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Abstract

By revisiting the relationships between energy density and sound intensity, this paper presents

an energetic wave equation adapted for long room such as corridors. This linear, second-order,

hyperbolic equation depends on few parameters such as mean free path, absorption and scatter-

ing coefficients. We solve it by a finite difference in time domain technique and compare the

results with in situ measurements carried out with a SoundField microphone to find appropriate

values of the model parameters by an adjustment procedure.

Keywords: architectural acoustic, energy density, wave equation, scattering coefficient,

room acoustic modelling, in situ measurement, SoundField microphone.

1 Introduction

When characterizing the acoustics of closed spaces, to-day’s practitioners adapt their prediction
tools to the case at hand. Basically two types of tools are available, depending on the amount of
details they are looking for. For simple spaces, where only reverberation matters, Sabine’s theory
and its variants are well adapted: they give quick and realistic results. For complex spaces, such as
concert venues, ray-tracing techniques are mostly used, as a comprehensive documentation of the
acoustics is required. However, ray-tracing suffers from two main shortcomings: it is not adapted to
low frequencies where the modal structure of the sound field dominates (small rooms); and it needs
supplementing by a statistical model of some sort in order to accurately model the reverberant tails
of the responses [1, 2, 3], otherwise predictions are unrealistic [4, 5].

A commonly used statistical model to improve the reverberant tails is the introduction of scat-
tering, with reflections based on Lambert’s law. The model has been popularized by Kutruff in the
70’s [6], and several variants of it, including radiosity models [7], have been developed. Common
to them is to consider exchanges of acoustical energy between boundary elements, and to iterate
the exchanges until stable energy decays are obtained everywhere in the space. They give realistic
results, but their strong assumptions limit their applicability [8].

A simpler statistical model, based on a diffusion equation, was proposed by Ollendorff [9] and
developed by Picaut and his collaborators [10, 11]. It introduces diffusion coefficients within the
volume of the space, leading to non uniform reverberant fields decaying with distance from the
source, as are observed in disproportionate spaces where one dimension is very different from the
others. Therefore, the diffusion model can be viewed as an extension of Sabine’s model [12].
However, attempts to relate the volume diffusion coefficient to wall scattering have been unsuccessful
so far [13].

The present work is an attempt to overcome this limitation of the Ollendorff-Picaut diffusion
model. Like the diffusion model, it roots in Morse and Feshback’s textbook [14]. But instead of
considering energy conservation only, and supplement it with some sort of state equation linking
sound energy to sound intensity by means of the scattering coefficient, it makes use of the full
stress-energy tensor [15] to obtain a second equation between energy and intensity (Sec. 2). We
solve this set of equations in Sec. 3 under the form of a linear, second order, hyperbolic, differential
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equation focused on the energy density with a finite difference time domain (FDTD) method. We
chose an explicit and fast-computing, one-dimensional algorithm. The boundary conditions are
mixed. Space and time discretization steps, stability and consistence are presented.

An energy and momentum balance on the walls permits to introduce the absorption and scat-
tering coefficients. By integrating on the cross-section of the room, we obtain a one-dimensional
equation. Consequently, the method is adapted to long rooms such as corridors. In Sec. 4 we
validate the model and compare the results with in situ measurements. Sec. 5 discusses the results
and Sec. 6 concludes the paper.

In the following, we follow the recommendation of Embrechts [16], and use the word ”diffusion”
to the process within the room. The process on the wall is called ”scattering”.

2 Theory

We consider the wave equation applied to the velocity potential Ψ defined by ~v = −~∇Ψ and
p = ρ∂tΨ where ~v is the particle velocity vector, ~∇ the gradient operator, ρ the air density, p the
sound pressure and where we note ∂i and ∂ii the first and second derivatives according to coordinate
i respectively. We have

1

c2
∂ttΨ − ∆Ψ = 0 (1)

with ∆ the Laplacian operator and c the speed of sound in the medium.

2.1 Energy density conservation

Multiplying Eq. (1) by the first time derivative ∂tΨ leads to the conservation of energy to a factor
ρ that we neglect in the following:

∂tΨ
1

c2
∂ttΨ − ∂tΨ∆Ψ = 0

Applying Leibnitz formula for linear differential operator products, we successively obtain

∂tΨ
1

c2
∂ttΨ =

1

2c2
∂t(|∂tΨ|2)

∂tΨ∆Ψ = ~∇ · (∂tΨ~∇Ψ) − ~∇∂tΨ · ~∇Ψ

= ~∇ · (∂tΨ~∇Ψ) − 1

2
∂t|~∇Ψ|2

where ~∇· is the divergence operator. Subtracting both lines, we obtain

− ~∇ · (∂tΨ~∇Ψ) +
1

2
∂t(

1

c2
|∂tΨ|2 + |~∇Ψ|2) = 0 (2)

Morse and Feshback [14] defined the energy density E:

E =
ρ

2
(

1

c2
|∂tΨ|2 + |~∇Ψ|2) (3)

and the sound intensity vector ~I, which characterizes the means flow of energy:

~I = −ρ∂tΨ~∇Ψ (4)

Noting ~J =
~I
c
, the conservation of energy is given by Eq. (2) along with Eq. (3) and (4):

1

c
∂tE + ~∇ · ~J = 0 (5)

By extension, we still call ~J the sound intensity.
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2.2 Sound intensity conservation

In the same way, multiplying Eq. (1) by the gradient ~∇Ψ leads to the conservation of sound
intensity:

~∇Ψ
1

c2
∂ttΨ − ~∇Ψ∆Ψ = 0

The second member on the left side gives

−~∇Ψ∆Ψ = −~∇ · (~∇Ψ ⊗ ~∇Ψ) + ~∇(
1

2
|~∇Ψ|2)

where ⊗ denotes the outer, or Kronecker, product. The first member gives

~∇Ψ
1

c2
∂ttΨ =

1

c2
∂t(∂tΨ~∇Ψ) − 1

c2
~∇(

1

2
|∂tΨ|2)

Adding both members, we obtain

− 1

c2
∂t(∂tΨ~∇Ψ) + ~∇ · (~∇Ψ ⊗ ~∇Ψ) +

1

2
~∇(

1

c2
|∂tΨ|2 − |~∇Ψ|2) = 0

(6)

with ρ(∂tΨ~∇Ψ) = −~I = −c ~J.
The conservation of sound intensity is given by Eq. (6) along with Eq. (3) and (4):

1

c
∂t

~J + ~∇ · E = 0 (7)

where E is the wave-stress symmetric tensor [15], which does not reduce to the energy density
E of equation (3).

2.3 System of coupled equations

Developing the wave-stress tensor, Eq. (5) and Eq. (7) may be written as a system of coupled
equations:

1

c
∂tEtt + ~∇ · ~J = 0

1

c
∂t

~J + ~∇





Exx Eyx Ezx

Exy Eyy Ezy

Exz Eyz Ezz



 = 0

(8)

where the Eij can be expressed in terms of the velocity potential by

Ett = E =
ρ

2
(

1

c2
|∂tΨ|2 + |~∇Ψ|2)

Exx =
ρ

2
(

1

c2
|∂tΨ|2 + |∂xΨ|2 − |∂yΨ|2 − |∂zΨ|2)

Eyy =
ρ

2
(

1

c2
|∂tΨ|2 − |∂xΨ|2 + |∂yΨ|2 − |∂zΨ|2)

Ezz =
ρ

2
(

1

c2
|∂tΨ|2 − |∂xΨ|2 − |∂yΨ|2 + |∂zΨ|2)

Exy = ρ∂xΨ∂yΨ

Exz = ρ∂xΨ∂zΨ

Eyz = ρ∂yΨ∂zΨ

Note that equations (8) express Emmy Noether (1882-1935)’s famous theorem connecting sym-
metry with conservation laws.
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One can remark that the sound intensity can be noted as ~J = (Jx, Jy, Jz) = (Etx, Ety, Etz) where
Jx, Jy and Jz are the components of the sound intensity according along the three coordinates.
Indeed, the sound intensity vector can be also expressed in terms of the velocity potential by

Etx = −ρ

c
∂tΨ∂xΨ

Ety = −ρ

c
∂tΨ∂yΨ

Etz = −ρ

c
∂tΨ∂zΨ

2.4 Stress-energy tensor

We are now able to generalize the energy conservation by combining all the energy quantities E, ~J
and E into a single tensor, the stress-energy tensor:

T =









E Etx Ety Etz

Etx Exx Exy Exz

Ety Exy Eyy Eyz

Etz Exz Eyz Ezz









which is equivalent to

T =

(

E ~JT

~J E

)

with (·)T the transposed vector.

2.5 Dimensional reduction by integration

Conservation relations between the energy density and sound intensity involve parameters linked
to the physical behavior of sound in the medium. Scattering within the volume and on the wall was
described by Ollendorf [9] and later by Picault et al. [10] under the form of a diffusion coefficient in a
diffusion equation. Since the theory of statistical room acoustics was derived by Sabine, researchers
have aimed at defining diffusion [17], at characterizing it objectively [18, 19] or subjectively [20].
Here, we complete the system of coupled equations with an energy balance on the walls that
naturally introduces acoustic absorption and scattering.

2.5.1 Energy balance on the walls

Starting with the first part of Eq. (8), we consider the propagation of sound in a corridor along the
~x direction with dimensions lx × ly × lz where lx is the length, ly the width and lz the height of the
corridor. The section of the corridor is given by S = lylz. We consider E and Jx constant on the
section, Jy is independent of z and Jz is independent of y. We assume strict hypotheses that will
be relaxed later, and integrate on the section of the corridor:

1

c

∫

S

∂tEdS +

∫

S

∂xJxdS +

∫

S

∂yJydS +

∫

S

∂zJzdS = 0 (9)

where dS = dydz is an element of the section S, dy and dz are elements of the width and the
heigh of the corridor respectively. Resolving Eq. (9) gives a new relation involving wall absorption:

1

c
∂tES + ∂xJxS + (J+

y − J−
y )lz

+ (J+
z − J−

z )ly = 0 (10)
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where J+
y is the mean sound intensity in the ~y direction next to the wall situated at side +. Thus,

J+
y , resp. −J−

y is the energy flow through the lateral wall +, resp. − of the corridor. Additionally,
this flow through the wall is proportional to the sound intensity absorbed by the wall:

J+
y = −J−

y = Jabs (11)

We propose to introduce a simple energy balance on the wall. Evidently, the energy flux entering
the wall is given by J+

y and |J−
y |, the absorbed sound intensities normal to the wall. And the total

energy in front of the wall is given by E. As the total energy is non-directional, a quarter of this
energy can be considered as entering the wall, as is known from Sabine theory; and a quarter as
leaving the wall for symmetrical reasons. In a similar way, half of the normal sound intensity can
be considered as entering the wall, and half as leaving it but with a negative sign. We then obtains:

Jinc =
E

4
+

J

2

Jref =
E

4
− J

2

witch indeed satisfy the energy balance:

Jinc − Jref = Jabs

where Jabs = αJinc is the sound intensity absorbed by the wall and α is the Sabine absorption
coefficient. We have

Jabs = J = α(
E

4
+

J

2
)

and we recover the relation derived by Jing and Xiang [21]:

J =
α

2(2 − α)
E (12)

a posteriori justifying our simple energy balance.
We introduce the modified absorption coefficient A:

A =
α

1 − α
2

and Eq. (11) becomes

J+
y = −J−

y = J =
A

4
E

likewise for Jz :

J+
z = −J−

z = J =
A

4
E

where the coefficient 1
4 comes from the diffuse field theory [22]. Eq. (10) can now be written as

1

c
∂tES + ∂xJxS + AE

ly + lz
2

= 0 (13)

The definition of the mean free path is

λ =
4V

Sw

(14)

with Sw the total surface area of the walls. The total surface area of a corridor of length lx,
width ly and height lz can be developed as Sw = 2lx(ly + lz) + 2lylz. Dividing the numerator and
the denominator of Eq. (14) by the length lx of the corridor yields

λ =
4S

2(ly + lz) + 2
lylz

lx

(15)
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The corridor is assumed to be long, with ly, lz < 0, 1lx. Its width and its height can be neglected
in the second term in the denominator of Eq. (15), which becomes

λ =
2S

ly + lz
(16)

Replacing Eq. (16) in Eq. (13), we obtain the following equation:

1

c
∂tE + ∂xJx = −A

λ
E (17)

Note that Eq. (17) can easily be generalized to corridors with different absorption coefficient
on each walls by simply introducing the mean absorption coefficient.

2.5.2 Momentum balance on the walls

Applying this method to the first component of the second part of Eq. (8) leads to

1

c

∫

S

∂tJxdS +

∫

S

∂xExxdS +

∫

S

∂yExydS +

∫

S

∂zExzdS = 0

(18)

We need not consider the other components as they do not give more information than Eq. (17).
We consider Jx and Exx constant on the section, Exy is independent of y and Exz is independent
of z. Again, we assume strict hypotheses that will be relaxed later. Integrating Eq. (18) yields

1

c
∂tJxS + ∂xExxS +

(E+
xy − E−

xy)lz + (E+
xz − E−

xz)ly = 0

(19)

where E+
xy is the wave stress next to the wall situated at side +. Thus, E+

xy, resp. −E−
xy, is the

wave stress flow through the lateral wall +, resp. − of the corridor.
We postulate that this stress is proportional to the intensity flux scattered by the wall:

E+
xy = −E−

xy = Mscat

where Mscat is the sound momentum scattered by the wall. In analogy with the energy balance
on the wall (Sec. 2.5.1), we consider that the momentum balance is the sum of two contributions;
the intensity flux in the ~x direction (parallel to the wall), and the normal stress. In accordance, a
quarter of the intensity flux enters the wall and a quarter leaves the wall, which is coherent to the
fact that the intensity Jx is parallel to the wall and must therefore contribute equally to entering
and leaving fluxes.

Similarly, half of the stress enters the wall, and half leaves it but with a negative sign. We
thus obtain, with Mxy,ent the entering momentum and Mxy,out the outgoing momentum, and with
J = Jx as J has only one component:

Mxy,ent =
Exy

2
+

J

4

Mxy,out = −Exy

2
+

J

4

yielding the following momentum balance:

Mxy,ent − Mxy,out = Mxy,scat (20)

where Mxy,scat = βMxy,ent, with β the scattering coefficient.
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Finally, we have

Mxy,scat = Exy = β(
Exy

2
+

J

4
)

that is

Exy =
β

2(2 − β)
J (21)

We introduce the modified scattering coefficient D = β

1− β

2

, and Eq. (20) becomes

E+
xy = −E−

xy =
D

4
J

likewise for Exz :

E+
xz = −E−

xz =
D

4
J

Thus, Eq. (19) reduces to

1

c
∂tJS + ∂xExxS + DJ

(ly + lz)

2
= 0

from where we obtain, introducing the mean free path of Eq. (16):

1

c
∂tJ + ∂xExx = −D

λ
J (22)

Eq. (17) and (22) are part of a system of coupled first order partial differential equations. Those
equations describe the one-dimensional conservation of the energy density and the sound intensity
with absorption and scattering on the walls as function of the modified adsorption and scattering
coefficients A and D. The latter accounts for the redistribution of the directions of propagation of
energy. In one dimension, the characteristics of absorption and scattering on the walls parallel to
the ~x direction are included in the volume equations, whereas the characteristics of the ends walls,
perpendicular to the ~x direction, are considered only as boundaries conditions.

As for energy, Eq. (22) can easily be generalized to corridors with different scattering coefficients
on each walls, by simply introducing the mean scattering coefficient.

2.6 General equation

Eq. (17) and (22) are similar to the transmission line equations. We exploit this similitude to
reduce the system of coupled equations to a single generalized wave equation involving the sound
energy density.

We can thereby transform Eq. (17) and (22) as follows:

(
1

c
∂t +

A

λ
)E = −∂xJ (23)

(
1

c
∂t +

D

λ
)J = −∂xE (24)

By derivating Eq. (24) with respect to space, we have

(
1

c
∂t +

D

λ
)∂xJ = −∂xxE

Replacing ∂xJ by its value in Eq. (23) yields

(
1

c
∂t +

D

λ
)(

1

c
∂t +

A

λ
)E = ∂xxE
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Which can be developed in

1

c2
∂ttE − ∂xxE +

A + D

λc
∂tE +

AD

λ2
E = 0 (25)

Eq. (25) is a linear second-order hyperbolic equation called the Telegraph equation. It is
constituted of an ordinary wave equation, to which two supplementary terms combine the effect of
absorption and scattering. It admits two limiting cases:

• In the steady state case, E does not depend on time t, and Eq. (25) reduces to:

∂xxE =
AD

λ2
E (26)

with solution E = E0e−
√

AD
λ

|x|.

• In the limit of β close to 2, but inferior to it, D tends toward infinity. One can divide Eq.
(25) by D

λ
, leading to:

λ

D
(

1

c2
∂tt − ∂xx)E + (1 +

A

D
)
1

c
∂tE +

A

λ
E ≈ 1

c
∂tE +

A

λ
E = 0

with solution E = E0e− Ac
λ

·t. In other words, one recovers Sabine reverberation, albeit with
a modified absorption coefficient. However, as J is then very small, the energy remains
concentrated around the source.

Note that, when α = β, Eq. (25) can be exactly factorized into:

(
1

c
∂t + ∂x +

A

λ
) · (

1

c
∂t − ∂x +

A

λ
)E = 0

with two travelling sound packets:

E+ = E0e− A
λ

ctδ(ct − x)

E− = E0e− A
λ

ctδ(ct + x)

The time decay is then given by Sabine formula.

2.7 Conditions on the end boundaries

The conditions on the extremities can be written from the energy balance that has been obtained
earlier. With respect to the system of coupled equations, the balance gives

~J · ~n = Jn = ArE

where ~n is the vector normal to the wall, and n is equal to ±1 in one dimension. And Ar is
the modified absorption coefficient applied to the boundaries and has already been defined in the
literature [21]. We have

Ar =
α

2(2 − α)
=

A

4

It is a Neumann boundary condition. By projecting Eq. (24) on the extremities, we have

(
1

c
∂t +

D

λ
)Jn = −∂xEn

We can replace the expression of Jn in Eq. 2.7, we obtain

(
1

c
∂t +

D

λ
)ArE = −n∂xE

for both extremities, and finally

n∂xE + (
1

c
∂t +

D

λ
)ArE = 0 (27)

with n = +1 at the ”right extremity” (large values of x) and n = −1 at the ”left extremity”
(small values of x). This is a mixed boundary condition. As one can see, the scattering coefficient
plays some role in the end boundary conditions.
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3 Numerical solving

In this section we present the numerical solving technique that we use to compute the general
equation (25). This equation is linear second-order hyperbolic and involve the energy density. Like
the transmission lines equations, it is a one-dimensional wave propagation equation. We used this
similitude for solving Eq. (25).

3.1 Finite difference time domain simulation

Finite difference time domain (FDTD) methods have been widely used to solve partial differential
equations. Yee’s 1966 seminal paper [23] first describes the FDTD numerical technique for solving
Maxwell’s equations. Booteldorren [24] first applied the FDTD method to room acoustics. FDTD
technique is a wave based method not commonly used in room acoustics because of its computa-
tional cost at high frequencies. For low frequencies problems, FDTD is a fast, direct, time-domain
approach that gives locally discretized explicit solutions. In this paper, we use FDTD to solve
energetic problem, so we can use larger spatial grids and time steps in comparison with pressure
wave equations.

3.2 Schemes

The formulation of the FDTD approximation uses a non staggered grid on energy density compo-
nents. The energy density is determined at the grid positions i∆x and the times n∆t, with ∆x the
space discretization step and ∆t the time discretization step. Index i marks the space points and
index n marks the discrete times.

Schemes have been proposed in the literature for the propagation equation by Booteldorren [24]
and Kowalczyk [25]. Savioja [26] simulated real time room acoustics based on those schemes and
Navarro Ruiz [27] used a FDTD method based on the diffusion equation to predict sound fields in
rooms. On the other hand, Nagel [28] used a revised mesh for the transmission lines equations in
case of an one-dimensional electromagnetic wave simulation. Jianhui et al. [29] applied a FDTD
method to the time domain reflectometry cable length measurement. Mohanty [30] proposed an
unconditionally stable difference scheme for a second order linear hyperbolic equation similar to
Eq. (25).

Here, we use instead a simplified finite-difference approach which is a centred-time centred-space
scheme. The approximations are:

∂2E

∂t2

∣

∣

∣

∣

t

x

=
En+1

i − 2En
i + En−1

i

∆t2
+ O(∆t)2

∂2E

∂x2

∣

∣

∣

∣

t

x

=
En

i+1 − 2En
i + En

i−1

∆x2
+ O(∆x)2

∂E

∂t

∣

∣

∣

∣

t

x

=
En+1

i − En−1
i

2∆t
+ O(∆t)2

(28)

where O(·) is the truncation error.

3.3 Discrete general equation

Replacing Eq. (28) in Eq. (25), we have

En
i+1 − 2En

i + En
i−1

∆x2
=

En+1
i − 2En

i + En−1
i

c2∆t2

+
En+1

i − En−1
i

2∆t

A + D

λc

+ En
i

AD

λ2
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that is

En+1
i (a + 1) = En−1

i (a − 1) + En
i (2(1 − C2

r ) − b)

+ C2
r (En

i+1 + En
i−1) + O[(∆t)2, (∆x)2]

(29)

with Cr = c∆t
∆x

the Courant-Friedrichs-Lewy coefficient, a = (A + D) c∆t
2λ

, b = AD( c∆t
λ

)2. This
equation is a simple explicit form of FDTD. The accuracy of this scheme is second order in time
and space.

3.4 Discrete equations on the end boundaries

We model the reflections on the walls. The energy balance on the boundaries gives Eq. (27). The
approximations used to this equation are centred space and time:

∂E

∂x

∣

∣

∣

∣

t

x

=
En

i+1 − En
i−1

2∆x
+ O(∆x)

∂E

∂t

∣

∣

∣

∣

t

x

=
En+1

i − En−1
i

2∆t
+ O(∆t)

Those approximations are introduced in Eq. (27). The discrete boundaries equation are then
used to replace the undefined terms of Eq. (29) on the boundaries. We consider separately the
extremities x = 0 and x = nx where nx is the length of the model:

En+1
1 (1 + a + ArCr) = En

1 (2[1 − C2
r (1 +

ArD∆x

λ
)] − b)

+ 2C2
r En

2 + En−1
1 (a − 1 + ArCr)

En+1
nx (1 + a + ArCr) = En

nx(2[1 − C2
r (1 +

ArD∆x

λ
)] − b)

+ 2C2
r En

nx−1 + En−1
nx (a − 1 + ArCr)

(30)

3.5 Initial conditions

Initial conditions corresponds to the source positioned in x by giving E0
i = 0 except on i = x where

it has a given value of 10 log E0
x = 100dB.

3.6 Stability

The maximum size allowed for the simulation steps ∆t and ∆x to avoid instabilities is now calculated
by the Von Neumann analysis. Assuming that the solution of Eq. (29) is given by

En
i = Znejθi (31)

where Z can be complex and θ is real, we define the amplification factor as G =
E

n+1

i

En
i

. The

necessary condition for the solution to remain bounded is

|G| ≤ 1 (32)

Substituting Eq. (31) in Eq. (29), we have

Zn+1ejθi(a + 1) = Zn−1ejθi(a − 1)

+ Znejθi(2(1 − C2
r ) − b)

+ C2
r (Znejθ(i+1) + Znejθ(i−1))
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with Zn(ejθ(i+1) + ejθ(i−1)) = 2Zn cos(θ) = 2Zn(1 − 2 sin2( θ
2 )) and dividing by Zn−1ejθi, we

have

Z2(1 + a) − Zǫ + 1 − a = 0

where ǫ = −b + 2 − 4C2
r sin2( θ

2 ). This is a second degree equation with solutions depending on
the sign of the discriminant ∆ = ǫ2 − 4(1 − a2):

• If ∆ > 0

Z∆>0 =
ǫ ±

√
∆

2(1 + a)

The stability condition Eq. (32) reduces to
∣

∣

∣

∣

∣

ǫ ±
√

∆

2(1 + a)

∣

∣

∣

∣

∣

< 1

From the triangular inequality,|ǫ| + |
√

∆| is an upper bound of |ǫ +
√

∆|. With ∆ > 0 and
2(1 + a) > 0, a sufficient stability condition is given by

|ǫ| +
√

∆

2(1 + a)
< 1

that is |ǫ| < 2

Replacing by ǫ = −b + 2 − 4C2
r sin2(Θ

2 ) and b = AD( c∆t
λ

)2, we obtain two conditions:

ǫ < 2, b + 4C2
r sin2(

θ

2
) > 0

and

ǫ > −2, C2
r sin2(

θ

2
) < 1 − b

4

The first condition is always satisfied because b = AD
(

c∆t
2λ

)2
> 0. The second is obtained

by taking the upper bounds of sin2( θ
2 ) equal to 1. We have the stability condition for the

parameters of the FDTD model:

C2
r (1 + AD(

∆x

2λ
)2) < 1 (33)

• If ∆ < 0

Z∆<0 =
ǫ ± i

√
−∆

2(1 + a)

where i =
√

−1. As previously, stability is given by Eq. (32):

∣

∣

∣

∣

ǫ ± i
√

−∆

2(1 + a)

∣

∣

∣

∣

< 1

As the module of a complex number z = x + iy is given by |x + iy| =
√

x2 + y2, we have

ǫ2 − ∆

4(1 + a)2
< 1

Replacing ∆, we have
4(1 − a2)

4(1 + a)2
=

1 − a

1 + a
< 1

This condition is always fulfilled since 0 < a < 1.
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We conclude that as long as ∆ < 0, the schemes are unconditional stable. If ∆ > 0, stability
condition given by Eq. (33) must be respected. The stability condition involves the absorption and
scattering coefficients, the mean free path and the time and space discretization steps. We study
the stability of the model to know the domain of validity of those parameters.

To start with, the space discretization step ∆x does not have to be very small as we are studying
energy propagation. We set it at ∆x = 1m. Inversely, if the time discretization step is small, results
will be precise. We vary the value of ∆t between 1.10−4s and 1.10−2s. Then, we set the values for
the absorption and scattering coefficients between 0.1 and 0.9, and 0.1 and 1.9 respectively. Finally,
we set the free mean path equal to 2m and the sound speed at 344m/s. Table 1 gives the maximum
values of ∆t for the model to remain stable.

Table 1: Maximum values of ∆t to respect the stability condition in function of the model param-
eters α, β. Other parameters are fixed to ∆x = 1m, c = 344m/s and λ = 2m.

α β ∆t(ms)

0.1 0.1 2.91
1.1 2.90
1.9 2.89

0.5 0.1 2.88
1.1 2.77
1.9 2.60

0.9 0.1 2.60
1.1 1.81
1.9 1.32

One can observe that the stability condition is not sensitive to the variations of the absorption
and scattering coefficients, except for large scattering. This is because stability follows a scaling law
in accordance with the time and space discretization steps and depends mainly on those parameters.

4 Validation of the models

To assess the general equation, we compute the model with MATLAB. The computation results are
first validated by varying the absorption and scattering coefficients. Then, we compare the results
with in situ measurements. This permits to obtain the coefficients by an adjustment procedure.
The results are energy levels presented after time integration for each position of receiver (space
decays), and as function of time after source extinction for two receiver positions (time decays).

4.1 Computation results

4.1.1 Model parameters

The FDTD model is calculated for an impulse of 100dB through a 32m long corridor. The source
is situated at 1m from the end wall and receivers are positioned every meters form the source. The
values of the absorption and scattering coefficients are set from α = 0.01 to α = 0.8 and from
β = 0.01 to β = 1.5. The absorption coefficient at both extremities is set to αr = α. The mean
free path is set to λ = 2m, as it corresponds to the mean free path of the corridor measured in Sec.
4.2, and the space and time discretization steps are set to ∆x = 1m, ∆t = 1.10−3s. The speed of
sound is c = 344m/s.

4.1.2 Space decays

To begin with, Fig. 1 plots the steady-state energy space decays for different values of the absorption
and scattering coefficients.
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Figure 1: (Colour online) Energy space decays for different values of α (top, with β = 0.2) and β
(bottom, with α = 0.2) in a 32m long corridor with the source position at 1m. Parameters are set
to λ = 2m, ∆x = 1m, ∆t = 1ms and αr = α.

The increase of the slope of the space decays is clearly visible as α or β increase. One can
observe that energy clusters around the source for large values of α or β, leading to a steep decrease
of energy with distance. Measurement of the decay rates on Fig. 1 gives values varying in the
top panel from 0.1dB/m for α = 0.01 to 1.2dB/m for α = 0.8; and in the bottom panel, varying
from 0.1dB/m for β = 0.01 to 2.5dB/m for β = 1.5. These decay rates correspond to the values
expected from Eq. (26).

4.1.3 Time decays

Secondly, Fig. 2 and 3 plot the energy time decays for different values of the absorption and
scattering coefficients.

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Time (s)

Le
ve

l (
dB

)

 

 

α= 0.01
α= 0.05
α= 0.10
α= 0.20
α= 0.50
α= 0.80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Time (s)

Le
ve

l (
dB

)

 

 

β= 0.01
β= 0.10
β= 0.20
β= 0.50
β= 1.00
β= 1.50

Figure 2: (Colour online) Energy time decays at 4m from the source for different values of α (top,
with β = 0.2) and β (bottom, with α = 0.2) in a 32m long corridor with the source position at 1m
and the receiver position at 5m. Parameters are set to λ = 2m, ∆x = 1m, ∆t = 1ms and αr = α.

Like the space decays, the slope of the time decays is increasing as α or β increases. The
measured decay slopes are in fair agreement with Sabine reverberation E = E0e− Bc

λ
·t, where B is

equal to the smaller of the two modified coefficients A and D, with a small influence of the other
coefficient. Hence, decay rates for α = 0.01 in the upper panel (β = 0.2) and β = 0.01 in the lower
panel (α = 0.2) are both equal to 8dB/s; and the steepest decay is reached for α = 0.2 in the
upper panel, and beta = 0.2 in the lower panel, that is in both cases for α = β. Thus, absorption
and scattering are fully equivalent, and the smaller of the two corresponding coefficients pilots the
decay.

Note, however, that exchanging α and β does not lead exactly to the same decay curves, as is
evident from Fig. 2. This is due to the fact that Ar and D are not exchangeable in the conditions
on the end boundaries, that is, in Eq. 27 and 30. Smaller values of αr or Ar lead to stronger
oscillations in the early decay, as is visible from comparing the two panels of Fig. 2.
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Figure 3: (Colour online) Energy time decays at 16m from the source for different values of α (top,
with β = 0.2) and β (bottom, with α = 0.2) in a 32m long corridor with the source position at 1m
and the receiver position at 17m. Parameters are set to λ = 2m, ∆x = 1m, ∆t = 1ms and αr = α.
The vertical line corresponds to the arrival time of the direct sound (47ms).

At 16m from the source, like at 4m, the time decay slopes increase when α or β increases. Once
again, measured decays are in fair agreement with Sabine reverberation obtained for the smaller of
the two modified coefficients A and D and are the same as in Fig. 2 for the corresponding values
of α and β. Once again, oscillations appear for small values of αr, but not to the same extend
for small values of β. One can also observe that at this distance, the maximum level of the decay
decreases when the coefficients increase. Similarly, the arrival time of the maximum increases when
the coefficients increase; but the maximum is never attained before the arrival time of the direct
sound, marked by a vertical line on the bottom panel of Fig. 3. This was not visible at 4m from
the source.

4.2 Comparison with measurements

4.2.1 Measurements

The measurements have been made with the help of a SoundField ST250 microphone [31]. It is
composed of four probes in tetrahedral array from which one can recover the pressure at the central
position, and the pressure gradient along the three Cartesian axes. The sound source was an Outline
GRS omnidirectional speaker constituted of twelve speakers and a Tannoy VS10 sub woofer. The
source was positioned on the center axis of the corridor at 1m from one extremity and at 1.5m above
the floor. We used a MOTU R©Traveler sound card and a laptop with Adobe Audition software and
Aurora plug-in to both send and record the signals. The latter was a 20Hz to 20kHz 10s sweep
sine. Signals recorded are post-treated to obtain room impulse responses (IR) by convolution with
the inverse sweep. This is known as the most efficient technique to remove harmonic distortions
and to increase signal-to-noise ratio [32, 33]. The IR are then used to calculate the sound level by
Schroeder’s reverse integration [34].

4.2.2 Room characteristics

The room under measurement is a corridor similar to the one-dimensional model. It is 32m long,
2.5m high and 1.7m wide, with a mean free path of 2m according to Eq. (16). Several offices are
located along the corridor, and some recesses are installed along the corridor, giving more scattering.
The corridor ends with a chicane as shows in Fig. 4.
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Figure 4: Plan of the corridor under measurement (shaded area). The source S1 is shown by a red
circle and the axis of measurement by a blue arrow .

The corridor features are carpet on the floor and compact mineral wool on the ceiling. Ceiling
is interrupted by ten incised roof windows one meter above a metal grid which is 1.7m large and
2m long. The walls are constituted of windows and glass doors alternated with metal. Moreover,
the corridor is furnished with display stands and cupboards covering one third of the walls and
generating scattering.

4.2.3 Adjustment procedure results

Estimations of the absorption and scattering coefficients can be derived from comparison with
measurements. We saw above that for values of β larger than α, variations of β do not influence
the slope of the time decay. Thus, an iterative procedure has been used to estimate α and β by first
assuming β to be large and estimating the absorption coefficient from time decay, then deducing
β with the help of the space decay. At each iteration, the previous value of β is used to adjust α
so that decay slopes correspond between measurements and numerical simulation, then readjust β
from the space decay. The procedure stops when variations are less than 10%, a typical uncertainty
in architectural acoustics.

Fig. 5 and 6 plot the time decays (top) that give the absorption coefficients centered on the
frequency range 1000Hz. Then the space decay (bottom) gives the scattering coefficient at 1000Hz.
α is 0.27 for both Fig. 5 and 6. This correspond to a β of 0.37 in both cases, as the bottom panels
of Fig. 5 and 6 are the same.

16



0 0.1 0.2 0.3
−30

−20

−10

0

10

20

Time (s)

Le
ve

l (
dB

)

 

 

Measure
Slope
Model

0 5 10 15 20
10

20

30

40

Distance (m)

Le
ve

l (
dB

)

 

 

Measure
Slope
Model

Figure 5: (Colour online) Adjustment of the model by comparison with the time and space decays
measured at 4m from the source in a corridor of size 1.7m × 2.5m × 32m. α = 0.27 and β = 0.37
at top and bottom panel.
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Figure 6: (Colour online) Adjustment of the model by comparison with the time and space decays
measured at 16m from the source in a corridor of size 1.7m × 2.5m × 32m. α = 0.27 and β = 0.37
at top and bottom panel.

4.2.4 Comparison with Sabine formula

The reverberation times are T r = 0.37s and T r = 0.5s at 4m and 16m from the source respectively.
Using Sabine’s formula gives a mean of α as

α =
0.16V

T rS
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That is, with V = 136m3 and S = 277.3m2, α = 0.21 and α = 0.16 at 4m and 16m respectively,
compared to α = 0.27 obtained previously.

5 Discussion

5.1 Relaxing integration hypotheses

Sec. 2.5.1 and 2.5.2 requested strict mathematical hypotheses for integrating the conservation
equations in order to reduce the dimension. Here, we analyze those hypotheses and relax them
when possible.

The hypotheses are:

• E and Jx are constant on the section S of the corridor, but Jy and Jz are only independent
of z and y respectively

• Jx and Exx are constant on the section, and Exy and Exz are independent of z and y respec-
tively.

In order to relax the hypotheses, we need to look back at Eq. (9) and (18) where the integration
is carried out. As E, Exx and Jx are integrated on the section in both equations, we are in fact
only considering the mean value of these quantities. Therefore, they may vary across the section;
the integrals thus become, with the upper line indicating mean values:

∫

S

Edx = ES

∫

S

Exxdx = ExxS

∫

S

Jxdx = JxS

Jy and Exy were considered as independent of z only; for the same reason, their integrals on

the two sidewalls at y+ and y− can be replaced by J+
y lz and J−

y lz, and E+
xylz and E−

xylz. The same

applies to Jz and Exz , the integrals of which on the sidewalls z+ and z− are replaced by J+
z ly and

J−
z ly, and E+

xzly and E−
xzly.

Further hypotheses considered J+
y = J−

y = Jabs, and E+
xy = E−

xy = Mscat, and similar hypothe-
ses for Jz and Exz . Indeed, this last group of hypotheses can easily be relaxed by considering
balances on each wall separately - but now with mean values for the Es and Js - with different
absorption and scattering coefficients, then aggregate the results to obtain the mean absorption
and scattering coefficients A and D on the four walls. As a consequence, Eq. (17) and (22) can be
rewritten as:

1

c
∂tE + ∂xJx = −A

λ
E

1

c
∂tJ + ∂xExx = −D

λ
J

Note that the product of mean values is a consequence of the heuristic definition of absorption
and scattering coefficients by Eq. (12) and (21), with mean values for E and J .

Last but not least, as integration is only carried out on a cross section of the corridor, all
values, including those of the absorption and scattering coefficients, may vary with position along
the corridor. Therefore, the model intrinsically allows position varying absorption and scattering
coefficients. However, the general equation of Sect. 2.6 must be modified accordingly.
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5.2 Domain of validity of absorption and scattering coefficients

The reader may have been intrigued by the range of values for the scattering coefficient β in Fig.
1, 2, and 3, where β can be larger than 1. In fact, whereas an absorption coefficient is limited to
values ranging from 0 to 1, as no energy can be negative, and no wall can absorb more energy than
what impinges on it, there is no limit for the modified scattering coefficient: from Eq. (21), a value
of D = 0 simply means that Exy = 0 or Exz = 0, just as a value of D = +∞ means Jx = 0. No
energy is at stakes in the process, only directional redistribution of the acoustic intensity.

However, absorption and scattering coefficients play similar rôles in Eq. (25). In fact, they can
be exchanged without any modification of the equation. This behaviour is reminiscent of coupled
rooms [6], where E and J would be equivalent to the energy of two rooms. This analogy can be
used to derive an approximative analytical solution to equation (25):

E = EAe− Ac
λ

·t + EDe− Dc
λ

·t

The slower decay of the two will pilot the behavior at long times, whereas the two interfere at short
times in accordance to the oscillations observed in Fig. 2 and 3. Note that the spatial derivatives
in Eq. (23) and (24) introduce the coupling, leading to deviations in the decays rates of the two
terms of the approximate analytical solution, as visible in Fig. 2 and 3.

5.3 Adjustment procedure

The adjustment gives quite good results, as shown by Fig. 5 and 6. The difference with the Sabine
formula is due to the non-diffuse field in the corridor. Sabine formula consider the energy to be
homogeneous but we show that the reverberation in a disproportionate space is given by the local
volume (the section) and that diffusion concentrates energy around the source. Therefore, energy
varies along the corridor, and reverberation can be different at different positions, even though
differences are minimized by the diffusion process. Indeed, if the reverberation time was significantly
longer at some given position, the local energy difference with the neighbouring positions would
increase with time; diffusion, that is, Eq. (24), will then reduce the difference by increasing the
energy flow, thus levelling reverberation times around the given position.

5.4 Time of arrival of the direct sound

Fig. 2 and 3 show different times of arrival of the energy. Fig. 2 was calculated at 4m from the
source and Fig. 3 at 16m, which gives times of arrival of the direct sound of resp. 12ms and
47ms. The Figure shows that part of the energy is coming earlier than the time of propagation:
this is due to the discretization scheme of Sect. 3, which allows small amounts of precursor signals.
However, the maximum does correspond to the expected time of arrival for low scattering values
in the lower panel of Fig. 3. The time of arrival of the energy depends on the absorption and
scattering coefficients, with higher values of the scattering coefficient delaying more the energy.

6 Conclusion

In this paper, we have shown that the conservation of energy in a given volume consists of two
equations: the conservation of the total energy; and the conservation of sound intensity. The two
equations combine in a single tensor equation, the conservation of the stress-energy tensor.

In one or two dimensions, absorption and scattering on the walls modify these conservation
equations. We solved this system of two equations in the case of a one-dimensional system by
combining them into a single Telegraph equation involving energy only, and by using of a finite
difference scheme. We showed that our scheme is stable and then compared simulations to actual
measurements in a corridor. The comparison permits adjusting the absorption and scattering
coefficients to obtain good agreement, leading to measurement methods for the two coefficients.

Further, systematic variations of the absorption or scattering coefficient while retaining the
other coefficient constant, showed that the two coefficients play similar rôles as is visible in the
Telegraph equation; however, only the smaller of the two absorption and scattering coefficients
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pilots the time decay rate. Thus, the two coefficients can be evaluated sequentially from an initial
guess: the smaller coefficient from the time decay curves; and the larger from the space decay curve.
It should be noted that adjustment is local, that is, the procedure permits the evaluation of locally
varying absorption and scattering coefficients. On the other hand, increased scattering leads to
accumulation of energy around the source, and to a rapid diminution of energy with distance from
the source.

In future papers, we shall compare our model to Ollendorf and Picaut’s analytical model, and
investigate the two-dimensional case, including again comparison with measurements.
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