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Abstract In this paper, we introduce and investigate a new regularity condi-
tion in the asymptotic sense for optimization problems whose objective func-
tions are polynomial. The normalization argument in asymptotic analysis en-
ables us to study the existence as well as the stability of solutions of these
problems. We prove a Frank-Wolfe type theorem for regular optimization prob-
lems and an Eaves type theorem for non-regular pseudoconvex optimization
problems. Moreover, under the regularity condition, we show results on the
stability such as upper semicontinuity and local upper-Hölder stability of the
solution map of polynomial optimization problems. At the end of the paper,
we discuss the genericity of the regularity condition.
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1 Introduction

We consider the following optimization problem

minimize f(x) subject to x ∈ K,

where K is a nonempty, closed subset of Rn and f : Rn → R is a polynomial
in n variables of degree d ≥ 2. The problem and its solution set are denoted
by OP(K, f) and Sol(K, f) respectively. Let fd be the homogeneous compo-
nent of degree d of f , and let K∞ be the asymptotic cone of K that will be
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introduced in Section 2. We say that OP(K, f) is regular if the solution set
of the asymptotic problem OP(K∞, fd) is bounded, and the problem is non-
regular otherwise. The regularity condition has appeared in studies about the
solution existence and stability in quadratic programming (see, e.g., [1,2] and
the references therein).

Asymptotic cones and functions play an important role in optimization
and variational inequalities [3]. The normalization argument in asymptotic
analysis enables us to study the existence and stability of solutions not only
for quadratic programming, linear complementarity problems, and affine vari-
ational inequalities (see, e.g., [1,4]), but also for polynomial complementarity
problems and polynomial variational inequalities that have unbounded con-
straint sets (see, e.g., [5,6]). In this paper, the normalization argument is used
as the main technique to investigate the existence as well as the stability of
solutions to polynomial optimization problems.

In 1956, Frank and Wolfe [7] proved that if K is polyhedral and f is
quadratic and bounded from below on K, then Sol(K, f) is nonempty. Sever-
al versions of the Frank-Wolfe theorem for quadratic, cubic, and polynomial
optimization problems have been shown in [1,2,8–12]. Belousov and Klatte
[9], and Obuchowska [10] have proved Frank-Wolfe type theorems for con-
vex and quasiconvex polynomial optimization problems. Recently, by using a
technique from semi-algebraic geometry, Dinh, Ha and Pham [11] have shown
a Frank-Wolfe type theorem for nondegenerate problems. The present paper
gives another Frank-Wolfe type theorem, which says that if OP(K, f) is regular
and f is bounded from below on K, then the problem has a solution. Besides,
the Eaves theorem [13] provides us with another criterion for the existence of
solutions to quadratic optimization problems. Extensions of this theorem for
quadratically constrained quadratic problems have been investigated in [1,2,
14,15]. This paper introduces an Eaves type theorem for non-regular pseudo-
convex optimization problems, where the constraint sets are convex.

Under the assumption that the constraint set K is compact and semi-
algebraic, some stability and genericity results for polynomial optimization
problems have been shown by Lee and Pham [16]. If K is compact, then its
asymptotic cone is trivial, i.e., K∞ = {0}; Hence that OP(K, f) satisfies the
regularity condition obviously. In the present paper, K may be unbounded.
Under the regularity condition, we prove several local properties of the solution
map of polynomial optimization problems such as local boundedness and upper
semicontinuity. Furthermore, based on an error bound for a polynomial system
in [20], we prove the local upper-Hölder stability of the solution map.

We denote by Rd[x] the space of all polynomials of degree at most d and
by Rd the set of all polynomials g of degree d such that OP(K, g) is regular.
The set Rd is an open cone in Rd[x]. At the end of this work, K is defined by
convex polynomials, we prove that Rd is generic in Rd[x].

The organization of the paper is as follows. Section 2 gives a brief introduc-
tion to asymptotic cones, polynomials, and the regularity condition. Section 3
proves two criteria of the solution existence. Section 4 investigates properties
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of the solution map. The last section discusses the genericity of the regularity
condition.

2 Preliminaries

Recall that the asymptotic cone [3] of a nonempty closed subset S in Rn is
defined and denoted by

S∞ =
{
v ∈ Rn : ∃tk → +∞,∃xk ∈ S with lim

k→∞

xk
tk

= v
}
.

Clearly, the cone S∞ is closed and contains 0. The set S is bounded if and
only if S∞ is trivial. Furthermore, if S is convex then S∞ is a closed convex
cone and S∞ = 0+S, where 0+S is the recession cone of S, that consists of all
vectors v ∈ Rn such that x + tv ∈ S for any x ∈ S and t ≥ 0. Thus, one has
S = S + S∞ when S is convex.

Let d ≥ 2 be given. The dimension of the space Rd[x] is finite; its dimension
is denoted by ρ. Let X(x) be the vector consisting of ρ monomials of degree
at most d which is listed by lexicographic ordering

X(x) := (1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, . . . , x

d
1, x

d−1
1 x2, . . . , x

d
n)T .

For every g ∈ Rd[x], there exists a unique vector a = (a1, . . . , aρ) ∈ Rρ such
that g(x) = aTX(x). We denote by ‖g‖ the `2–norm of the polynomial g,
namely

‖g‖ := ‖a‖ =
√
a21 + · · ·+ a2ρ.

The Cauchy–Schwarz inequality yields |g(x)| ≤ ‖X(x)‖‖g‖. Furthermore, if
{gk} is a convergent sequence in Rd[x] with gk → g, then gkd → gd.

Throughout the paper, we assume that the constraint set K ⊂ Rn is
nonempty and closed, and the objective function f : Rn → R is a polyno-
mial of degree d ≥ 2.

We say that OP(K, f) is a polynomial optimization problem if K is given by
polynomials. With the given set K and the given integer d, the solution map
of polynomial optimization problems OP(K, g), where g ∈ Rd[x], is defined by

SolK(·) : Rd[x] ⇒ Rn, g 7→ Sol(K, g).

Assume that g ∈ Rd[x] with deg g = d and g = gd + · · · + g1 + g0, where
gl is a homogeneous polynomial of degree l, i.e., gl(tx) = tlgl(x) for all t ≥ 0
and x ∈ Rn, l ∈ [d] := {1, . . . , d}, and g0 ∈ R. Then, gd is the leading term (or
the recession polynomial) of the polynomial g (of degree d). Clearly, one has

gd(x) = lim
λ→+∞

g(λx)

λd
, ∀x ∈ Rn .

For the pair (K, f), the asymptotic pair (K∞, fd) is unique. The asymptotic
optimization problem OP(K∞, fd) plays a vital role in the investigation of
behavior of OP(K, f) at infinity. The following remarks point out (without
proof) the basic properties of the asymptotic problem.
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Remark 2.1 Since fd is a homogeneous polynomial and K∞ is a closed cone,
the asymptotic optimization problem OP(K∞, fd) has a solution if and only
if fd is non-negative on K∞.

Remark 2.2 Assume that Sol(K∞, fd) is nonempty. Then, this set is a closed
cone with 0 ∈ Sol(K∞, fd). In addition, Sol(K∞, fd) coincides with the zero
set of fd in K∞, i.e.,

Sol(K∞, fd) = {x ∈ K∞ : fd(x) = 0}.

Now, we introduce the regularity notion concerning the boundedness of the
solution set of OP(K∞, fd).

Definition 2.1 The problem OP(K, f) is said to be regular if Sol(K∞, fd) is
bounded and non-regular otherwise.

Denote by Ed (resp., Od, Ud) the set of all polynomials g of degree d such
that Sol(K∞, fd) is the empty set (resp., the trivial cone, an unbounded cone).
Clearly, Rd = Ed ∪Od, and one has the following disjoint union:

Rd[x] = Rd−1[x] ∪ Ed ∪Od ∪Ud . (2.1)

Remark 2.3 The boundedness of Sol(K∞, fd) implies that of Sol(K, f). In-
deed, assume to the contrary that Sol(K, f) is unbounded. There exists an
unbounded sequence {xk} ⊂ Sol(K, f). Without loss of generality, we can as-
sume xk is nonzero for all k, ‖xk‖ → +∞, and ‖xk‖−1xk → x̄ for some x̄ ∈ Rn
with ‖x̄‖ = 1. Note that f(xk) = f∗, where f∗ ∈ R is the minimum of f over
K, for all k. By dividing the last equation by ‖xk‖d and letting k → +∞,
we obtain fd(x̄) = 0. It follows that x̄ ∈ Sol(K∞, fd). Since x̄ 6= 0, the cone
Sol(K∞, fd) is unbounded, which contradicts our assumption. Thus, the claim
is proved.

Remark 2.4 We observe that the set Rd is nonempty. If K is bounded then
Rd coincides with the set of all g ∈ Rd[x] such that deg g = d. Hence, we
can suppose that K is unbounded. Clearly, the cone K∞ also is unbounded.
Let x̄ ∈ K∞ be nonzero. There exists l ∈ [n] such that x̄l 6= 0. Let us define
a homogeneous polynomial of degree d as f(x) := −(x̄lxl)

d. For any t > 0,
one has tx̄ ∈ K∞, and f(tx̄) = −(x̄2l )

dtd → −∞ as t → +∞. Then, f is not
bounded from below on K∞. This yields Sol(K∞, f) = ∅ and f ∈ Rd.

Example 2.1 Consider the case that n = 1, K = R and d = 2. One has R2[x] =
{a2x2+a1x+a0 : (a2, a1, a0) ∈ R3}. SinceK∞ = R, an easy computation shows
that E2 = {a2x2 + a1x+ a0 : a2 < 0, a1 ∈ R, a0 ∈ R}, O2 = {a2x2 + a1x+ a0 :
a2 > 0, a1 ∈ R, a0 ∈ R}, and R2 = {a2x2 + a1x+ a0 : a2 6= 0, a1 ∈ R, a0 ∈ R}.

3 Two criteria for the solution existence

We now introduce two criteria for the solution existence of OP(K, f). In the
proofs, the normalization argument in asymptotic analysis plays a vital role;
meanwhile, the semi-algebraicity of K is not required.
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3.1 A Frank-Wolfe type theorem for regular problems

The following theorem provides us a criterion for the solution existence of
regular optimization problems.

Theorem 3.1 (Frank-Wolfe type theorem) If OP(K, f) is regular and f
is bounded from below on K, then its solution set is nonempty and compact.

Proof Suppose that f ∈ Rd, i.e. f ∈ Ed ∪Od, and there exists γ ∈ R such
that γ ≤ f(x), for all x ∈ K. For any given v ∈ K∞, there are two sequences
{tk} ⊂ R+ and {xk} ⊂ K such that tk → +∞ and t−1k xk → v as k → +∞.
For any k, one has γ ≤ f(xk). Dividing both sides of the last inequality by tdk
and letting k → +∞, we obtain 0 ≤ fd(v). Thus, fd is non-negative over K∞.
It follows from Remark 2.1 that f does not belong to Ed; hence, we conclude
that f must be in Od.

Let x̄ ∈ K be given, and M := {x ∈ K : f(x) ≤ f(x̄)}. It is easy to check
that Sol(M,f) = Sol(K, f). Hence, we need only to prove that Sol(M,f) is
nonempty and compact.

Clearly, M is closed. We claim that M is bounded. On the contrary, we
suppose that there exists an unbounded sequence {xk} ⊂ M such that xk is
nonzero for all k, ‖xk‖ → +∞, and ‖xk‖−1xk → v for some v ∈ Rn with
‖v‖ = 1. One has

γ ≤ f(xk) ≤ f(x̄), (3.1)

for all k. Dividing the values in (3.1) by ‖xk‖d and letting k → +∞, we get
fd(v) = 0. This yields v ∈ Sol(K∞, fd). Because of v 6= 0, Sol(K∞, fd) is
unbounded. This contradicts our assumption and, thus, the claim is proved.

The compactness of M and Bolzano-Weierstrass’ Theorem allow us to con-
clude that Sol(M,f) is nonempty and compact. ut

Remark 3.1 From the proof of Theorem 3.1, we see that if f is bounded from
below on K then Sol(K∞, fd) is nonempty, i.e. f ∈ Od ∪Ud. Hence, if f ∈ Ed
then OP(K, f) has no solution.

Corollary 3.1 Assume that f = α1x
d
1+· · ·+αnxdn+p where d is even, α` > 0

for all ` ∈ [n], p is a polynomial with deg p < d. Then, Sol(K, f) is nonempty
and compact.

Proof Clearly, fd = α1x
d
1 + · · ·+αnx

d
n is non-negative over Rn. It follows that

fd is also non-negative over K∞. From Remarks 2.1 and 2.2, it is clear that
Sol(K∞, fd) is nonempty and

Sol(K∞, fd) = {x ∈ K∞ : α1x
d
1 + · · ·+ αnx

d
n = 0} = {0}.

This means that f ∈ Od. Clearly, f is bounded from below on K, and the
condition of Theorem 3.1 holds. Therefore, Sol(K, f) is nonempty and com-
pact. ut

The following example illustrates Theorem 3.1, in which the constraint set
is neither convex nor semi-algebraic.
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Example 3.1 Consider the optimization problem OP(K, f), where the polyno-
mial f is given by f(x1, x2) = x32 − x1x2 and the constraint set K is given
by

K = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 − x1 ≥ 0, ex1 − x2 ≥ 0}.

Since f3(x1, x2) = x32 and K∞ = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 − x1 ≥ 0}, one
has Sol(K∞, f3) = {(0, 0)}. According to Theorem 3.1, Sol(K, f) is nonempty
and compact.

3.2 An Eaves type theorem for non-regular problems

In this subsection, we investigate the solution existence of non-regular opti-
mization problems, where the objective functions are pseudoconvex on the
constraint sets.

Assume that U is an open subset of Rn. One says the polynomial f is
pseudoconvex on U if, for any x, y ∈ U such that 〈∇f(x), y− x〉 ≥ 0, here ∇f
is the gradient of f , we have f(y) ≥ f(x). Recall that f is pseudoconvex on
U if and only if ∇f is pseudomonotone on U [17, Theorem 3.1], i.e. if, for any
x, y ∈ U such that 〈∇f(x), y − x〉 ≥ 0, we have 〈∇f(y), y − x〉 ≥ 0.

Lemma 3.1 Assume that K is convex and f is pseudoconvex on an open set
U containing K. If x0 ∈ Sol(K, f), then 〈∇f(x), x− x0〉 ≥ 0 for all x ∈ K.

Proof Since f is pseudoconvex on the set U , the gradient ∇f is pseudomono-
tone on U . Suppose that x0 ∈ Sol(K, f), one has 〈∇f(x0), x− x0〉 ≥ 0 for all
x ∈ K (see, e.g., [18, Proposition 5.2]). The pseudomonotonicity of the gradi-
ent implies that 〈∇f(x), x− x0〉 ≥ 0 for all x ∈ K. The lemma is proved. ut

Theorem 3.2 (Eaves type theorem) Assume that K is convex and f is
pseudoconvex on an open set containing K. If OP(K, f) is non-regular, then
the following statements are equivalent:

(a) If v ∈ Sol(K∞, fd)\{0}, then there exists x ∈ K such that 〈∇f(x), v〉 > 0;
(b) Sol(K, f) is nonempty and compact.

Proof Suppose that OP(K, f) is non-regular. We prove (a) ⇒ (b). Assume
that (a) holds. For each k ∈ N, we denote

Kk = {x ∈ Rn : x ∈ K, ‖x‖ ≤ k}.

Clearly, Kk is compact and convex. Without loss of generality, we can assume
that Kk is nonempty. According to Bolzano-Weierstrass’ Theorem, OP(Kk, f)
has a solution, denoted by xk.

We assert that the sequence {xk} is bounded. Indeed, suppose on the con-
trary that {xk} is unbounded, xk 6= 0 for all k, ‖xk‖ → +∞, and ‖xk‖−1xk →
v, where v ∈ K∞ and ‖v‖ = 1. For each k, one has

f(xk) ≤ f(x), ∀x ∈ Kk. (3.2)
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Let y ∈ K be given. For k large enough, y ∈ Kk and f(xk) ≤ f(y). By
dividing two sides of the last inequality by ‖xk‖d and letting k → +∞, we
obtain fd(v) ≤ 0. This leads to v ∈ Sol(K∞, fd) \ {0}. Furthermore, since f is
pseudoconvex on Kk, from Lemma 3.1 we have

〈∇f(y), y − xk〉 ≥ 0. (3.3)

Dividing both sides of the inequality in (3.3) by ‖xk‖ and letting k → +∞, we
obtain 〈∇f(y), v〉 ≤ 0. The conclusion holds for any x ∈ K, i.e., 〈∇f(x), v〉 ≤ 0
for all x ∈ K. This contradicts to our assumption. Hence, {xk} is bounded.

We can assume that xk → x̄. From (3.2), by the continuity of f , it easy to
check that x̄ solves OP(K, f), so Sol(K, f) is nonempty.

To prove the compactness of the solution set, we can repeat the previous
argument by supposing that there is an unbounded solution sequence {xk},
and can show that there exists v ∈ Sol(K∞, fd) \ {0} such that 〈∇f(x), v〉 ≤ 0
for all x ∈ K. This contradicts to (b).

(b) ⇒ (a) Since K is convex, one has K∞ = 0+K and K = K + K∞.
Suppose that Sol(K, f) is nonempty and compact, but (b) is wrong, i.e. there
exists v ∈ Sol(K∞, fd)\{0} such that 〈∇f(x), v〉 ≤ 0 for all x ∈ K. Let x̄ be a
solution of OP(K, f). For any t ≥ 0, one has x̄+tv ∈ K and 〈∇f(x̄+tv), v〉 ≤ 0.
Thus, we have

〈∇f(x̄+ tv), x̄− (x̄+ tv)〉 ≥ 0.

The pseudoconvexity of f yields f(x̄) ≥ f(x0 + tv). Hence, x0 + tv belongs
to Sol(K, f), for any t ≥ 0. This shows that Sol(K, f) is unbounded which
contradicts to our assumption. Thus (a) holds, and the proof is complete. ut

Corollary 3.2 Assume that K is convex and f is convex on an open convex
set containing K. If OP(K, f) is non-regular, then the following statements
are equivalent:

(a) If v ∈ Sol(K∞, fd)\{0}, then there exists x ∈ K such that 〈∇f(x), v〉 > 0;
(b) Sol(K, f) is nonempty and compact.

Proof Since the convexity implies the pseudoconvexity, by applying Theorem
3.2 for the convex polynomial f , we have the assertion. ut

The following example illustrates Corollary 3.2.

Example 3.2 Consider the polynomial optimization problem OP(K, f) with
the objective function f(x1, x2) = 1

6x
3
2 + 1

2x
2
1 − x1x2 and the constraint set

K = {(x1, x2) ∈ R2 : x1x2 ≥ 1, x2 ≥ 2}. The gradient and the Hessian matrix
of f , respectively, are given by

∇f =

[
x1 − x2
−x1 + 1

2x
2
2

]
, H =

[
1 −1
−1 x2

]
.

It is easy to check that K is convex and H is positive semidefinite on the open
set U = {(x1, x2) ∈ R2 : x1x2 > 0, x2 > 1} ⊃ K; hence f is convex on K. One
has K∞ = R2

+ and f3(x1, x2) = 1
6x

3
2. This yields

Sol(K∞, f3) = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 = 0}.
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For every v = (α, 0) in Sol(K∞, f3)\{0}, one has α > 0. By choosing the point
x = (3, 2) in the constraint set, we get 〈∇f(x), v〉 = α > 0. Finally, according
to Corollary 3.2, the solution set of OP(K, f) is nonempty and compact.

4 Stability of the solution map

We investigate the local boundedness, the upper semicontinuity, and the local
upper-Hölder stability of the solution map under the regularity condition.

4.1 Upper semicontinuity of the solution map

To prove the local boundedness and the upper semicontinuity of the solution
map, we need the following lemma.

Lemma 4.1 The set Rd is open in Rd[x].

Proof To prove the openness of Rd, we only need to show that the complement
Rd[x]\Rd is closed. Clearly, Rd[x]\Rd = Rd−1[x]∪Ud. Let {gk} be a sequence
in Rd[x] \ Rd such that gk → g. From the definition of Rd, if deg g < d, i.e.,
g ∈ Rd−1[x], then g ∈ Rd[x] \ Rd. Thus, we can suppose that deg g = d. One
has gkd → gd, here gkd is the component of degree d of gk.

We now prove that g belongs to Ud. For each k, Sol(K∞, g
k
d) is unbounded.

There exists an unbounded sequence {xk} such that xk ∈ Sol(K∞, g
k
d), ‖xk‖ →

+∞, ‖xk‖−1xk → x̄ with ‖x̄‖ = 1. Let v ∈ K∞ be given. One has ‖xk‖v ∈ K∞
and gkd(‖xk‖v) ≥ gkd(xk), for any k. Dividing the last inequality by ‖xk‖d and
letting k → +∞, one has gkd(v) ≥ gkd(x̄). This conclusion holds for every
v ∈ K∞. This yields x̄ ∈ Sol(K∞, gd). As ‖x̄‖ = 1, we have x̄ 6= 0. It follows
that g belongs to Ud. The closedness of Rd[x] \ Rd is proved. ut

Recall that a set-valued map Ψ : Rm ⇒ Rn is locally bounded at ū if
there exists an open neighborhood U of ū such that ∪u∈UΨ(u) is bounded [19,
Definition 5.14]. The map Ψ is upper semicontinuous at ū ∈ T if for any open
set V ⊂ Rn such that Ψ(ū) ⊂ V there exists a neighborhood U of ū such that
Ψ(u) ⊂ V for all u ∈ U . Recall that if Ψ is closed, namely, the graph

gph(Ψ) :=
{

(u, v) ∈ Rm×Rn : v ∈ Ψ(u)
}

is closed in Rm×Rn, and locally bounded at u, then Ψ is upper semicontinuous
at u [19, Theorem 5.19].

Proposition 4.1 Assume that K is convex. If OP(K, f) is regular, then the
following statements hold:

(a) The solution map SolK(·) is locally bounded at f , i.e., there exists ε > 0
such that the set

Oε :=
⋃

g∈B(ε,d)

Sol(K, f + g), (4.1)

where B(ε, d) is the open ball in Rd[x] with center 0 and radius ε, is bound-
ed.
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(b) The solution map SolK(·) is upper semicontinuous at f .

Proof (a) According to Lemma 4.1, Rd is open in Rd[x]. There is a closed ball
B(ε, d) such that

f + B(ε, d) ⊂ Rd . (4.2)

Assume to the contrary that Oε is unbounded. Then, there exists an un-
bounded sequence {xk} and a sequence {gk} ⊂ B(ε, d) such that xk solves
OP(K, f + gk) with xk 6= 0 for every k, ‖xk‖ → +∞, and ‖xk‖−1xk → x̄ with
‖x̄‖ = 1. By the compactness of B(ε, d), without loss of generality, we can
assume that gk → g with g ∈ B(ε, d).

From assumptions, for every k, one has

(f + gk)(y) ≥ (f + gk)(xk), (4.3)

for any y ∈ K. Let y ∈ K be fixed and assume that v ∈ K∞. By the convexity
of K, one has y + ‖xk‖v ∈ K for any k. From (4.3), we conclude that

(f + gk)(y + ‖xk‖v) ≥ (f + gk)(xk).

Dividing this inequality by ‖xk‖d and taking k → +∞, we obtain

(f + g)d(v) ≥ (f + g)d(x̄).

The conclusion hold for any v ∈ K∞. It follows that x̄ ∈ Sol (K∞, (f + g)d).
Because of (4.2), Sol (K∞, (f + g)d) is contained in {0}, which contradicts to
‖x̄‖ = 1. Hence, Oε must be bounded.

(b) It is not difficult to prove that the graph

gph(Sol) :=
{

(g, x) ∈ Rd[x]× Rn : x ∈ Sol(K, g)
}

is closed in Rd[x]× Rn. Since SolK(·) is locally bounded on Rd, according to
[19, Theorem 5.19], SolK(·) is upper semicontinuous at f . ut

4.2 Local upper-Hölder stability of the solution map

When the constraint set K is convex and given by polynomials, we can inves-
tigate the local upper-Hölder stability of the solution map under the regular
condition. To prove the stability, we need the following lemma.

Lemma 4.2 ([20]) Let U be a semi-algebraic subset in Rn, represented by

U = {x ∈ Rn : ui(x) = 0, i ∈ [l], vj(x) ≤ 0, j ∈ [m]} ,

where ui(x), i ∈ [l], and vj(x), j ∈ [m], are polynomials. For any compact set
V ⊂ Rn, there are constants c > 0 and H > 0 such that

d(x, U) ≤ c
( l∑
i=1

|ui(x)|+
m∑
j=1

[vj(x)]+

)H
,

for all x ∈ V , here [r]+ := max{0, r} and d(x, U) the usual distance from x to
the set U .
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Theorem 4.1 Assume that OP(K, f) is regular and K is a convex set given
by

K = {x ∈ Rn : pi(x) = 0, i ∈ [l], qj(x) ≤ 0, j ∈ [m]} ,

where all pi, qj are polynomials. If Sol(K, f) is nonempty, then the map SolK(·)
is locally upper-Hölder stable at f , i.e., there exist ` > 0, H > 0 and ε > 0
such that

Sol(K, g) ⊂ Sol(K, f) + `‖g − f‖H B, (4.4)

for all g ∈ Rd[x] satisfying ‖g − f‖ < ε, where B is the closed unit ball in Rn.

Proof Suppose Sol(K, f) is nonempty and its optimal value is f∗. Since OP(K, f)
is regular and K is convex, according to Proposition 4.1, there exists ε > 0
such that Sol(K, f) ⊂ Oε, defined by (4.1), is bounded. Let V be the closure
of Oε. It follows that V is a nonempty compact set. By the assumptions, we
see that

Sol(K, f) = {x ∈ Rn : f(x)− f∗ = 0, pi(x) = 0, i ∈ [l], qj(x) ≤ 0, j ∈ [m]}.

From this equality, by applying Lemma 4.2 for U = Sol(K, f) and the compact
set V , there are constants c0 > 0 and H > 0 such that

d(x, Sol(K, f)) ≤ c0A(x)H ∀x ∈ V, (4.5)

where

A(x) := |f(x)− f∗|+
l∑
i=1

|pi(x)|+
m∑
j=1

[qj(x)]+.

Let g ∈ Rd[x] be arbitrary given such that ‖g−f‖ < ε. From the definition
of V , Sol(K, f) and Sol(K, g) are subsets of V . Here, Sol(K, g) may be empty.
By the compactness of V , we define the constant L := max{‖X(x)‖ : x ∈ V }.
Hence, one has

|g(x)− f(x)| ≤ ‖X(x)‖‖g − f‖ ≤ L‖g − f‖ ∀x ∈ V. (4.6)

If Sol(K, g) is empty, then (4.4) is obvious. Thus, we consider the case that
Sol(K, g) 6= ∅. Since both Sol(K, f) and Sol(K, g) are nonempty and compact,
for any xg ∈ Sol(K, g), there is xf ∈ Sol(K, f) such that

‖xg − xf‖ = d(xg,Sol(K, f)). (4.7)

Because of pi(xg) = 0 for i ∈ [l] and qj(xg) ≤ 0 for j ∈ [m], from the definition
of A(x), one has A(xg) = |f(xg)− f∗|. By (4.7) and (4.5), we see that

‖xg − xf‖ ≤ c0A(xg)
H = c0|f(xg)− f∗|H .

Since xf ∈ Sol(K, f), we have f(xf ) = f∗ ≤ f(xg). Therefore, we obtain

‖xg − xf‖ ≤ c0|f(xg)− f∗|H = c0(f(xg)− f(xf ))H . (4.8)
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It follows from xg ∈ Sol(K, g) that g(xg) − g(xf ) ≤ 0. Since xg, xf ∈ V , we
conclude from (4.6) that

f(xg)− f(xf ) = (f(xg)− g(xg)) + (g(xg)− g(xf )) + (g(xf )− f(xf ))

≤ (f(xg)− g(xg)) + (g(xf )− f(xf ))

≤ 2L‖g − f‖.

The inequality (4.8) and the last result lead to

‖xg − xf‖ ≤ c0(2L)H‖g − f‖H ,

consequently,

d(xg,Sol(K, f)) = ‖xg − xf‖ ≤ `‖g − f‖H ,

where ` = c0(2L)H .
The conclusion holds for any xg in Sol(K, g). Hence, the inclusion (4.4) of

the theorem is proved. ut

5 Genericity of the regularity condition

In this section, we discuss the genericity of the regularity condition of polyno-
mial optimization problems.

A subset A is called generic in Rm if A contains a countable intersection
of dense and open sets in Rm. If A is generic in Rm and A ⊂ B then B also is
generic in Rm. Let T be a topological space. It is known that if h : Rm → T
is a homeomorphism and A is generic in Rm, then h(A) is generic in T .

Let U ⊂ Rm be a semi-algebraic set. Then, there exists a decomposition
of U into a disjoint union [21, Theorem 2.3.6], U = ∪si=1Ui, where each Ui
is semi-algebraically homeomorphic to (0, 1)di . Here, let (0, 1)0 be a point,
(0, 1)k ⊂ Rk be the set of points x = (x1, . . . , xk) such that xj ∈ (0, 1) for all
j ∈ [k]. The dimension of U is defined by dim(U) := max{d1, . . . , ds}. The
dimension is well-defined and does not depends on the decomposition of U .
Recall that if U is nonempty and dim(U) is zero, then U has finitely many
points. Furthermore, if dim(Rm \U) < m, then U is generic in Rm (see, e.g.
[22, Lemma 2.3]).

The space generated by all monomials of degree d listed by lexicographic
ordering {xd1, xd−11 x2, x

d−1
1 x3, . . . , x

d
n} is denoted by Hd. One has the direct

sum Rd[x] = Hd⊕Rd−1[x]. The dimension of Hd is denoted by η. For every
homogeneous polynomial h ∈ Hd, one has a unique b ∈ Rη, such that h(x) =
bTXd(x), where

XT
d (x) = (xd1, x

d−1
1 x2, x

d−1
1 x3, . . . , x

d
n).

Here, ∇(bTXd(x)) is the gradient vector of bTXd(x) and Db[∇(bTXd(x))] is
the Jacobian matrix of bTXd(x) with respect to b.

Lemma 5.1 One has rank(Db[∇(bTXd(x))]) = n for all x ∈ Rn \{0}.
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Proof In the proof, we are only interested in the monomials xd−1i xj , where
i, j ∈ [n]. Hence, for convenience, we rewrite XT

d (x) and bT respectively as
follows:

(xd1, x
d−1
1 x2, . . . , x

d−1
1 xn; . . . ; xd−1n x1, x

d−1
n x2, . . . , x

d
n; . . . )

and
(b11, b12, . . . , b1n; . . . ; bn1, bn2, . . . , bnn; . . . ).

Then, we have

bTXd(x) =
∑
j∈[n]

b1jx
d−1
1 xj + · · ·+

∑
j∈[n]

bnjx
d−1
n xj +Q, (5.1)

where Q is a homogeneous polynomial of degree d.
From (5.1), an easy computation shows that

∂(bTXd(x))

∂xi
= dbiix

d−1
i + (d− 1)

∑
j 6=i

bijx
d−2
i xj +

∑
j 6=i

bjix
d−1
j +

∂Q

∂xi
,

and the n× η-matrix Db[∇(bTXd(x))] can be described as follows

Db[∇(bTXd(x))] =
[
M1,M2, · · · ,Mn, · · ·

]
,

where the submatrix Mi, for i ∈ [n], is defined by

Mi =

x
d−1
i Ii−1 Oi×1 Oi×(n−i)

L1×(i−1) dxd−1i R1×(n−i)

Oi×(n−i) O(n−i)×1 x
d−1
i In−i


with Ik being the unit k × k-matrix, Ok×s being the zero k × s-matrix,

L1×(i−1) =
(

(d− 1)xd−2i x1, . . . , (d− 1)xd−2i xi−1

)
,

and
R1×(n−i) =

(
(d− 1)xd−2i xi+1, . . . , (d− 1)xd−2i xn

)
.

We observe that det(Mi) = dx
d(d−1)
i , for all i ∈ [n]. Since x 6= 0, there exists

l ∈ [n] such that xl 6= 0. This implies that rank(Ml) = n. Hence, the rank of
Db[∇(bTXd(x))] is n, for any x 6= 0. ut

Suppose that C is a polyhedral cone given by

C = {x ∈ Rn : Ax ≥ 0} , (5.2)

where A = (aij) ∈ Rp×n. Let KKT(C, g), where g ∈ Rd[x], be the set of the
Karush-Kuhn-Tucker points of OP(C, g), i.e., x ∈ KKT(C, g) if and only if
there exists λ ∈ Rp such that{

∇g(x)−ATλ = 0,
λT (Ax) = 0, λ ≥ 0, Ax ≥ 0.

(5.3)
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From the Karush-Kuhn-Tucker conditions, we see that Sol(C, g) ⊂ KKT(C, g)
for all g ∈ Rd[x].

For each index set α ⊂ [p], we associate the pseudo-face Cα of C, which is
denoted and defined by

Cα :=
{
x ∈ Rn :

n∑
j=1

aijxj = 0 ∀i ∈ α,
n∑
j=1

aijxj > 0 ∀i ∈ [p] \ α
}
,

where aij is the element in the i-th row and the j-th column of A. The number
of pseudo-faces of C is finite. These pseudo-faces establish a disjoint decom-
position of C. So, we obtain

KKT(C, g) =
⋃
α⊂[p]

(KKT(C, g) ∩ Cα) , (5.4)

The following proposition shows that the Karush-Kuhn-Tucker set-valued
map of homogeneous polynomial optimization problems

KKTC : Rη ⇒ Rn, b 7→ KKTC(b) = KKT(C, bTXd(x)),

is finite-valued, i.e., the cardinal # KKTC(b) is finite, on a generic semi-
algebraic set of Rη.

Proposition 5.1 Assume that C is a polyhedral cone given by (5.2) and the
matrix A is full rank. Then, there exists a generic semi-algebraic set S ⊂ Rη
such that # KKTC(b) <∞ for any b ∈ S.

Proof Let Cα be a nonempty pseudo-face of C and 0 /∈ Cα. This implies that
Xd(x) is nonzero on this pseudo-face. We consider the function

Φα : Rη ×Cα × R|α|+ → Rn+|α|,

which is defined by

Φα(b, x, λα) =
(
∇(bTXd(x)) +

∑
i∈α

λiAi, Aαx
)
,

where Aαx = (Ai1x, . . . , Ai|α|x), ij ∈ α. Clearly, Cα is smooth and Φα is a
semi-algebraic function of class C∞. The Jacobian matrix of Φα is determined
as follows

DΦα =

[
Db[∇(bTXd(x))] ∗ ATα

O|α|×η Aα O|α|×|α|

]
.

From Lemma 5.1, for all x ∈ Cα, the rank of Db[∇(bTXd(x))] is n. Since the
rank of Aα is |α|, we conclude that the rank of the matrix DΦα is n+ |α| for

all x ∈ Cα. Therefore, 0 ∈ Rn+|α|+|J| is a regular value of Φα. According to
the Sard Theorem with parameter [22, Theorem 2.4], there exists a generic
semi-algebraic set Sα ⊂ Rη such that if b ∈ Sα then 0 is a regular value of the
map

Φα,b : Cα × R|α| → Rn+|α|, Φα,b(x, λα) = Φα(b, x, λα).
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We see that Ω(α, b) := Φ−1α,b(0) is a semi-algebraic set. From the Regular Level
Set Theorem [23, Theorem 9.9], we can claim that if Ω(α, b) is nonempty
then the set is a 0−dimensional semi-algebraic set. It follows that Ω(α, b) is a
finite set. Moreover, from (5.3), one has KKTC(b) ∩ Cα = π(Ω(α, b)), where

π is the projection Rn+|α| → Rn which is defined by π(x, λα) = x. Hence,
KKTC(b) ∩ Cα is a finite set.

We consider the case that 0 ∈ Cα and define U := Cα \ {0}. As is clear, U
is semi-algebraic. From (5.3), we see that 0 ∈ KKTC(b). Hence,

KKTC(b) ∩ Cα = {0} ∪ (KKTC(b) ∩ U).

From the previous argument, KKTC(b)∩U is a finite set. By the decomposition
(5.4), KKTC(b) is a finite set.

Take S = ∩α⊂[p] Sα, it follows that S is generic in Rη and KKTC(b) has
finite points for any b ∈ S. Hence, # KKTC(b) < ∞ for all b in S. The proof
is complete. ut

Corollary 5.1 Assume that C is a polyhedral cone given by (5.2) and the
matrix A is full rank. Then there exists a generic set Gd in Hd such that
# Sol(C, g) <∞ for any g ∈ Gd.

Proof Since Rη and Hd are homeomorphic, with the isomorphism Π : Rη →
Hd defined by Π(b) = bTXd(x). According to Proposition 5.1, there exists a
generic set S ⊂ Rη such that the Karush-Kuhn-Tucker set KKT(C, b) is finite,
for any b ∈ S. Clearly, Gd := Π(S) is generic in Hd. Since Sol(C, bTXd(x)) ⊂
KKT(C, b), one has # Sol(C, g) <∞, for any g ∈ Gd. ut

Remark 5.1 If the constraint K is represented by

K = {x ∈ Rn : q1(x) ≤ 0, . . . , qm(x) ≤ 0} , (5.5)

where q1, . . . , qm are convex polynomials, then the recession cone of K is a
nonempty polyhedral cone. We denote

Kj = {x ∈ Rn : qj(x) ≤ 0} , j ∈ [m].

For each j ∈ [m], Kj is closed convex set, and Kj
∞ is polyhedral (see [9, p.39]).

Since K = K1 ∩ · · · ∩Km, according to [3, Proposition 2.1.9], one has

K∞ =
⋂
j∈[m]

Kj
∞.

If follows that K∞ is a nonempty polyhedral cone. Hence, there exists a matrix
A ∈ Rp×n such that

K∞ = {x ∈ Rn : Ax ≥ 0}. (5.6)

Theorem 5.1 Assume that K be represented by (5.5) and the cone K∞ rep-
resented by (5.6), where A is full rank. Then, the set Rd is generic in Rd[x].
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Proof From Remark 5.1, the recession coneK∞ is a nonempty polyhedral cone,
where K∞ = {x ∈ Rn : Ax ≥ 0}. According to Corollary 5.1, there exists a
generic set Gd in Hd such that # Sol(K∞, g) < ∞ for any g ∈ Gd. Because of
the direct sum Rd[x] = Hd⊕Rd−1[x], the set Gd⊕Rd−1[x] is generic in Rd[x].
It is easy to check that Gd ⊕Rd−1[x] ⊂ Rd. Hence, Rd is generic in Rd[x]. ut

Example 5.1 Consider the problem OP(K, f) given in Example 2.1, we see
that

R2 = {a2x2 + a1x+ a0 : a2 6= 0, a1 ∈ R, a0 ∈ R}

is open and dense in R2[x].

Perspectives

The regularity condition enables us to investigate the stability of the optimal
value function of polynomial optimization problems. Furthermore, the regu-
larity condition is useful to study the connectedness of the solution sets of
convex polynomial vector optimization problems.
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