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In this paper, we introduce and investigate a new regularity condition in the asymptotic sense for optimization problems whose objective functions are polynomial. The normalization argument in asymptotic analysis enables us to study the existence as well as the stability of solutions of these problems. We prove a Frank-Wolfe type theorem for regular optimization problems and an Eaves type theorem for non-regular pseudoconvex optimization problems. Moreover, under the regularity condition, we show results on the stability such as upper semicontinuity and local upper-Hölder stability of the solution map of polynomial optimization problems. At the end of the paper, we discuss the genericity of the regularity condition.

Introduction

We consider the following optimization problem minimize f (x) subject to x ∈ K, where K is a nonempty, closed subset of R n and f : R n → R is a polynomial in n variables of degree d ≥ 2. The problem and its solution set are denoted by OP(K, f ) and Sol(K, f ) respectively. Let f d be the homogeneous component of degree d of f , and let K ∞ be the asymptotic cone of K that will be introduced in Section 2. We say that OP(K, f ) is regular if the solution set of the asymptotic problem OP(K ∞ , f d ) is bounded, and the problem is nonregular otherwise. The regularity condition has appeared in studies about the solution existence and stability in quadratic programming (see, e.g., [START_REF] Lee | Quadratic Programming and Affine Variational Inequalities: A Qualitative Study[END_REF][START_REF] Tam | On the solution existence and stability of quadratically constrained nonconvex quadratic programs[END_REF] and the references therein).

Asymptotic cones and functions play an important role in optimization and variational inequalities [START_REF] Auslender | Asymptotic Cones and Functions in Optimization and Variational Inequalities[END_REF]. The normalization argument in asymptotic analysis enables us to study the existence and stability of solutions not only for quadratic programming, linear complementarity problems, and affine variational inequalities (see, e.g., [START_REF] Lee | Quadratic Programming and Affine Variational Inequalities: A Qualitative Study[END_REF][START_REF] Cottle | The Linear Complementarity Problem[END_REF]), but also for polynomial complementarity problems and polynomial variational inequalities that have unbounded constraint sets (see, e.g., [START_REF] Gowda | Polynomial complementarity problems[END_REF][START_REF] Hieu | Solution maps of polynomial variational inequalities[END_REF]). In this paper, the normalization argument is used as the main technique to investigate the existence as well as the stability of solutions to polynomial optimization problems.

In 1956, Frank and Wolfe [START_REF] Frank | An algorithm for quadratic programming[END_REF] proved that if K is polyhedral and f is quadratic and bounded from below on K, then Sol(K, f ) is nonempty. Several versions of the Frank-Wolfe theorem for quadratic, cubic, and polynomial optimization problems have been shown in [START_REF] Lee | Quadratic Programming and Affine Variational Inequalities: A Qualitative Study[END_REF][START_REF] Tam | On the solution existence and stability of quadratically constrained nonconvex quadratic programs[END_REF][START_REF] Luo | On extensions of the Frank-Wolfe theorems[END_REF][START_REF] Belousov | A Frank-Wolfe type theorem for convex polynomial programs[END_REF][START_REF] Obuchowska | On generalizations of the Frank-Wolfe theorem to convex and quasiconvex programmes[END_REF][START_REF] Dinh | A Frank-Wolfe type theorem for nondegenerate polynomial programs[END_REF][START_REF] Klatte | On a Frank-Wolfe type theorem in cubic optimization[END_REF]. Belousov and Klatte [START_REF] Belousov | A Frank-Wolfe type theorem for convex polynomial programs[END_REF], and Obuchowska [START_REF] Obuchowska | On generalizations of the Frank-Wolfe theorem to convex and quasiconvex programmes[END_REF] have proved Frank-Wolfe type theorems for convex and quasiconvex polynomial optimization problems. Recently, by using a technique from semi-algebraic geometry, Dinh, Ha and Pham [START_REF] Dinh | A Frank-Wolfe type theorem for nondegenerate polynomial programs[END_REF] have shown a Frank-Wolfe type theorem for nondegenerate problems. The present paper gives another Frank-Wolfe type theorem, which says that if OP(K, f ) is regular and f is bounded from below on K, then the problem has a solution. Besides, the Eaves theorem [START_REF] Eaves | On quadratic programming[END_REF] provides us with another criterion for the existence of solutions to quadratic optimization problems. Extensions of this theorem for quadratically constrained quadratic problems have been investigated in [START_REF] Lee | Quadratic Programming and Affine Variational Inequalities: A Qualitative Study[END_REF][START_REF] Tam | On the solution existence and stability of quadratically constrained nonconvex quadratic programs[END_REF][START_REF] Kim | Solution existence and stability of quadratically constrained convex quadratic programs[END_REF][START_REF] Nguyen | Extension of Eaves Theorem for determining the boundedness of convex quadratic programming problems[END_REF]. This paper introduces an Eaves type theorem for non-regular pseudoconvex optimization problems, where the constraint sets are convex.

Under the assumption that the constraint set K is compact and semialgebraic, some stability and genericity results for polynomial optimization problems have been shown by Lee and Pham [START_REF] Lee | Stability and genericity for semi-algebraic compact programs[END_REF]. If K is compact, then its asymptotic cone is trivial, i.e., K ∞ = {0}; Hence that OP(K, f ) satisfies the regularity condition obviously. In the present paper, K may be unbounded. Under the regularity condition, we prove several local properties of the solution map of polynomial optimization problems such as local boundedness and upper semicontinuity. Furthermore, based on an error bound for a polynomial system in [START_REF] Li | New fractional error bounds for polynomial systems with applications to Holderian stability in optimization and spectral theory of tensors[END_REF], we prove the local upper-Hölder stability of the solution map.

We denote by R d [x] the space of all polynomials of degree at most d and by R d the set of all polynomials g of degree

d such that OP(K, g) is regular. The set R d is an open cone in R d [x]. At the end of this work, K is defined by convex polynomials, we prove that R d is generic in R d [x].
The organization of the paper is as follows. Section 2 gives a brief introduction to asymptotic cones, polynomials, and the regularity condition. Section 3 proves two criteria of the solution existence. Section 4 investigates properties of the solution map. The last section discusses the genericity of the regularity condition.

Preliminaries

Recall that the asymptotic cone [START_REF] Auslender | Asymptotic Cones and Functions in Optimization and Variational Inequalities[END_REF] of a nonempty closed subset S in R n is defined and denoted by

S ∞ = v ∈ R n : ∃t k → +∞, ∃x k ∈ S with lim k→∞ x k t k = v .
Clearly, the cone S ∞ is closed and contains 0. The set S is bounded if and only if S ∞ is trivial. Furthermore, if S is convex then S ∞ is a closed convex cone and S ∞ = 0 + S, where 0 + S is the recession cone of S, that consists of all vectors v ∈ R n such that x + tv ∈ S for any x ∈ S and t ≥ 0. Thus, one has S = S + S ∞ when S is convex. Let d ≥ 2 be given. The dimension of the space R d [x] is finite; its dimension is denoted by ρ. Let X(x) be the vector consisting of ρ monomials of degree at most d which is listed by lexicographic ordering

X(x) := (1, x 1 , x 2 , . . . , x n , x 2 1 , x 1 x 2 , . . . , x 1 x n , . . . , x d 1 , x d-1 1 x 2 , . . . , x d n ) T . For every g ∈ R d [x]
, there exists a unique vector a = (a 1 , . . . , a ρ ) ∈ R ρ such that g(x) = a T X(x). We denote by g the 2 -norm of the polynomial g, namely

g := a = a 2 1 + • • • + a 2 ρ . The Cauchy-Schwarz inequality yields |g(x)| ≤ X(x) g . Furthermore, if {g k } is a convergent sequence in R d [x] with g k → g, then g k d → g d .
Throughout the paper, we assume that the constraint set K ⊂ R n is nonempty and closed, and the objective function f : R n → R is a polynomial of degree d ≥ 2.

We say that OP(K, f ) is a polynomial optimization problem if K is given by polynomials. With the given set K and the given integer d, the solution map of polynomial optimization problems OP(K, g), where g ∈ R d [x], is defined by

Sol K (•) : R d [x] ⇒ R n , g → Sol(K, g). Assume that g ∈ R d [x] with deg g = d and g = g d + • • • + g 1 + g 0 ,
where g l is a homogeneous polynomial of degree l, i.e., g l (tx) = t l g l (x) for all t ≥ 0 and x ∈ R n , l ∈ [d] := {1, . . . , d}, and g 0 ∈ R. Then, g d is the leading term (or the recession polynomial) of the polynomial g (of degree d). Clearly, one has

g d (x) = lim λ→+∞ g(λx) λ d , ∀x ∈ R n .
For the pair (K, f ), the asymptotic pair (K ∞ , f d ) is unique. The asymptotic optimization problem OP(K ∞ , f d ) plays a vital role in the investigation of behavior of OP(K, f ) at infinity. The following remarks point out (without proof) the basic properties of the asymptotic problem.

Remark 2.1 Since f d is a homogeneous polynomial and K ∞ is a closed cone, the asymptotic optimization problem OP(K ∞ , f d ) has a solution if and only if

f d is non-negative on K ∞ . Remark 2.2 Assume that Sol(K ∞ , f d ) is nonempty. Then, this set is a closed cone with 0 ∈ Sol(K ∞ , f d ). In addition, Sol(K ∞ , f d ) coincides with the zero set of f d in K ∞ , i.e., Sol(K ∞ , f d ) = {x ∈ K ∞ : f d (x) = 0}.
Now, we introduce the regularity notion concerning the boundedness of the solution set of OP(K ∞ , f d ).

Definition 2.1 The problem OP(K, f ) is said to be regular if Sol(K ∞ , f d ) is bounded and non-regular otherwise.

Denote by E d (resp., O d , U d ) the set of all polynomials g of degree d such that Sol(K ∞ , f d ) is the empty set (resp., the trivial cone, an unbounded cone). Clearly, R d = E d ∪ O d , and one has the following disjoint union:

R d [x] = R d-1 [x] ∪ E d ∪ O d ∪ U d .
(2.1)

Remark 2.3
The boundedness of Sol(K ∞ , f d ) implies that of Sol(K, f ). Indeed, assume to the contrary that Sol(K, f ) is unbounded. There exists an unbounded sequence {x k } ⊂ Sol(K, f ). Without loss of generality, we can assume x k is nonzero for all k, x k → +∞, and

x k -1 x k → x for some x ∈ R n with x = 1. Note that f (x k ) = f * , where f * ∈ R is the minimum of f over K, for all k.
By dividing the last equation by x k d and letting k → +∞, we obtain

f d (x) = 0. It follows that x ∈ Sol(K ∞ , f d ). Since x = 0, the cone Sol(K ∞ , f d )
is unbounded, which contradicts our assumption. Thus, the claim is proved.

Remark 2.4 We observe that the set R d is nonempty. If K is bounded then R d coincides with the set of all g ∈ R d [x] such that deg g = d.
Hence, we can suppose that K is unbounded. Clearly, the cone K ∞ also is unbounded. Let x ∈ K ∞ be nonzero. There exists l ∈ [n] such that xl = 0. Let us define a homogeneous polynomial of degree d as f (x) := -(x l x l ) d . For any t > 0, one has tx ∈ K ∞ , and

f (tx) = -(x 2 l ) d t d → -∞ as t → +∞. Then, f is not bounded from below on K ∞ . This yields Sol(K ∞ , f ) = ∅ and f ∈ R d . Example 2.1 Consider the case that n = 1, K = R and d = 2. One has R 2 [x] = {a 2 x 2 +a 1 x+a 0 : (a 2 , a 1 , a 0 ) ∈ R 3 }. Since K ∞ = R, an easy computation shows that E 2 = {a 2 x 2 + a 1 x + a 0 : a 2 < 0, a 1 ∈ R, a 0 ∈ R}, O 2 = {a 2 x 2 + a 1 x + a 0 : a 2 > 0, a 1 ∈ R, a 0 ∈ R}, and R 2 = {a 2 x 2 + a 1 x + a 0 : a 2 = 0, a 1 ∈ R, a 0 ∈ R}.

Two criteria for the solution existence

We now introduce two criteria for the solution existence of OP(K, f ). In the proofs, the normalization argument in asymptotic analysis plays a vital role; meanwhile, the semi-algebraicity of K is not required.

A Frank-Wolfe type theorem for regular problems

The following theorem provides us a criterion for the solution existence of regular optimization problems. Theorem 3.1 (Frank-Wolfe type theorem) If OP(K, f ) is regular and f is bounded from below on K, then its solution set is nonempty and compact.

Proof Suppose that f ∈ R d , i.e. f ∈ E d ∪ O d , and there exists γ ∈ R such that γ ≤ f (x), for all x ∈ K. For any given v ∈ K ∞ , there are two sequences

{t k } ⊂ R + and {x k } ⊂ K such that t k → +∞ and t -1 k x k → v as k → +∞. For any k, one has γ ≤ f (x k ). Dividing both sides of the last inequality by t d k and letting k → +∞, we obtain 0 ≤ f d (v). Thus, f d is non-negative over K ∞ . It follows from Remark 2.1 that f does not belong to E d ; hence, we conclude that f must be in O d .
Let x ∈ K be given, and

M := {x ∈ K : f (x) ≤ f (x)}. It is easy to check that Sol(M, f ) = Sol(K, f ).
Hence, we need only to prove that Sol(M, f ) is nonempty and compact.

Clearly, M is closed. We claim that M is bounded. On the contrary, we suppose that there exists an unbounded sequence {x k } ⊂ M such that x k is nonzero for all k, x k → +∞, and

x k -1 x k → v for some v ∈ R n with v = 1. One has γ ≤ f (x k ) ≤ f (x), (3.1) 
for all k. Dividing the values in (3.1) by x k d and letting k → +∞, we get

f d (v) = 0. This yields v ∈ Sol(K ∞ , f d ). Because of v = 0, Sol(K ∞ , f d ) is
unbounded. This contradicts our assumption and, thus, the claim is proved.

The compactness of M and Bolzano-Weierstrass' Theorem allow us to conclude that Sol(M, f ) is nonempty and compact. Remark 3.1 From the proof of Theorem 3.1, we see that if f is bounded from below on

K then Sol(K ∞ , f d ) is nonempty, i.e. f ∈ O d ∪ U d . Hence, if f ∈ E d then OP(K, f ) has no solution. Corollary 3.1 Assume that f = α 1 x d 1 +• • •+α n x d n +p where d is even, α > 0 for all ∈ [n], p is a polynomial with deg p < d. Then, Sol(K, f ) is nonempty and compact. Proof Clearly, f d = α 1 x d 1 + • • • + α n x d n is non-negative over R n . It follows that f d is also non-negative over K ∞ . From Remarks 2.1 and 2.2, it is clear that Sol(K ∞ , f d ) is nonempty and Sol(K ∞ , f d ) = {x ∈ K ∞ : α 1 x d 1 + • • • + α n x d n = 0} = {0}. This means that f ∈ O d .
Clearly, f is bounded from below on K, and the condition of Theorem 3.1 holds. Therefore, Sol(K, f ) is nonempty and compact.

The following example illustrates Theorem 3.1, in which the constraint set is neither convex nor semi-algebraic.

Example 3.1 Consider the optimization problem OP(K, f ), where the polynomial f is given by f (x 1 , x 2 ) = x 3 2 -x 1 x 2 and the constraint set K is given by K

= {(x 1 , x 2 ) ∈ R 2 : x 1 ≥ 0, x 2 -x 1 ≥ 0, e x1 -x 2 ≥ 0}. Since f 3 (x 1 , x 2 ) = x 3 2 and K ∞ = {(x 1 , x 2 ) ∈ R 2 : x 1 ≥ 0, x 2 -x 1 ≥ 0}, one has Sol(K ∞ , f 3 ) = {(0, 0)}.
According to Theorem 3.1, Sol(K, f ) is nonempty and compact.

An Eaves type theorem for non-regular problems

In this subsection, we investigate the solution existence of non-regular optimization problems, where the objective functions are pseudoconvex on the constraint sets.

Assume that U is an open subset of R n . One says the polynomial f is pseudoconvex on U if, for any x, y ∈ U such that ∇f (x), y -x ≥ 0, here ∇f is the gradient of f , we have f (y) ≥ f (x). Recall that f is pseudoconvex on U if and only if ∇f is pseudomonotone on U [17, Theorem 3.1], i.e. if, for any x, y ∈ U such that ∇f (x), y -x ≥ 0, we have ∇f (y), y -x ≥ 0.

Lemma 3.1 Assume that K is convex and f is pseudoconvex on an open set U containing K. If x 0 ∈ Sol(K, f ), then ∇f (x), x -x 0 ≥ 0 for all x ∈ K.
Proof Since f is pseudoconvex on the set U , the gradient ∇f is pseudomonotone on U . Suppose that x 0 ∈ Sol(K, f ), one has ∇f (x 0 ), x -x 0 ≥ 0 for all x ∈ K (see, e.g., [START_REF] Ansari | Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization[END_REF]Proposition 5.2]). The pseudomonotonicity of the gradient implies that ∇f (x), x -x 0 ≥ 0 for all x ∈ K. The lemma is proved. Proof Suppose that OP(K, f ) is non-regular. We prove (a) ⇒ (b). Assume that (a) holds. For each k ∈ N, we denote

K k = {x ∈ R n : x ∈ K, x ≤ k}.
Clearly, K k is compact and convex. Without loss of generality, we can assume that K k is nonempty. According to Bolzano-Weierstrass' Theorem, OP(K k , f ) has a solution, denoted by x k .

We assert that the sequence {x k } is bounded. Indeed, suppose on the contrary that {x k } is unbounded, x k = 0 for all k, x k → +∞, and

x k -1 x k → v, where v ∈ K ∞ and v = 1. For each k, one has f (x k ) ≤ f (x), ∀x ∈ K k . (3.2)
Let y ∈ K be given. For k large enough, y ∈ K k and f (x k ) ≤ f (y). By dividing two sides of the last inequality by x k d and letting k → +∞, we obtain

f d (v) ≤ 0. This leads to v ∈ Sol(K ∞ , f d ) \ {0}. Furthermore, since f is pseudoconvex on K k , from Lemma 3.1 we have ∇f (y), y -x k ≥ 0. (3.3)
Dividing both sides of the inequality in (3.3) by x k and letting k → +∞, we obtain ∇f (y), v ≤ 0. The conclusion holds for any x ∈ K, i.e., ∇f (x), v ≤ 0 for all x ∈ K. This contradicts to our assumption. Hence, {x k } is bounded. We can assume that x k → x. From (3.2), by the continuity of f , it easy to check that x solves OP(K, f ), so Sol(K, f ) is nonempty.

To prove the compactness of the solution set, we can repeat the previous argument by supposing that there is an unbounded solution sequence {x k }, and can show that there exists v ∈ Sol(K ∞ , f d ) \ {0} such that ∇f (x), v ≤ 0 for all x ∈ K. This contradicts to (b).

(b) ⇒ (a) Since K is convex, one has K ∞ = 0 + K and K = K + K ∞ . Suppose that Sol(K, f ) is nonempty and compact, but (b) is wrong, i.e. there exists v ∈ Sol(K ∞ , f d ) \ {0} such that ∇f (x), v ≤ 0 for all x ∈ K. Let x be a solution of OP(K, f ). For any t ≥ 0, one has x+tv ∈ K and ∇f (x+tv), v ≤ 0. Thus, we have ∇f (x + tv), x -(x + tv) ≥ 0.

The pseudoconvexity of f yields f (x) ≥ f (x 0 + tv). Hence, x 0 + tv belongs to Sol(K, f ), for any t ≥ 0. This shows that Sol(K, f ) is unbounded which contradicts to our assumption. Thus (a) holds, and the proof is complete. Proof Since the convexity implies the pseudoconvexity, by applying Theorem 3.2 for the convex polynomial f , we have the assertion.

The following example illustrates Corollary 3.2.

Example 3.2 Consider the polynomial optimization problem OP(K, f ) with the objective function f (x 1 , x 2 ) = 1 6 x 3 2 + 1 2 x 2 1 -x 1 x 2 and the constraint set

K = {(x 1 , x 2 ) ∈ R 2 : x 1 x 2 ≥ 1, x 2 ≥ 2}.
The gradient and the Hessian matrix of f , respectively, are given by

∇f = x 1 -x 2 -x 1 + 1 2 x 2 2 , H = 1 -1 -1 x 2 .
It is easy to check that K is convex and

H is positive semidefinite on the open set U = {(x 1 , x 2 ) ∈ R 2 : x 1 x 2 > 0, x 2 > 1} ⊃ K; hence f is convex on K. One has K ∞ = R 2 + and f 3 (x 1 , x 2 ) = 1 6 x 3 2 . This yields Sol(K ∞ , f 3 ) = {(x 1 , x 2 ) ∈ R 2 : x 1 ≥ 0, x 2 = 0}.
For every v = (α, 0) in Sol(K ∞ , f 3 )\{0}, one has α > 0. By choosing the point x = (3, 2) in the constraint set, we get ∇f (x), v = α > 0. Finally, according to Corollary 3.2, the solution set of OP(K, f ) is nonempty and compact.

Stability of the solution map

We investigate the local boundedness, the upper semicontinuity, and the local upper-Hölder stability of the solution map under the regularity condition.

Upper semicontinuity of the solution map

To prove the local boundedness and the upper semicontinuity of the solution map, we need the following lemma.

Lemma 4.1 The set R d is open in R d [x].
Proof To prove the openness of R d , we only need to show that the complement 

R d [x]\R d is closed. Clearly, R d [x]\R d = R d-1 [x]∪U d . Let {g k } be a sequence in R d [x] \ R d such that g k → g. From the definition of R d , if deg g < d, i.e., g ∈ R d-1 [x], then g ∈ R d [x] \ R d .
} such that x k ∈ Sol(K ∞ , g k d ), x k → +∞, x k -1 x k → x with x = 1. Let v ∈ K ∞ be given. One has x k v ∈ K ∞ and g k d ( x k v) ≥ g k d (x k
), for any k. Dividing the last inequality by x k d and letting k → +∞, one has

g k d (v) ≥ g k d (x). This conclusion holds for every v ∈ K ∞ . This yields x ∈ Sol(K ∞ , g d ). As x = 1, we have x = 0. It follows that g belongs to U d . The closedness of R d [x] \ R d is proved.
Recall that a set-valued map Ψ : R m ⇒ R n is locally bounded at ū if there exists an open neighborhood U of ū such that ∪ u∈U Ψ (u) is bounded [START_REF] Rockafellar | Variational Analysis[END_REF]Definition 5.14]. The map Ψ is upper semicontinuous at ū ∈ T if for any open set V ⊂ R n such that Ψ (ū) ⊂ V there exists a neighborhood U of ū such that Ψ (u) ⊂ V for all u ∈ U . Recall that if Ψ is closed, namely, the graph Assume to the contrary that O ε is unbounded. Then, there exists an unbounded sequence {x k } and a sequence {g k } ⊂ B(ε, d) such that x k solves OP(K, f + g k ) with x k = 0 for every k, x k → +∞, and x k -1 x k → x with x = 1. By the compactness of B(ε, d), without loss of generality, we can assume that g k → g with g ∈ B(ε, d).

gph(Ψ ) := (u, v) ∈ R m × R n : v ∈ Ψ (u) is closed in R m × R n ,
From assumptions, for every k, one has

(f + g k )(y) ≥ (f + g k )(x k ), (4.3) 
for any y ∈ K. Let y ∈ K be fixed and assume that v ∈ K ∞ . By the convexity of K, one has y + x k v ∈ K for any k. From (4.3), we conclude that

(f + g k )(y + x k v) ≥ (f + g k )(x k ).
Dividing this inequality by x k d and taking k → +∞, we obtain

(f + g) d (v) ≥ (f + g) d (x).
The conclusion hold for any v

∈ K ∞ . It follows that x ∈ Sol (K ∞ , (f + g) d ). Because of (4.2), Sol (K ∞ , (f + g) d ) is contained in {0}, which contradicts to x = 1. Hence, O ε must be bounded. (b) It is not difficult to prove that the graph gph(Sol) := (g, x) ∈ R d [x] × R n : x ∈ Sol(K, g) is closed in R d [x] × R n . Since Sol K (•) is locally bounded on R d , according to [19, Theorem 5.19], Sol K (•) is upper semicontinuous at f .

Local upper-Hölder stability of the solution map

When the constraint set K is convex and given by polynomials, we can investigate the local upper-Hölder stability of the solution map under the regular condition. To prove the stability, we need the following lemma.

Lemma 4.2 ([20]

) Let U be a semi-algebraic subset in R n , represented by

U = {x ∈ R n : u i (x) = 0, i ∈ [l], v j (x) ≤ 0, j ∈ [m]} ,
where u i (x), i ∈ [l], and v j (x), j ∈ [m], are polynomials. For any compact set V ⊂ R n , there are constants c > 0 and H > 0 such that

d(x, U ) ≤ c l i=1 |u i (x)| + m j=1 [v j (x)] + H ,
for all x ∈ V , here [r] + := max{0, r} and d(x, U ) the usual distance from x to the set U .

Theorem 4.1 Assume that OP(K, f ) is regular and K is a convex set given by

K = {x ∈ R n : p i (x) = 0, i ∈ [l], q j (x) ≤ 0, j ∈ [m]} ,
where all p i , q j are polynomials. If Sol(K, f ) is nonempty, then the map Sol K (•) is locally upper-Hölder stable at f , i.e., there exist > 0, H > 0 and ε > 0

such that Sol(K, g) ⊂ Sol(K, f ) + g -f H B, (4.4 
)

for all g ∈ R d [x] satisfying g -f < ε, where B is the closed unit ball in R n .
Proof Suppose Sol(K, f ) is nonempty and its optimal value is f * . Since OP(K, f ) is regular and K is convex, according to Proposition 4.1, there exists ε > 0 such that Sol(K, f ) ⊂ O ε , defined by (4.1), is bounded. Let V be the closure of O ε . It follows that V is a nonempty compact set. By the assumptions, we see that

Sol(K, f ) = {x ∈ R n : f (x) -f * = 0, p i (x) = 0, i ∈ [l], q j (x) ≤ 0, j ∈ [m]}.
From this equality, by applying Lemma 4.2 for U = Sol(K, f ) and the compact set V , there are constants c 0 > 0 and H > 0 such that

d(x, Sol(K, f )) ≤ c 0 A(x) H ∀x ∈ V, (4.5) 
where

A(x) := |f (x) -f * | + l i=1 |p i (x)| + m j=1 [q j (x)] + . Let g ∈ R d [x]
be arbitrary given such that g -f < ε. From the definition of V , Sol(K, f ) and Sol(K, g) are subsets of V . Here, Sol(K, g) may be empty. By the compactness of V , we define the constant L := max{ X(x) : x ∈ V }. Hence, one has

|g(x) -f (x)| ≤ X(x) g -f ≤ L g -f ∀x ∈ V. (4.6) 
If Sol(K, g) is empty, then (4.4) is obvious. Thus, we consider the case that Sol(K, g) = ∅. Since both Sol(K, f ) and Sol(K, g) are nonempty and compact, for any x g ∈ Sol(K, g), there is x f ∈ Sol(K, f ) such that

x g -x f = d(x g , Sol(K, f )). ( 4.7) 
Because of p i (x g ) = 0 for i ∈ [l] and q j (x g ) ≤ 0 for j ∈ [m], from the definition of A(x), one has A(x g ) = |f (x g ) -f * |. By (4.7) and (4.5), we see that

x g -x f ≤ c 0 A(x g ) H = c 0 |f (x g ) -f * | H . Since x f ∈ Sol(K, f ), we have f (x f ) = f * ≤ f (x g )
. Therefore, we obtain

x g -x f ≤ c 0 |f (x g ) -f * | H = c 0 (f (x g ) -f (x f )) H . (4.8)
It follows from x g ∈ Sol(K, g) that g(x g ) -g(x f ) ≤ 0. Since x g , x f ∈ V , we conclude from (4.6) that

f (x g ) -f (x f ) = (f (x g ) -g(x g )) + (g(x g ) -g(x f )) + (g(x f ) -f (x f )) ≤ (f (x g ) -g(x g )) + (g(x f ) -f (x f )) ≤ 2L g -f .
The inequality (4.8) and the last result lead to

x g -x f ≤ c 0 (2L) H g -f H , consequently, d(x g , Sol(K, f )) = x g -x f ≤ g -f H ,
where = c 0 (2L) H . The conclusion holds for any x g in Sol(K, g). Hence, the inclusion (4.4) of the theorem is proved.

Genericity of the regularity condition

In this section, we discuss the genericity of the regularity condition of polynomial optimization problems.

A subset

A is called generic in R m if A contains a countable intersection of dense and open sets in R m . If A is generic in R m and A ⊂ B then B also is generic in R m . Let T be a topological space. It is known that if h : R m → T is a homeomorphism and A is generic in R m , then h(A) is generic in T .
Let U ⊂ R m be a semi-algebraic set. Then, there exists a decomposition of U into a disjoint union [START_REF] Bochnak | Real Algebraic Geometry[END_REF]Theorem 2.3.6], U = ∪ s i=1 U i , where each U i is semi-algebraically homeomorphic to (0, 1) di . Here, let (0, 1) 0 be a point, (0, 1) k ⊂ R k be the set of points x = (x 1 , . . . , x k ) such that x j ∈ (0, 1) for all j ∈ [k]. The dimension of U is defined by dim(U ) := max{d 1 , . . . , d s }. The dimension is well-defined and does not depends on the decomposition of U . Recall that if U is nonempty and dim(U ) is zero, then U has finitely many points. Furthermore, if dim(R m \U ) < m, then U is generic in R m (see, e.g. [START_REF] Dang | Well-posedness in unconstrained polynomial optimization problems[END_REF]Lemma 2.3]).

The space generated by all monomials of degree d listed by lexicographic ordering {x d 1 , x d-1

1 x 2 , x d-1 1 x 3 , . . . , x d n } is denoted by H d . One has the direct sum R d [x] = H d ⊕ R d-1 [x]. The dimension of H d is denoted by η. For every homogeneous polynomial h ∈ H d , one has a unique b ∈ R η , such that h(x) = b T X d (x), where X T d (x) = (x d 1 , x d-1 1 x 2 , x d-1 1 x 3 , . . . , x d n ). Here, ∇(b T X d (x)) is the gradient vector of b T X d (x) and D b [∇(b T X d (x))] is the Jacobian matrix of b T X d (x) with respect to b. Lemma 5.1 One has rank(D b [∇(b T X d (x))]) = n for all x ∈ R n \{0}.
Proof In the proof, we are only interested in the monomials x d-1 i

x j , where i, j ∈ [n]. Hence, for convenience, we rewrite X T d (x) and b T respectively as follows: 

(x d 1 , x d-1 1 x 2 , . . . , x d-1 1 x n ; . . . ; x d-1 n x 1 , x d-
T X d (x) = j∈[n] b 1j x d-1 1 x j + • • • + j∈[n] b nj x d-1 n x j + Q, (5.1) 
where Q is a homogeneous polynomial of degree d. From (5.1), an easy computation shows that

∂(b T X d (x)) ∂x i = db ii x d-1 i + (d -1) j =i b ij x d-2 i x j + j =i b ji x d-1 j + ∂Q ∂x i , and the n × η-matrix D b [∇(b T X d (x))
] can be described as follows

D b [∇(b T X d (x))] = M 1 , M 2 , • • • , M n , • • • ,
where the submatrix M i , for i ∈ [n], is defined by

M i =    x d-1 i I i-1 O i×1 O i×(n-i) L 1×(i-1) dx d-1 i R 1×(n-i) O i×(n-i) O (n-i)×1 x d-1 i I n-i    with I k being the unit k × k-matrix, O k×s being the zero k × s-matrix, L 1×(i-1) = (d -1)x d-2 i x 1 , . . . , (d -1)x d-2 i x i-1 , and R 1×(n-i) = (d -1)x d-2 i x i+1 , . . . , (d -1)x d-2 i x n .
We observe that det(

M i ) = dx d(d-1) i
, for all i ∈ [n]. Since x = 0, there exists l ∈ [n] such that x l = 0. This implies that rank(M l ) = n. Hence, the rank of

D b [∇(b T X d (x))] is n, for any x = 0.
Suppose that C is a polyhedral cone given by

C = {x ∈ R n : Ax ≥ 0} , (5.2) 
where A = (a ij ) ∈ R p×n . Let KKT(C, g), where g ∈ R d [x], be the set of the Karush-Kuhn-Tucker points of OP(C, g), i.e., x ∈ KKT(C, g) if and only if there exists λ ∈ R p such that

∇g(x) -A T λ = 0, λ T (Ax) = 0, λ ≥ 0, Ax ≥ 0. ( 5.3) 
From the Karush-Kuhn-Tucker conditions, we see that Sol(C, g) ⊂ KKT(C, g) for all g ∈ R d [x].

For each index set α ⊂ [p], we associate the pseudo-face C α of C, which is denoted and defined by

C α := x ∈ R n : n j=1 a ij x j = 0 ∀i ∈ α, n j=1 a ij x j > 0 ∀i ∈ [p] \ α ,
where a ij is the element in the i-th row and the j-th column of A. The number of pseudo-faces of C is finite. These pseudo-faces establish a disjoint decomposition of C. So, we obtain KKT(C, g) = 

Perspectives

The regularity condition enables us to investigate the stability of the optimal value function of polynomial optimization problems. Furthermore, the regularity condition is useful to study the connectedness of the solution sets of convex polynomial vector optimization problems.

Theorem 3 . 2 (

 32 Eaves type theorem) Assume that K is convex and f is pseudoconvex on an open set containing K. If OP(K, f ) is non-regular, then the following statements are equivalent: (a) If v ∈ Sol(K ∞ , f d ) \ {0}, then there exists x ∈ K such that ∇f (x), v > 0; (b) Sol(K, f ) is nonempty and compact.

Corollary 3 . 2

 32 Assume that K is convex and f is convex on an open convex set containing K. If OP(K, f ) is non-regular, then the following statements are equivalent: (a) If v ∈ Sol(K ∞ , f d ) \ {0}, then there exists x ∈ K such that ∇f (x), v > 0; (b) Sol(K, f ) is nonempty and compact.

  and locally bounded at u, then Ψ is upper semicontinuous at u [19, Theorem 5.19]. Proposition 4.1 Assume that K is convex. If OP(K, f ) is regular, then the following statements hold: (a) The solution map Sol K (•) is locally bounded at f , i.e., there exists ε > 0 such that the set O ε := g∈B(ε,d) Sol(K, f + g), (4.1) where B(ε, d) is the open ball in R d [x] with center 0 and radius ε, is bounded. (b) The solution map Sol K (•) is upper semicontinuous at f . Proof (a) According to Lemma 4.1, R d is open in R d [x]. There is a closed ball B(ε, d) such that f + B(ε, d) ⊂ R d . (4.2)

From Lemma 5 . 1 ,Example 5 . 1

 5151 α⊂[p](KKT(C, g) ∩ C α ) ,(5.4)The following proposition shows that the Karush-Kuhn-Tucker set-valued map of homogeneous polynomial optimization problemsKKT C : R η ⇒ R n , b → KKT C (b) = KKT(C, b T X d (x)), is finite-valued, i.e., the cardinal # KKT C (b) is finite, on a generic semialgebraic set of R η .Proposition 5.1 Assume that C is a polyhedral cone given by (5.2) and the matrix A is full rank. Then, there exists a generic semi-algebraic setS ⊂ R η such that # KKT C (b) < ∞ for any b ∈ S.Proof Let C α be a nonempty pseudo-face of C and 0 / ∈ C α . This implies that X d (x) is nonzero on this pseudo-face. We consider the functionΦ α : R η ×C α × R |α| + → R n+|α| ,which is defined byΦ α (b, x, λ α ) = ∇(b T X d (x)) + i∈α λ i A i , A α x ,where A α x = (A i1 x, . . . , A i |α| x ), i j ∈ α. Clearly, C α is smooth and Φ α is a semi-algebraic function of class C ∞ . The Jacobian matrix of Φ α is determined as followsDΦ α = D b [∇(b T X d (x))] for all x ∈ C α , the rank of D b [∇(b T X d (x))] is n.Since the rank of A α is |α|, we conclude that the rank of the matrix DΦ α is n + |α| for all x ∈ C α . Therefore, 0 ∈ R n+|α|+|J| is a regular value of Φ α . According to the Sard Theorem with parameter [22, Theorem 2.4], there exists a generic semi-algebraic setS α ⊂ R η such that if b ∈ S α then 0 is a regular value of the map Φ α,b : C α × R |α| → R n+|α| , Φ α,b (x, λ α ) = Φ α (b, x, λ α ).Proof From Remark 5.1, the recession cone K ∞ is a nonempty polyhedral cone, where K ∞ = {x ∈ R n : Ax ≥ 0}. According to Corollary 5.1, there exists a generic setG d in H d such that # Sol(K ∞ , g) < ∞ for any g ∈ G d . Because of the direct sum R d [x] = H d ⊕ R d-1 [x], the set G d ⊕ R d-1 [x] is generic in R d [x]. It is easy to check that G d ⊕ R d-1 [x] ⊂ R d .Hence, R d is generic in R d [x]. Consider the problem OP(K, f ) given in Example 2.1, we see that R 2 = {a 2 x 2 + a 1 x + a 0 : a 2 = 0, a 1 ∈ R, a 0 ∈ R} is open and dense in R 2 [x].

  Thus, we can suppose that deg g = d. One has g k d → g d , here g k d is the component of degree d of g k . We now prove that g belongs to U d . For each k, Sol(K ∞ , g k d ) is unbounded. There exists an unbounded sequence {x k

  1 n x 2 , . . . , x d n ; . . . ) and (b 11 , b 12 , . . . , b 1n ; . . . ; b n1 , b n2 , . . . , b nn ; . . . ).

	Then, we have
	b
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We see that Ω(α, b) := Φ -1 α,b (0) is a semi-algebraic set. From the Regular Level Set Theorem [START_REF] Tu | An Introduction to Manifolds[END_REF]Theorem 9.9], we can claim that if Ω(α, b) is nonempty then the set is a 0-dimensional semi-algebraic set. It follows that Ω(α, b) is a finite set. Moreover, from (5.3)

We consider the case that 0 ∈ C α and define U := C α \ {0}. As is clear, U is semi-algebraic. From (5.3), we see that 0 ∈ KKT C (b). Hence, 

where q 1 , . . . , q m are convex polynomials, then the recession cone of K is a nonempty polyhedral cone. We denote

For each j ∈ [m], K j is closed convex set, and K j ∞ is polyhedral (see [9, p.39]).

If follows that K ∞ is a nonempty polyhedral cone. Hence, there exists a matrix