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Abstract This paper introduces and investigates a regularity condition in the
asymptotic sense for the optimization problems whose objective functions are
polynomial. We prove two sufficient conditions for the existence of solutions for
polynomial optimization problems. Further, when the constraint sets are semi-
algebraic, we show results on the stability of the solution map of polynomial
optimization problems. At the end of the paper, we discuss the genericity of
the regularity condition.
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1 Introduction

We consider the following optimization problem

minimize f(x) subject to x ∈ K,

where K is a nonempty closed subset of Rn and f : Rn → R is a polynomial in
n variables of degree d ≥ 2. The problem and its solution set are denoted by
OP(K, f) and Sol(K, f), respectively. Let fd be the homogeneous component
of degree d of f , K∞ be the asymptotic cone of K that will be introduced in
Section 2. We say that OP(K, f) is regular if the solution set of the asymptotic
problem OP(K∞, fd) is bounded, and the problem is non-regular if otherwise.
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The regularity condition has appeared in investigations of the solution exis-
tence and stability in quadratic programming (see, e.g., [1,2] and the references
therein).

Asymptotic cones and functions play an important role in optimization and
variational inequalities [3]. The normalization argument in asymptotic analy-
sis enables us to see the solution existence and stability not only for quadratic
programming, linear complementarity problems, and affine variational inequal-
ities (see, e.g., [1,4]) but also for polynomial complementarity problems and
polynomial variational inequalities having unbounded constraint sets (see, e.g.,
[5,6]).

In 1956, Frank and Wolfe [7] proved that if K is polyhedral, f is quadratic
and bounded from below over K, then Sol(K, f) is nonempty. Several exten-
sions of the Frank-Wolfe theorem for quadratic, cubic, and polynomial opti-
mization problems have been shown in [1,2,8–12]. The present paper gives
another Frank-Wolfe type theorem, which says that if OP(K, f) is regular and
f is bounded from below on K then the problem has a solution. Besides, the
Eaves theorem [13] provides us another criterion for the solution existence of
quadratic optimization problems. Extensions of this theorem for quadratically
constrained quadratic problems has been introduced in [1,2,14,15]. This paper
introduces an Eaves type theorem for non-regular pseudoconvex optimization
problem OP(K, f), where K is convex.

Under the assumption that the constraint set K is compact and semi-
algebraic, some stability and genericity results for polynomial optimization
problems have been shown [16]. If K is compact, then its asymptotic cone is
trivial, i.e., K∞ = {0}, it follows that OP(K, f) obviously satisfies the regu-
larity condition. The present paper considers the case that K is unbounded.
Under the regularity condition, we prove several local properties of the so-
lution map of polynomial optimization problems such as local boundedness,
upper semicontinuity, and local upper-Hölder stability.

We denote by R ⊂ R[x] the set of all polynomials g of degree d such that
OP(K, g) is regular. This set is an open cone in the space Pd ⊂ R[x] of all
polynomials of degree at most d. At the end of this work, we prove that R is
generic in Pd, if K is given by convex polynomials.

The organization of the paper is as follows. Section 2 gives a brief intro-
duction to asymptotic cones, polynomials, and the regular condition. Section 3
proves two criteria of the solution existence. Section 4 investigates properties
of the solution map. The last section discusses the genericity of the regularity
condition.

2 Preliminaries

Recall that the asymptotic cone [3] of a nonempty closed subset S in Rn is
defined and denoted by

S∞ =
{
v ∈ Rn : ∃tk → +∞,∃xk ∈ S with lim

k→∞

xk
tk

= v
}
.
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Clearly, the cone S∞ is closed and contains 0. The set S is bounded if and
only if S∞ is trivial. Furthermore, if S is convex then S∞ is a closed convex
cone and S∞ = 0+S, where 0+S is the recession cone of S that is the set of
vectors v ∈ Rn such that x + tv ∈ S for any x ∈ S and t ≥ 0. Thus, one has
S = S + S∞ when S is convex.

Let d ≥ 2 be given. The space Pd of all polynomials of degree at most d
has finite dimension; its dimension is denoted by ρ. Let X(x) be the vector
consisting of ρ monomials of degree at most d which is listed by lexicographic
ordering

X(x) := (1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, . . . , x

d
1, x

d−1
1 x2, . . . , x

d
n)T .

For every g ∈ Pd, there exists a unique vector a = (a1, . . . , aρ) ∈ Rρ such that
g(x) = aTX(x). We denote by ‖g‖ the `2–norm of the polynomial g, namely

‖g‖ := ‖a‖ =
√
a21 + · · ·+ a2ρ.

The Cauchy–Schwarz inequality claims that |g(x)| ≤ ‖X(x)‖‖g‖. Furthermore,
if {gk} is a convergent sequence in Pd with gk → g, then gkd → gd.

Throughout the paper, we assume that the constraint set K ⊂ Rn is
nonempty and closed, and the objective function f : Rn → R is polynomial of
degree d ≥ 2.

We say that OP(K, f) is a polynomial optimization problem if K is given
by polynomials. With the given set K and the given integer d, the solution
map of polynomial optimization problems is defined by

SolK(·) : Pd ⇒ Rn, g 7→ Sol(K, g).

Assume that g ∈ Pd, deg g = d, and g = gd + · · · + g1 + g0, where gl is
a homogeneous polynomial of degree l, i.e., gl(tx) = tlgl(x) for all t ≥ 0 and
x ∈ Rn, l ∈ [d] := {1, . . . , d}, and g0 ∈ R. Then, gd is the leading term (or the
recession polynomial) of the polynomial g (of degree d). Clearly, one has

gd(x) = lim
λ→+∞

g(λx)

λd
, ∀x ∈ Rn .

For the pair (K, f), we have unique asymptotic pair (K∞, fd). The asymp-
totic optimization problem OP(K∞, fd) plays a vital role in the investigation
of behavior of OP(K, f) at infinity. The following remarks point out (without
proof) basic properties of the problem.

Remark 2.1 Assume that Sol(K∞, fd) is nonempty. Then this set is a closed
cone with 0 ∈ Sol(K∞, fd). Furthermore, Sol(K∞, fd) equals to the set of zero
points of fd in K∞, i.e.,

Sol(K∞, fd) = {x ∈ K∞ : fd(x) = 0}.

Remark 2.2 Because fd is a homogeneous andK∞ is a closed cone, Sol(K∞, fd)
is nonempty if and only if the polynomial fd is non-negative on K∞.
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Denote by E (resp., O, U) the set of all polynomials g ∈ Pd of degree d
such that Sol(K∞, fd) is the empty set (resp., the trivial cone, an unbounded
cone). Clearly, one has the following disjoint unions

R = E ∪O, Pd = Pd−1 ∪E ∪O∪U . (2.1)

Now, we introduce the regularity notion concerning to boundedness of the
solution set of OP(K∞, fd).

Definition 2.1 The problem OP(K, f) is said to be regular if Sol(K∞, fd) is
bounded, i.e., f ∈ E ∪O, and non-regular if otherwise.

Remark 2.3 The boundedness of Sol(K∞, fd) implies that of Sol(K, f). In-
deed, assume to the contrary that Sol(K, f) is unbounded. There exists an
unbounded sequence {xk} ⊂ Sol(K, f). Without loss of generality, we can as-
sume xk is nonzero for all k, ‖xk‖ → +∞, and ‖xk‖−1xk → x̄ for some x̄ ∈ Rn
with ‖x̄‖ = 1. Note that f(xk) = f∗, where f∗ ∈ R is the minimum of f over
K, for all k. By dividing the last equation by ‖xk‖d and letting k → +∞, we
obtain fd(x̄) = 0. It follows that 0 6= x̄ ∈ Sol(K∞, fd). This contradicts to the
fact that Sol(K∞, fd) is bounded. Thus, the claim is proved.

Remark 2.4 We claim that R is nonempty. Indeed, if K is bounded then R
coincides with the set of all g ∈ Pd such that deg g = d. Hence, we can suppose
that K is unbounded. Clearly, the cone K∞ also is unbounded. Let x̄ ∈ K∞
be nonzero. There exists l ∈ [n] such that x̄l 6= 0. We define a homogeneous
polynomial of degree d as f(x) := −(x̄lxl)

d. For any t > 0, one has tx̄ ∈ K∞,
and f(tx̄) = −(x̄dl )

2td → −∞ as t→ +∞. Then f is not bounded from below
on K∞. This yields Sol(K∞, f) = ∅ and f ∈ R.

Example 2.1 Consider the case that n = 1, K = R and d = 2. One has P2 =
{a2x2+a1x+a0 : (a2, a1, a0) ∈ R3}. SinceK∞ = R, an easy computation shows
that E = {a2x2 + a1x + a0 : a2 < 0, a1 ∈ R, a0 ∈ R}, O = {a2x2 + a1x + a0 :
a2 > 0, a1 ∈ R, a0 ∈ R}, andRR,2 = {a2x2+a1x+a0 : a2 6= 0, a1 ∈ R, a0 ∈ R}.

3 Two criteria for the solution existence

This section introduces two criteria for the solution existence of OP(K, f).
In the proofs, the normalization argument in asymptotic analysis is used; the
semi-algebraicity of K is not required.

3.1 A Frank-Wolfe type theorem for regular problems

The following theorem provides a criterion for the solution existence of OP(K, f),
which is a Frank-Wolfe type theorem.

Theorem 3.1 (Frank-Wolfe type theorem) If OP(K, f) is regular and f
is bounded from below on K, then its solution set is nonempty and compact.
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Proof Suppose that f ∈ R and there exists γ ∈ R such that γ ≤ f(x), for all
x ∈ K. Let x̄ be given in K, and M := {x ∈ K : f(x) ≤ f(x̄)}. Clearly, M is
closed. It is easy to check that Sol(M,f) = Sol(K, f).

We claim that M is bounded. On the contrary, we suppose that there
exists an unbounded sequence {xk} ⊂ M such that xk is nonzero for all k,
‖xk‖ → +∞, and ‖xk‖−1xk → v for some v ∈ Rn with ‖v‖ = 1. One has

γ ≤ f(x̄) ≤ f(xk) (3.1)

for any k. Dividing the values in (3.1) by ‖xk‖d and letting k → +∞, we get
fd(v) = 0. Thus, OP(K, f) is non-regular. This contradicts to our assumption
and hence the claim is proved.

By the compactness of M , Weierstrass’ Theorem says that the solution set
of Sol(M,f) is nonempty and compact. The theorem is proved. ut

Remark 3.1 The condition of Theorem 3.1 is equivalent to the condition f ∈
O. Indeed, from the proof of the theorem, we can see that the condition of the
theorem implies that Sol(K∞, fd) is the trivial cone. We now give a sketch of
the proof for the inverse conclusion. Assume that f ∈ O but, on the contrary,
f is unbounded from below on K. By using the normalization argument, we
can show that there exists some v ∈ K∞ \ {0} such that fd(v) ≤ 0. From
Remark 2.2, one has fd(v) = 0. This contracts f ∈ O.

Remark 3.2 Assume that f ∈ E , i.e., Sol(K∞, fd) is empty. We conclude that
f is not bounded from below on K, hence OP(K, f) has no solution. Indeed,
assume to the contrary that there is γ ∈ R such that f(x) ≥ γ for any x ∈ K.
For any given v ∈ K∞, there are two sequences {tk} ⊂ R+ and {xk} ⊂ K such
that tk → +∞ and t−1k xk → v as k → +∞. One has f(xk) ≥ γ, for any k.
Dividing both sides of the last inequality by tdk and letting k → +∞, we obtain
fd(v) ≥ 0. Thus, fd is non-negative over K∞. It follows from Remark 2.2 that
f ∈ O∪U ; this contradicts to the assumption.

Corollary 3.1 Assume that f = α1x
d
1+· · ·+αnxdn+p where d is even, α` > 0

for all ` ∈ [n], p is a polynomial with deg p < d. Then, Sol(K, f) is nonempty
and compact.

Proof Clearly, fd = α1x
d
1 + · · · + αnx

d
n is nonegative over Rn. It follows that

fd is also nonegative over K∞. From Remarks 2.2 and 2.1, one sees that
Sol(K∞, fd) is nonempty and

Sol(K∞, fd) = {x ∈ K∞ : α1x
d
1 + · · ·+ αnx

d
n = 0} = {0}.

This means that f ∈ O. According to Remark 3.1, the condition of Theo-
rem 3.1 holds. Therefore, Sol(K, f) is nonempty and compact. ut

The following example illustrates Theorem 3.1, in which the constraint set
is neither convex nor semi-algebraic.
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Example 3.1 Consider the optimization problem OP(K, f), where the polyno-
mial f is given by f(x1, x2) = x32 − x1x2 and the constraint set K is given
by

K = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 − x1 ≥ 0, ex1 − x2 ≥ 0}.

Since the homogeneous polynomial f3(x1, x2) = x32 and the asymptotic cone
K∞ = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 − x1 ≥ 0}, one has Sol(K∞, f3) = {(0, 0)}.
According to Theorem 3.1, Sol(K, f) is nonempty and compact.

Remark 3.3 The converse of Theorem 3.1 is not true. For example, we consider
the polynomial of two variables f(x1, x2) = x1x2 and the constraint set given
by K = {(x1, x2) ∈ R2 : x1 ≥ 1, x2 ≥ 1}. We see that the set Sol(K, f) =
{(1, 1)} is nonempty and compact. Meanwhile, K∞ = R2

+, f2(x1, x2) = x1x2,

and the solution set Sol(K∞, f2) = {(x1, x2) ∈ R2
+ : x1x2 = 0} is an un-

bounded cone.

3.2 An Eaves type theorem for non-regular problems

This subsection gives a criterion for the solution existence for non-regular
pseudoconvex optimization problems.

Assume that U is an open subset of Rn. One says the polynomial f is
pseudoconvex on U if, for any x, y ∈ U such that 〈∇f(x), y− x〉 ≥ 0, here ∇f
is the gradient of f , we have f(y) ≥ f(x). Recall that f is pseudoconvex on U
if and only if ∇f is pseudomonotone on U (see, e.g., [17, Theorem 4.4]), i.e.
if, for any x, y ∈ U such that 〈∇f(x), y − x〉 ≥ 0, we have 〈∇f(y), y − x〉 ≥ 0.

Lemma 3.1 Assume that K is convex and f is pseudoconvex on an open set
U containing K. If x0 ∈ Sol(K, f), then 〈∇f(x), x− x0〉 ≥ 0 for all x ∈ K.

Proof Since f is pseudoconvex on the set U , the gradient ∇f is pseudomono-
tone on U . Suppose that x0 ∈ Sol(K, f), one has 〈∇f(x0), x− x0〉 ≥ 0 for all
x ∈ K (see, e.g., [17, Proposition 5.2]). The pseudomonotonicity of the gradi-
ent implies that 〈∇f(x), x− x0〉 ≥ 0 for all x ∈ K. The lemma is proved. ut

Theorem 3.2 (Eaves type theorem) Assume that OP(K, f) is non-regular,
K is convex, and f is pseudoconvex on an open set containing K. The two
following statements are equivalent:

(a) If v ∈ Sol(K∞, fd)\{0}, then there exists x ∈ K such that 〈∇f(x), v〉 > 0;
(b) Sol(K, f) is nonempty and compact.

Proof (a)⇒ (b) Suppose that (a) holds. For each k ∈ N, we denote

Kk = {x ∈ Rn : x ∈ K, ‖x‖ ≤ k}.

Clearly, Kk is compact. Without loss of generality, we can assume that Kk

is nonempty. According to Weierstrass’ Theorem, OP(Kk, f) has a solution,
denoted by xk.
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We assert that the sequence {xk} is bounded. Indeed, suppose on the con-
trary that {xk} is unbounded, xk 6= 0 for all k, ‖xk‖ → +∞, and ‖xk‖−1xk →
v, where v ∈ K∞ and ‖v‖ = 1. For each k, one has

f(xk) ≤ f(x), ∀x ∈ Kk. (3.2)

Let y ∈ K1 be given. Hence, y ∈ Kk and f(xk) ≤ f(y), for any k ∈ N. By
dividing two sides of the last inequality by ‖xk‖d and letting k → +∞, we
obtain fd(v) ≤ 0. This leads to v ∈ Sol(K∞, fd) \ {0}.

From Lemma 3.1, for each k ∈ N, since f is pseudoconvex on Kk, we have

〈∇f(x), x− xk〉 ≥ 0, ∀x ∈ Kk. (3.3)

Let x ∈ K be given, then x ∈ Kk for k large enough. Dividing both sides of
the inequality in (3.3) by ‖xk‖ and letting k → +∞, we obtain 〈∇f(x), v〉 ≤ 0.
The conclusion holds for any x ∈ K, i.e., 〈∇f(x), v〉 ≤ 0 for all x ∈ K. This
contradicts to our assumption. Hence, {xk} is bounded. We now can assume
that xk → x̄. From (3.2), by the continuity of f , it easy to check that x̄ solves
OP(K, f), so Sol(K, f) is nonempty.

To prove the compactness of the solution set, we can repeat the previous
argument by supposing that there is an unbounded solution sequence {xk},
and can show that there exists v ∈ Sol(K∞, fd) \ {0} such that 〈∇f(x), v〉 ≤ 0
for all x ∈ K. This contradicts to (b).

(b) ⇒ (a) Since K is convex, one has K∞ = 0+K and K = K + K∞.
Suppose that Sol(K, f) is nonempty and compact, but (b) is wrong, i.e. there
exists v ∈ Sol(K∞, fd)\{0} such that 〈∇f(x), v〉 ≤ 0 for all x ∈ K. Let x̄ be a
solution of OP(K, f). For any t ≥ 0, one has x̄+tv ∈ K and 〈∇f(x̄+tv), v〉 ≤ 0.
Thus, we have

〈∇f(x̄+ tv), x̄− (x̄+ tv)〉 ≥ 0.

The pseudoconvexity of f yields f(x̄) ≥ f(x0 + tv). Hence, x0 + tv belongs
to Sol(K, f) for any t ≥ 0. This shows that Sol(K, f) is unbounded which
contradicts to our assumption. Thus (a) holds.

The proof is complete. ut

Corollary 3.2 Assume that OP(K, f) is non-regular, K is convex, and f is
convex on an open convex set containing K. The two following statements are
equivalent:

(a) If v ∈ Sol(K∞, fd) \ {0} then there exists x ∈ K such that 〈∇f(x), v〉 > 0;
(b) Sol(K, f) is nonempty and compact.

Proof Since the convexity implies the pseudoconvexity, by applying Theorem
3.2 for the convex polynomial f , we have the assertion. ut

The following example illustrates Corollary 3.2.
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Example 3.2 Consider the polynomial optimization problem OP(K, f) with
the objective function f(x1, x2) = 1

6x
3
2 + 1

2x
2
1 − x1x2 and the constraint set

K = {(x1, x2) ∈ R2 : x1x2 ≥ 1, x2 ≥ 2}. The gradient and the Hessian matrix
of f , respectively, given by

∇f =

[
x1 − x2
−x1 + 1

2x
2
2

]
, H =

[
1 −1
−1 x2

]
.

It is easy to check that K is convex and H is positive semidefinite on the open
set U = {(x1, x2) ∈ R2 : x1x2 > 0, x2 > 1} ⊃ K; hence f is convex on K. One
has K∞ = R2

+ and f3(x1, x2) = 1
6x

3
2. This yields

Sol(K∞, f3) = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 = 0}.

For every v = (α, 0) in Sol(K∞, f3) \ {0}, one has α > 0. Choose the point
x = (3, 2) in the constraint set, we have 〈∇f(x), v〉 = α > 0. According to
Corollary 3.2, the solution set of OP(K, f) is nonempty and compact.

4 Stability of the solution map

This section investigates properties of the solution map, such as the local
boundedness, the upper semicontinuity, and the local upper-Hölder stability.

4.1 Upper semicontinuity of the solution map

Recall that O is the set of all g ∈ Pd of degree d such that Sol(K∞, gd) = {0}.
From (2.1), one has

Pd \R = Pd−1 ∪U , Pd \O = Pd−1 ∪E ∪U . (4.1)

Lemma 4.1 The sets R,O are open in Pd.

Proof To proveR is open, we only need to show that the complement Pd \R is
closed. Let {gk} be a sequence in Pd \R such that gk → g. From the definition
of R, if deg g < d, i.e., g ∈ Pd−1, then g ∈ Pd \R. Thus, we can suppose that
deg g = d. One has gkd → gd, here gkd is the component of degree d of gk. For
each k, Sol(K∞, g

k
d) is unbounded. There exists an unbounded sequence {xk}

such that xk ∈ Sol(K∞, g
k
d), ‖xk‖ → +∞, ‖xk‖−1xk → x̄ with ‖x̄‖ = 1. Let

v ∈ K∞ be given. One has ‖xk‖v ∈ K∞ and gkd(‖xk‖v) ≥ gkd(xk), for any k.
Dividing the last inequality by ‖xk‖d and letting k → +∞, one has gkd(v) ≥
gkd(x̄). This conclusion holds for every v ∈ K∞. This yields x̄ ∈ Sol(K∞, gd).
As ‖x̄‖ = 1, we have x̄ 6= 0. It follows that g belongs to U . The closedness of
Pd \R is proved.

To prove O is open, we show that the complement Pd \O is closed. Let
{gk} ⊂ R\O be a sequence with gk → g; from the second equation in (4.1),
we prove that g belongs to Pd−1 ∪E ∪U . There is a subsequence of {gkp}
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such that it is contained in Pd−1 or E ∪U . If {gkp} ⊂ Pd−1 then, by the
closedness of Pd−1, one has gkp → g ∈ Pd−1. Now we consider the case that
{gkp} ⊂ E ∪U . By Remark 2.2 (i), gkp is non-negative over K∞, for any p. For
any v ∈ K∞, one has gkp(v) ≥ 0; letting p→ +∞, we have gp(v) ≥ 0. Hence,
gp is non-negative over K∞. This means that g ∈ E ∪U . The openness of O is
proved. ut

Recall that a set-valued map Ψ : Rm ⇒ Rn is locally bounded at x̄ if
there exists an open neighborhood U of x̄ such that ∪x∈UΨ(x) is bounded [18,
Definition 5.14]. The map Ψ is upper semicontinuous at x ∈ T if for any open
set V ⊂ Rn such that Ψ(x) ⊂ V there exists a neighborhood U of x such that
Ψ(x′) ⊂ V for all x′ ∈ U . If Ψ is upper semicontinuous at every x ∈ T ⊂ Rm
then Ψ is said to be upper semicontinuous on T . Recall that if Ψ is closed,
namely, the graph

gph(Ψ) :=
{

(u, v) ∈ Rm×Rn : v ∈ Ψ(u)
}

is closed in Rm×Rn, and locally bounded at x, then Ψ is upper semicontinuous
at x [18, Theorem 5.19].

Proposition 4.1 Assume that K is convex. If OP(K, f) is regular, then the
two following statements hold:

(a) The solution map SolK(·) is locally bounded at f , i.e., there exists ε > 0
such that the set

Oε :=
⋃

g∈B(ε,d)

Sol(K, f + g), (4.2)

where B(ε, d) is the open ball in Pd with center at 0 and radius ε, is
bounded.

(b) The solution map SolK(·) is upper semicontinuous on R.

Proof (a) According to Lemma 4.1, R is open in Pd. There is a closed ball
B(ε, d) such that

f + B(ε, d) ⊂ R . (4.3)

Assume to the contrary that Oε is unbounded. Then, there exists an un-
bounded sequence {xk} and a sequence {gk} ⊂ B(ε, d) such that xk solves
OP(K, f + gk) with xk 6= 0 for every k, ‖xk‖ → +∞, and ‖xk‖−1xk → x̄ with
‖x̄‖ = 1. By the compactness of B(ε, d), without loss of generality, we can
assume that gk → g with g ∈ B(ε, d).

By assumptions, for every k, one has

(f + gk)(y) ≥ (f + gk)(xk), ∀y ∈ K. (4.4)

Let u ∈ K be fixed and v ∈ K∞ be arbitrary. By the convexity of K, one has
u+ ‖xk‖v ∈ K for any k. From (4.4), we conclude that

(f + gk)(u+ ‖xk‖v) ≥ (f + gk)(xk).
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Dividing this inequality by ‖xk‖d and taking k → +∞, we obtain

(f + g)d(v) ≥ (f + g)d(x̄).

It follows that x̄ ∈ Sol (K∞, (f + g)d). Because of (4.3), Sol (K∞, (f + g)d) is
contained in {0}. This contradicts to ‖x̄‖ = 1. Hence, Oε must be bounded.

(b) It is not difficult to prove that the graph

gph(Sol) :=
{

(g, x) ∈ Pd×Rn : x ∈ Sol(K, g)
}

is closed in Pd×Rn. Since SolK(·) is locally bounded on R, according to [18,
Theorem 5.19], SolK(·) is upper semicontinuous on R. ut

4.2 Local upper-Hölder stability of the solution map

To prove the local upper-Hölder stability of SolK(·), we need the following
lemma.

Lemma 4.2 ([19]) Let U be a semi-algebraic subset represented by

U = {x ∈ Rn : ui(x) = 0, i ∈ [l], vj(x) ≤ 0, j ∈ [m]} ,

where ui(x), i ∈ [l], and vj(x), j ∈ [m], are polynomials. For any compact set
V ⊂ Rn, there are constants c > 0 and H > 0 such that

d(x, U) ≤ c
( l∑
i=1

|ui(x)|+
m∑
j=1

[vj(x)]+

)H
for all x ∈ V , here [r]+ := max{r, 0} and d(x, U) the usual distance from x to
the set U .

Theorem 4.1 Assume that OP(K, f) is regular and K is a convex set given
by

K = {x ∈ Rn : pi(x) = 0, i ∈ [l], qj(x) ≤ 0, j ∈ [m]} ,

where all pi, qj are polynomials. If Sol(K, f) is nonempty, then the map SolK(·)
is locally upper-Hölder stable at f , i.e., there exist ` > 0, H > 0 and ε > 0
such that

Sol(K, g) ⊂ Sol(K, f) + `‖g − f‖H B (4.5)

for all g ∈ Pd satisfying ‖g − f‖ < ε, where B is the closed unit ball in Rn.

Proof Suppose Sol(K, f) is nonempty and its optimal value is f∗. Because
OP(K, f) is regular and K is convex, according to Proposition 4.1, there exists
ε > 0 such that Sol(K, f) ⊂ Oε defined by (4.2) is bounded. Let V be the
closure of Oε. It follows that V is a nonempty compact set. By the assumptions,
we see that

Sol(K, f) = {x ∈ Rn : f(x)− f∗ = 0, pi(x) = 0, i ∈ [l], qj(x) ≤ 0, j ∈ [m]}.
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From this equation, by applying Lemma 4.2 for U = Sol(K, f) and the compact
set V , there are constants c0 > 0 and H > 0 such that

d(x, Sol(K, f)) ≤ c0A(x)H ∀x ∈ V, (4.6)

where

A(x) := |f(x)− f∗|+
l∑
i=1

|pi(x)|+
m∑
j=1

[qj(x)]+.

Let g ∈ Pd be arbitrary given such that ‖g − f‖ < ε. From the definition
of V , Sol(K, f) and Sol(K, g) are subsets of V . Here, Sol(K, g) may be empty.
By the compactness of V , we define the constant L := max{‖X(x)‖ : x ∈ V }.
Hence, one has

|g(x)− f(x)| = |(g − f)(x)| ≤ L‖g − f‖ ∀x ∈ V. (4.7)

If Sol(K, g) is empty, then (4.5) is obvious. Thus, we consider the case that
Sol(K, g) 6= ∅. Since both Sol(K, f) and Sol(K, g) are nonempty and compact,
for any xg ∈ Sol(K, g), there is xf ∈ Sol(K, f) such that

‖xg − xf‖ = d(xg,Sol(K, f)). (4.8)

Because of pi(xg) = 0 for i ∈ [l] and qj(xg) ≤ 0 for j ∈ [m], from the
definition of A(x), one has A(xg) = |f(xg) − f∗|. By (4.8) and (4.6), we see
that

‖xg − xf‖ ≤ c0A(xg)
H = c0|f(xg)− f∗|H .

Since xf ∈ Sol(K, f), we have f(xf ) = f∗ ≤ f(xg). Therefore, we obtain

‖xg − xf‖ ≤ c0|f(xg)− f∗|H = c0(f(xg)− f(xf ))H . (4.9)

It follows from xg ∈ Sol(K, g) that g(xg) − g(xf ) ≤ 0. Since xg, xf ∈ V , we
conclude from (4.7) that

f(xg)− f(xf ) = (f(xg)− g(xg)) + (g(xg)− g(xf )) + (g(xf )− f(xf ))

≤ (f(xg)− g(xg)) + (g(xf )− f(xf ))

≤ 2L‖g − f‖.

The inequality (4.9) and the last result lead to

‖xg − xf‖ ≤ c0(2L)H‖g − f‖H ,

consequently,

d(xg,Sol(K, f)) = ‖xg − xf‖ ≤ `‖g − f‖H ,

where ` = c0(2L)H .
The conclusion holds for any xg in Sol(K, g). Hence, the inclusion (4.5) of

the theorem is proved. ut
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5 Genericity of the regularity condition

In this section, we discuss the genericity of the regularity condition of polyno-
mial optimization problems.

One says that a subset A is generic in Rm if A contains a countable in-
tersection of dense and open sets in Rm. If A is generic in Rm and A ⊂ B
then B also is generic in Rm. Let T be a topological space. It is known that if
h : Rm → T is a homeomorphism and A is generic in Rm then h(A) is generic
in T .

Let U ⊂ Rm be a semi-algebraic set. Then there exists a decomposition
of U into a disjoint union [20, Theorem 2.3.6], U = ∪si=1Ui, where each Ui
is semi-algebraically homeomorphic to (0, 1)di . Here, let (0, 1)0 be a point,
(0, 1)di ⊂ Rdi be the set of points x = (x1, . . . , xdi) such that xj ∈ (0, 1) for all
j = 1, . . . , di. The dimension of U is defined by dim(U) := max{d1, . . . , ds}.
The dimension is well-defined and does not depends on the decomposition of
S. Recall that if the dimension of a nonempty semi-algebraic set U is zero,
then U has finitely many points. Furthermore, if dim(Rm \U) < m, then U is
generic in Rm (see, e.g. [21, Lemma 2.3]).

The space generated by of all monomials of degree d listed by lexicographic
ordering {xd1, xd−11 x2, x

d−1
1 x3, . . . , x

d
n} is denoted by Hd. One has the direct

sum Pd = Hd⊕Pd−1. The dimension of the vector space is denoted by η. For
every homogeneous polynomial h ∈ Hd, one has a unique b ∈ Rη, such that
h(x) = bTXd(x), where

XT
d (x) = (xd1, x

d−1
1 x2, x

d−1
1 x3, . . . , x

d
n).

Here, ∇(bTXd(x)) is the gradient vector of bTXd(x) and that Db[∇(bTXd(x))]
is the Jacobian matrix of bTXd(x) with respect to b.

Lemma 5.1 One has rank(Db[∇(bTXd(x))]) = n for all x ∈ Rn \{0}.

Proof In the proof, we are only interested in the monomials xd−1i xj , where
i, j ∈ [n]. Hence, for convenience, we rewrite XT

d (x) and bT respectively as
follows:

(xd1, x
d−1
1 x2, . . . , x

d−1
1 xn;xd−12 x1, x

d
2, . . . , x

d−1
2 xn; . . . ;xd−1n x1, x

d−1
n x2, . . . , x

d
n; . . . )

and
(b11, b12, . . . , b1n; b21, b22, . . . , b2n; . . . ; bn1, bn2, . . . , bnn; . . . ).

Then, we have

bTXd(x) =
∑
j∈[n]

b1jx
d−1
1 xj +

∑
j∈[n]

b2jx
d−1
2 xj + · · ·+

∑
j∈[n]

bnjx
d−1
n xj +Q, (5.1)

where Q is a homogeneous polynomial of degree d.
From (5.1), an easy computation shows that

∂(bTXd(x))

∂xi
= dbiix

d−1
i + (d− 1)

∑
j 6=i

bijx
d−2
i xj +

∑
j 6=i

bjix
d−1
j +

∂Q

∂xi
,
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and the n× η-matrix Db[∇(bTXd(x))] can be described as follows

Db[∇(bTXd(x))] =
[
M1,M2, · · · ,Mn, · · ·

]
,

where the submatrix Mi, for i ∈ [n], is defined by

Mi =

x
d−1
i Ei−1 Oi×1 Oi×(n−i)

L1×(i−1) dxd−1i R1×(n−i)

Oi×(n−i) O(n−i)×1 x
d−1
i En−i


with Ek being the unit k × k-matrix, Ok×s being the zero k × s-matrix,

L1×(i−1) =
(

(d− 1)xd−2i x1, . . . , (d− 1)xd−2i xi−1

)
,

and
R1×(n−i) =

(
(d− 1)xd−2i xi+1, . . . , (d− 1)xd−2i xn

)
.

We observe that det(Mi) = dx
d(d−1)
i , for all i ∈ [n]. Since x 6= 0, there exists

l ∈ [n] such that xl 6= 0. This implies that rank(Ml) = n. Hence, the rank of
Db[∇(bTXd(x))] is n, for any x 6= 0. ut

Suppose that C is a polyhedral cone given by

C = {x ∈ Rn : Ax ≥ 0} , (5.2)

where A = (aij) ∈ Rp×n. Let KKT(C, g), where g ∈ Pd, be the set of the
Karush-Kuhn-Tucker points of OP(C, g), i.e. x ∈ KKT(C, g) if and only if
there exists λ ∈ Rp such that{

∇g(x)−ATλ = 0,
λT (Ax) = 0, λ ≥ 0, Ax ≥ 0.

(5.3)

From the Karush-Kuhn-Tucker conditions, we see that Sol(C, g) ⊂ KKT(C, g)
for all g ∈ Pd.

For each index set α ⊂ [p], we associate the pseudo-face Cα of C, which is
denoted and defined by

Cα :=
{
x ∈ Rn :

n∑
j=1

aijxj = 0 ∀i ∈ α,
n∑
j=1

aijxj > 0 ∀i ∈ [p] \ α
}
,

where aij is the element in the i-th row and the j-th column of A. The number
of pseudo-faces of C is finite. These pseudo-faces establish a disjoint decom-
position of C. So, we obtain

KKT(C, g) =
⋃
α⊂[p]

(KKT(C, g) ∩ Cα) , (5.4)

The following proposition shows that the Karush-Kuhn-Tucker set-valued
map of homogeneous polynomial optimization problems

KKTC : Rη ⇒ Rn, b 7→ KKTC(b) = KKT(C, bTXd(x))

is finite-valued, i.e., the cardinal # KKTC(b) is finite, on a generic semi-
algebraic set of Rη.
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Proposition 5.1 Assume that the cone C is polyhedral given by (5.2) and the
matrix A is full rank. Then, there exists a generic semi-algebraic set S ⊂ Rη
such that # KKTC(b) <∞ for any b ∈ S.

Proof Let Cα be a nonempty pseudo-face of C and 0 /∈ Cα. This implies that
Xd(x) is nonzero on this pseudo-face. We consider the function

Φα : Rη ×Cα × R|α|+ → Rn+|α|,

which is defined by

Φα(b, x, λα) =
(
∇(bTXd(x)) +

∑
i∈α

λiAi, Aαx
)
,

where Aαx = (Ai1x, . . . , Ai|α|x), ij ∈ α. Clearly, Cα is smooth and Φα is a
semi-algebraic function of class C∞. The Jacobian matrix of Φα is determined
as follows

DΦα =

[
Db[∇(bTXd(x))] ∗ ATα

O|α|×η Aα O|α|×|α|

]
.

From Lemma 5.1, for all x ∈ Cα, the rank of Db[∇(bTXd(x))] is n. By assump-
tions, we conclude that the rank of the matrix DΦα is n+ |α| for all x ∈ Cα.

Therefore, 0 ∈ Rn+|α|+|J| is a regular value of Φα. According to the Sard The-
orem with parameter [21, Theorem 2.4], there exists a generic semi-algebraic
set Sα ⊂ Rη such that if b ∈ Sα then 0 is a regular value of the map

Φα,b : Cα × R|α| → Rn+|α|, Φα,b(x, λα) = Φα(b, x, λα).

We see that Ω(α, b) := Φ−1α,b(0) is a semi-algebraic set. Furthermore, as the
Regular Level Set Theorem [22, Theorem 9.9], we can claim that if the set is
nonempty then it is a 0−dimensional semi-algebraic set. It follows that Ω(α, b)
is a finite set. Moreover, from (5.3), one has KKTC(b) ∩ Cα = π(Ω(α, b)),

where π is the projection Rn+|α| → Rn which is defined by π(x, λα) = x.
Hence, KKTC(b) ∩ Cα is a finite set.

We consider the case that 0 ∈ Cα and define U := Cα \ {0}. Clearly, U is
semi-algebraic since Cα and {0} are semi-algebraic. From (5.3), we see that
0 ∈ KKTC(b). Hence,

KKTC(b) ∩ Cα = {0} ∪ (KKTC(b) ∩ U).

From the previous argument, KKTC(b)∩U is a finite set. By the decomposition
(5.4), KKTC(b) is a finite set.

Take S = ∩α⊂[p] Sα, it follows that S is generic in Rη and KKTC(b) has
finite points for any b ∈ S. Hence, # KKTC(b) < ∞ for all b in S. The proof
is complete. ut

Corollary 5.1 Assume that the cone C is polyhedral given by (5.2) and the
matrix A is full rank. Then there exists a generic set Gd in Hd such that
# Sol(C, g) <∞ for any g ∈ Gd.
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Proof Since Rη and Hd are homeomorphic, with the isomorphism Π : Rη →
Hd defined by Π(b) = bTXd(x). According to Proposition 5.1, there exists a
generic set S ⊂ Rη such that the Karush-Kuhn-Tucker set KKT(C, b) is finite,
for any b ∈ S. Clearly, Gd := Π(S) is generic in Hd. Since Sol(C, bTXd(x)) ⊂
KKT(C, b), one has # Sol(C, g) <∞, for any g ∈ Gd. ut
Remark 5.1 If the constraint K is represented by

K = {x ∈ Rn : q1(x) ≤ 0, . . . , qm(x) ≤ 0} , (5.5)

where q1, . . . , qm are convex polynomials, then the recession cone of K is a
nonempty polyhedral cone. We denote

Kj = {x ∈ Rn : qj(x) ≤ 0} , j ∈ [m].

For each j ∈ [m], Kj is closed convex set, and Kj
∞ is polyhedral (see [9, p.39]).

Since K = K1 ∩ · · · ∩Km, according to [3, Proposition 2.1.9], one has

K∞ =
⋂
j∈[m]

Kj
∞.

If follows that K∞ is a nonempty polyhedral cone. Hence, there exists a matrix
A ∈ Rp×n such that

K∞ = {x ∈ Rn : Ax ≥ 0}. (5.6)

Theorem 5.1 Assume that K be represented by (5.5) and the cone K∞ rep-
resented by (5.6), where A is full rank. Then, the set R is generic in Pd.
Proof From Remark 5.1, the recession cone K∞ is a nonempty polyhedral
cone, where K∞ = {x ∈ Rn : Ax ≥ 0}. According to Corollary 5.1, there
exists a generic set Gd in Hd such that # Sol(K∞, g) < ∞ for any g ∈ Gd.
Because of the direct sum Pd = Hd⊕Pd−1, the set Gd ⊕ Pd−1 is generic in
Pd. It is easy to check that Gd ⊕ Pd−1 ⊂ R. Hence, R is generic in Pd. ut
Example 5.1 Consider the problem OP(K, f) given in Example 2.1, we see
that

RR,2 = {a2x2 + a1x+ a0 : a2 6= 0, a1 ∈ R, a0 ∈ R}
is open and dense in P2.

Conclusions and future work

We introduced a regularity condition in the asymptotic sense of polynomial
optimization problems. Two criteria for the solution existence, namely, Frank-
Wolfe type theorem and Eaves type theorem have been obtained. Under the
regularity condition, we established several local properties of the solution map
of polynomial optimization problems. When the constraint set is convex and
semi-algebraic, we proved the genericity of the regular property.

Based on the regularity condition, the stability of the optimal value func-
tion of polynomial optimization problems will be studied in future work. Fur-
thermore, the regularity condition enables us to investigate the connectedness
of the solution sets of convex polynomial vector optimization problems.
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