V. (2006) ‘Recovery policies for enhancing web services
reliability’, in International Conference on Web Services, ICWS’06, IEEE, pp.189–196.

Fugini, M.G. and Mussi, E. (2006) ‘Recovery of faulty web applications through service
discovery’, in Proceedings of the 1st SMR-VLDB Workshop, Matchmaking and Approximate
Semantic-Based Retrieval: Issues and Perspectives, 32nd International Conference on Very
Large Databases, pp.67–80.

Kießling, W. (2002) ‘Foundations of preferences in database systems’, in VLDB 2002, Proceedings
of 28th International Conference on Very Large Data Bases, Hong Kong, China, 20–23
August, pp.311–322.

Lemos, A.L., Daniel, F. and Benatallah, B. (2016) ‘Web service composition: a survey of
techniques and tools’, ACM Computing Surveys (CSUR), Vol. 48, No. 3, p.33.

Li, G., Liao, L., Song, D. and Zheng, Z. (2014) ‘A fault-tolerant framework for QoS-aware web
service composition via case-based reasoning’, International Journal of Web and Grid
Services, Vol. 10, No. 1, pp.80–99.

Liu, A., Li, Q., Huang, L. and Xiao, M. (2010) ‘Facts: a framework for fault-tolerant composition
of transactional web services’, IEEE Transactions on Services Computing, Vol. 3, No. 1,
pp.46–59.

Mesmoudi, A., Mrissa, M. and Hacid, M-S. (2011) ‘Combining configuration and query rewriting
for web service composition’, in 2011 IEEE International Conference on Web Services
(ICWS), IEEE, pp.113–120.

Orriëns, B., Yang, J. and Papazoglou, M. (2003) ‘Model driven service composition’,
Service-Oriented Computing-ICSOC 2003, pp.75–90.

Papazoglou, M.P., Traverso, P., Dustdar, S. and Leymann, F. (2007) ‘Service-oriented computing:
state of the art and research challenges’, Computer, Vol. 40, No. 11, pp.38–45.

Parra, D., Karatzoglou, A., Amatriain, X. and Yavuz, I. (2011) ‘Implicit feedback recommendation
via implicit-to-explicit ordinal logistic regression mapping’, Proceedings of the CARS-2011,
p.5.

Pottinger, R. and Halevy, A. (2001) ‘Minicon: a scalable algorithm for answering queries using
views’, The VLDB Journal – The International Journal on Very Large Data Bases, Vol. 10,
Nos. 2–3, pp.182–198.

Raines, G. (2009) Cloud Computing and SOA, MITRE, White Paper, October.

Shah, T.R. and Patel, S.V. (2016) ‘A survey on issues and challenges of web service development,
composition, discovery’, VNSGU Journal of Science and Technology, July, Vol. 5, No. 1,
pp.134–153, ISSN: 0975-5446.

Sheng, Q. et al. (2006) Composite Web Services Provisioning in Dynamic Environments,
University of New South Wales.

Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S. and Xu, X. (2014) ‘Web services
composition: a decade’s overview’, Information Sciences, 1 October, Vol. 280, pp.218–238.

Simmonds, J., Ben-David, S. and Chechik, M. (2013) ‘Monitoring and recovery for web service
applications’, Computing, Vol. 95, No. 3, pp.223–267.

 Self-healing of web service compositions 199

Tian, G., Wang, Q., Wang, J., He, K., Zhao, W., Gao, P. and Peng, Y. (2019) ‘Leveraging
contextual information for cold-start web service recommendation’, Concurrency and
Computation: Practice and Experience.

Wang, G. and Yang, B. (2018) ‘Failures handling strategies of web services composition base on
Petri nets’, in International Conference on Intelligent Computing, Springer, pp.608–617.

Wang, M.X., Bandara, K.Y. and Pahl, C. (2009) ‘Integrated constraint violation handling for
dynamic service composition’, in IEEE International Conference on Services Computing,
SCC’09, IEEE, pp.168–175.

Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M. and Russell, N. (2006)
‘On the suitability of BPMN for business process modelling’, in International Conference on
Business Process Management, Springer, pp.161–176.

Yu, Q., Liu, X., Bouguettaya, A. and Medjahed, B. (2008) ‘Deploying and managing web services:
issues, solutions, and directions’, The VLDB Journal – The International Journal on Very
Large Data Bases, Vol. 17, No. 3, pp.537–572.

Yuan, Y., Zhang, W. and Zhang, X. (2018) ‘A context-aware self-adaptation approach for
web service composition’, in 2018 3rd International Conference on Information Systems
Engineering (ICISE), IEEE, pp.33–38.

Zhao, W.F., Liu, C.C. and Chen, J.L. (2012) ‘Automatic composition of information-providing web
services based on query rewriting’, Science China Information Sciences, Vol. 55, No. 11,
pp.2428–2444.

