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There are two main goals in studying the size distribution ofthe TNOs. The first is the
quest to determine the mass in the trans-neptunian region. The second is to understand the
competition between accretion and collisional erosion. The size distribution of the largest
bodies is controlled by the accretion process while that of bodies smaller than 50-100 km
in diameter is believed to result from collisional evolution. An accessible way to determine
the size distribution of TNOs is to determine their Luminosity Function (LF) and then try
to convert magnitude to size. Interpreting the survey data to determine the correct LF, with
confidence region for the parameters, is a subtle problem andis only beginning to be properly
understood. Converting the LF into a size distribution is very complex and involves modeling,
both dynamical and of physical surface properties of the TNOs. Several papers have been
published that address this question, yielding LF slope of 0.3 to 0.9, and 1 object per⊓⊔◦brighter
thanR magnitude 23-23.5. The exponent of the size distribution ismost likely of order 4-5 for
bodies larger than a few tens of km, and the number of objects with diameter larger than 100 km
is of order a few 104. However, this subject is still in it infancy, and much observational and
modeling work needs to be done before we claim we know the sizedistribution of the various
populations of TNOs.

1. INTRODUCTION

In this chapter, we consider another aspect of TNO dis-
covery called the luminosity function, which we then re-
late to the size distribution of these small bodies. Discover-
ing TNOs goes beyond the simple fact of finding yet other
small bodies in the Solar System. Our ultimate goal is to un-
derstand, through the knowledge of the current small body
populations, the formation and evolution processes of our
Solar System, and potentially of other planetary systems.
Much of the motivation for observational and cosmochem-
ical studies of small bodies stems from the desire to use the
results to constrain or otherwise illuminate the physical and
chemical conditions in the early solar system, in the hope of
learning more about the processes that led to the formation
of our planetary system. As will be seen in the chapter by
Kenyon et al., the size distribution of the TNO population
holds clues to the process of giant planet and small body
formation and on the collisional evolution of the latter.

Large bodies are most likely immune to collisional dis-
ruption over the age of the solar system in the current
Kuiper Belt environment (Farinella and Davis, 1996), and
their size distribution is therefore directly linked to theac-

cretion processes. Even in the denser collisional environ-
ment of the early solar system, these bodies must have
been safe, as the mass depletion of the belt must have re-
sulted from dynamical erosion rather than collisional ero-
sion (Petit and Mousis, 2004;Morbidelli and Brown, 2004).
Smaller than 50-100 km in diameter, the TNOs should have
suffered strong collisional evolution, and their current size
distribution is connected to their physical properties and
their collisional environment (Davis and Farinella, 1997).

2. HISTORICAL REVIEW

The long history of asteroid observations designed to
explore the asteroid main-belt size distribution in order to
study collisional physics extends naturally to the Kuiper
Belt. Even after more than a decade of Kuiper Belt explo-
ration, the value of the fundamental property of the belt’s
mass still varies in the literature. The asteroid belt’s size
distribution is decently-approximated by power-laws over
certain diameter ranges. Assuming this also holds for the
Kuiper Belt, astronomers have tried to estimate the mass
in objects of a given (observable) size, then use the slope
of the apparent magnitude distribution to estimate the slope
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of the diameter distribution and finally estimate the Kuiper
Belt mass by integrating the power-law from the reference
point to upper and lower limits.

Firm determination of a reference object size requires
either resolving objects in the optical (thus directly measur-
ing diameter) or obtaining both optical and thermal infrared
observations to use thermal modeling to estimate a diame-
ter. Only three of the largest TNOs (Pluto, Quaoar and Eris,
formerly 2003 UB313) have been resolved, all using HST
(Albrecht et al., 1994;Brown and Trujillo, 2004;Brown et
al, 2006); the diameter estimates for Eris thus obtained are
still only accurate at the 5% level. Pluto and Eris are shown
to have albedos more than an order of magnitude larger than
the value of 4% often used in the literature. The promising
avenue of detection of the thermal IR flux from large TNOs
has yielded mixed results, as several of the known large
TNOs have not been detected by the Spitzer space telescope
(see chapter byStansberry et al.), presumably also because
most TNOs have albedos far above the 4% figure. Only the
most nearby (and thus warmest) large TNOs have yielded
diameter estimates from their IR emission.

That determining the size distribution was necessary for
measuring the Kuiper Belt mass was recognized at the time
of the discovery of 1992 QB1 (Jewitt and Luu, 1993).
With additional discoveries, the measurement of the so-
calledLuminosity Function, or LF, has become an impor-
tant goal of observational Kuiper Belt surveys. The LF
simply gives either the cumulative or incremental number
of TNOs brighter than a given apparent magnitude; it is of-
ten given relative to a surveyed area of one square degree.
The usual functional form used is an exponential for the cu-
mulative LF like

Σ(m) = 10α(m−mo) (1)

with α being the slope andm0 the magnitude at which one
expect to have 1 object per square degree of sky. Conversion
of the LF to a size distribution requires certain assumptions
(discussed below), which can lead to a power-law. But even
the measurement of the apparent magnitude distribution re-
quires careful analysis of sky surveys.

Determining the slope of the apparent magnitude distri-
bution requires a reasonable number of TNOs to be discov-
ered in a survey of known area and known sensitivity. In
order to be of any use for further modeling and/or compari-
son with other works,the surveys need to publish their areal
coverage, the TNO magnitudes (with errors), and (very im-
portantly) the characterization of their detection efficiency
as a function of magnitude(at least; giving it as a function
of other observing parameters like the rate of motion can be
very useful too)for each portion of their discovery fields.
Actually, the publication of the full information necessary
for the reader to be able to redo the work is mandatory in
a scientific publication. Otherwise, we are no longer in a
scientifc approach, but we rely on faith.

In the following we list the works that explicitly ad-
dressed the question of LF determination. We separate the
surveys between those that satisfied the above requirements

(Table 1) and those that did not (Table 2). In the first cat-
egory, we have the work byJewitt and Luu(1995),Irwin
et al. (1995),Jewitt et al. (1998),Gladman et al.(1998,
2001),Chiang and Brown(1999),Trujillo et al. (2001a,
2001b),Bernstein et al.(2004),Petit et al. (2006),Fraser
et al. (2007, personal communication), whose main char-
acteristics are summarized in Table 1. We divided them
into two categories: surveys where the objects are visible
on each individual frames (wide-area surveys), and surveys
where several images were stacked together after shifting to
reveal the objects (small-area deep surveys).

For the sake of completeness, we also list the surveys
that addressed the LF determination, but did not meet the
above requirements:Jewitt et al. (1996),Luu and Jewitt
(1998),Sheppard et al.(2000),Larsen et al. (2001) and
Elliot et al. (2005). The two first works did not publish
their efficiency function, while the last three only sparsely
sampled the efficiency function on a few frames and/or did
not provide the information necessary to match efficiency
functions to specific sky coverage. Table 2 gives the char-
acteristics of this second set of surveys.

Other KBO surveys have been performed over the years,
but were intended at simply finding objects, and/or at deter-
mining dynamical information, not LF, and are thus not de-
scribed in this chapter. However, the most important ones,
which were used as constraints in the works presented here,
areTombaugh(1961) [T61],Luu and Jewitt(1988) [LJ88],
Kowal (1989) [K89], Levison and Duncan(1990) [LD90]
andCochran et al.(1995) [C95]. T61 and K89 were photo-
graphic plate surveys, LJ88 and LD90 were ground-based
CCD surveys, and C95 was a space-based, HST survey.

2.1 Wide-area TNO surveys

Large scale surveys typically cover from several square
degrees (⊓⊔◦) up to a few thousand, reaching a limitingmR

magnitude of 24 or brighter. The goal is to detect a large
number of objects in each of a small number of CCD im-
ages taken of the same sky region at one to 24-hour spacing.
They generally use detections on single images and search
for objects whose measured position changes from frame
to frame at rates consistent with outer Solar System targets.
The relatively bright targets detected are then suitable for
tracking over the several-year baseline needed to determine
an orbit; however, under certain assumptions knowledge of
the orbit is not required to determine the LF. Such survey
can essentially provide an estimate of the ’zeropoint’ (at
which magnitudemo there is one object per⊓⊔◦brighter than
mo) and the slope.

A major potential complication of such an approach is
that there are good reasons to expect that the on-sky sur-
face density will vary with ecliptic latitude and longitude.
A change inmo (to fainter magnitude) is expected as one
departs from the plane of the Solar System as the spatial
density of the thin belt drops off. Since most surveys have
been near the ecliptic plane, this effect might be thought to
be small (but see below). Similarly, the existence of reso-
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TABLE 1

L IST OF PAST CHARACTERIZEDLF SURVEYS

Reference Abbrev. Ωa Nb ηmax
c m50

d R.A.e lf Comments
(⊓⊔◦) (2000) (deg)

Wide-area Surveys

Jewitt and Luu, 1995 JL95 1.2 7 1. 24.8 21:30-01:10 0- 5 Fall
10:00-15:10 0- 5 Spring

Irwin et al., 1995 ITZ95 .7 2 1. 23.5 -- 0-10

Jewitt et al., 1998 JLT98 51.5 13 0.91 22.5 23:50-02:10 0- 5 Oct. 1996
07:30-10:40 0- 5 Feb. 1997

Trujillo et al., 2001a TJL01 73 86 0.83 23.7 08:00-14:00 -10,0,10 1999
21:20-01:00 0, 20 Mar. 2000

Trujillo et al., 2001b T01 164 4 0.85 21.1 22:18-01:25 0-12
09:00-12:05 0- 5

Petit et al., 2006 P06 5.97 39 0.90 24.6 21:08-21:17 0-1.9 Uranus
5.88 26 0.90 24.2 20:17-20:26 0-1.7 Neptune

Deep Surveys

Gladman et al., 1998 G98 .25 2 1. 24.6 11:50 0 CFHT/8K
.175 3 1. 25.6 23:00,00:10 0,4.5 5m Hale

Chiang and Brown, 1999 CB99 .009 2 1. 27.0 22:55 0.5

Gladman et al., 2001 G01 .27 17 1. 25.9 09:32 2.6 CFHT/12K
.012 0 1. 26.7 19:24 1.0 VLT/FORS1

Bernstein et al., 2004 B04 .019 3 1. 28.7 14:08 1.5

Fraser et al., 2007 F07 .64 6 0.96 25.4 21:40 -0.7 CFHT/12K
.85 19 0.97 25.7 22:24 -0.8 MEGAPrime
.76 14 0.92 25.4 20:39 1.3 CTIO/Blanco

aActual search area of the survey

bNumber of TNOs used for LF determination in that work

cMaximum efficiency of the survey

dR magnitude at which efficiency drops to 50% of its maximum value

eRange of Right Ascension

fRange of ecliptic lattitude
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TABLE 2

L IST OF PASTLF SURVEYS (NOT MEETING OUR REQUIREMENTS)

Reference Abbrev. Ωa Nb ηmax
c m50

d R.A.e lf Comments
(⊓⊔◦) (2000) (deg)

Jewitt et al., 1996 JLC96 4.4 3 -- 23.2 12:15-16:00 0-20 CTIO 1.5m
3.9 12 -- 24.2 08:30-00:40 0- 5 UH 2.2m

Jewitt and Luu, 1998 JL98 .28 5 -- 26.1 -- -- Keck wide
.028 1 -- 26.6 -- -- Keck deep

Sheppard et al., 2000 S00 1428 0 0.92 18.8 07:00-12:00 0-20 0.5m APT

Larsen et al., 2001 L01 550.1 g 8 0.97 21.5 00:00-24:00 h 0- 5 SpaceWatch

Elliot et al., 2005 E05 ˜500 i 512j 0.96 i 22.0 i 00:00-24:00 g 0- 5

a,b,c,d,e,f See notes in Table 1

gEffective area on the ecliptic, correcting for density decrease at large ecliptic latitudes, see L01 for details

hRegions close to the galactic plane were not included in thissurvey

iValues estimated from Fig. 15 of E05; magnitude refers to theV R filter

jTNOs only, no Centaurs or objects closer than 30 AU

nant populations means that not all longitudes are equal in
a flux-limited survey. Certain longitudes relative to Nep-
tune (which dominates the resonant structure) are the pre-
ferred pericenter locations of each mean-motion resonance;
for example, longitudes 90 degrees ahead and behind of
Neptune are the preferred pericenter locations for the 3:2
mean-motion resonance (Malhotra, 1996;Chiang and Jor-
dan, 2002). Thus, surveys directed at these locations will
discover more TNOs, since the much more abundant small
objects from the size distribution become plentiful in the
survey volume. Therefore, the interpretation of large-area
surveys is very complex.

2.2 Deep small-area TNO surveys

Deep surveys cover only a fraction of a⊓⊔◦ of sky, and
reach anR magnitude fainter than 24.5. They combine a
large number of frames of a confined region of sky, shifting
them according to the typical rate of motion of TNOs in the
sky in order to discover objects with low signal-to-noise ina
given frame. In the combined image, the signal from objects
at the assumed rate and sky direction adds constructively to
give detectable signal with a confined PSF, while stars and
other fixed objects will trail. This technique is often called
pencil-beam, in analogy with extra-galactic studies, since it
is capable of probing to objects at great distance.

2.3 Size distribution determination

Two methods have been used through the years to deter-
mine the size distribution. The first relies on determining

the LF, which is certainly more directly accessible and re-
quire little, if any, modeling. The second was a direct mod-
eling of size distribution and comparison with observations.
Three of the works mentioned above restricted themselves
to LF determination (ITZ95, G98, B04) only.

ITZ95 first assumed a differential power-law size distri-
bution

n(r) ∝ r−q (2)

and fixed albedo and showed that the absolute magnitude
distribution would follow a form given by eq. 1. Next, with
proper assumptions (not explicitly given, but hinting at a
power-law dependance) on the heliocentric distance depen-
dance of the number density of TNOs, they linked it to an
exponential LF. The correspondence between the indices of
these functional forms is

α = (q − 1)/5. (3)

After this, they determined the LF of apparent magnitude,
and converted it into an absolute magnitude LF for the pur-
pose of comparison with previous works and other popula-
tions. No further mention was made of the size distribution.

G01 showed that a simple assumption of power-law be-
haviour of the distance distribution of the object is sufficient
to derive eq.3. In this way, the increment in number of ob-
jects when reaching 1 magnitude fainter is independent of
the distance considered in a flux limited survey. This holds
as long as the survey is not wide enough that it samples the
size where there is only one object, nor deep enough that it
reaches small enough objects for which one would expect to
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have a different index in eq. 2 (see below). This direct con-
nection between luminosity and size distribution provides
a tangible connection between the observation and physical
property being sought and at only the cost that the LF must
be a uniform single exponential.

CB99, G01, P06 and F07 used this relation to give a size
distribution mostly for comparison purposes or as a mean
of deriving other quantities of interest such as the mass of
the belt. CB99 also estimated the number of 1-10 km sized
comet progenitors in the Kuiper Belt and found it compat-
ible with the estimate fromLevison and Duncan(1997) to
supply the rate of Jupiter-family comets.

JL95 rather estimated the size distribution using a Monte
Carlo simulation of their survey. For this, they used a very
simple model for the Kuiper Belt, assuming power-law size
and heliocentric distributions and estimated a limiting value
on q from comparing a graph of the expected detection to
the actual ones. JLT98 further refined this method to deter-
mine the LF of their survey, either alone or together with
previous ones, in parallel. For the size distribution determi-
nation, they used a 2 population model, with classical KBOs
(CKBOs) and Plutinos (bodies in the 3:2 mean motion res-
onance with Neptune). According to a rough description
of their survey, they selected the objects from the model
that would have been observed. The intrinsic population
of Plutinos was adjusted to reproduce the apparent fraction
of Plutinos in their survey (≃35%). Finally, they compared
the binned differential LF to the observed one. As expected,
their best fit index of the size distribution was roughly re-
lated to the LF slope by the relation derived by ITZ95. This
work was extended to larger surveys by JLT01 and T01.

2.4 Mass of the belt, distant belt, largest body, ...

In many cases, the size distribution was only a step to-
ward determining other quantities of interest like the mass
of the belt, the existence of an outer edge, or the largest
body one should find. However, these generally require
some extra assumption to be derived. For example, as
showed by G01, estimating the mass of the belt requires
knowledge of the radial extent of the belt and the size at
which the size distribution becomes shallower (see below).
JLT98 determined the mass of the belt from bodies larger
than 50 km in radius between 30 and 50 AU, excluding the
scattered TNOs, to be∼ 0.1M⊕. Interestingly, TJL01, us-
ing the same parameters and size distribution slope, found
the mass of the belt to be∼ 0.06M⊕. T01 estimated that
the mass due to bodies larger than 500 km is∼ 1

5 of the pre-
vious value. CB99 determined the mass of the belt inside
48 AU, from bodies brighter thanmR = 27 to be∼ 0.2M⊕.
S00 did the same for Centaurs larger than 50 km and found
a mass of∼ 10−4M⊕. G01 gave the mass of the belt as a
function of the mass at whichq becomes smaller than 4 and
quote a value of∼ 0.1M⊕. Selecting a smaller population
of TNOs, namely theClassical Kuiper Beltwith inclination
i < 5◦, B04 gave a smaller mass of∼ 0.01M⊕.

The size distribution was also used to estimate the frac-

tion of objects that one should detect further out than
50 AU. But this again requires some assumptions on the
plausible distance distribution. G98 found that the lack
of detection of distant object in their survey was to be
expected, independent of the presence of an edge of the
Kuiper Belt. Later works (G01, TJL01 and B04) showed
however that the lack of detections at large distances was
consistent with an edge of the large body belt, only allow-
ing a significance mass in bodies smaller than∼ 40 km
outside 50 AU. G01 however raised the problem of the lack
of detection of Scattered Disk Objects which are known to
be there.

P06 used eq. 3 to assess the reality of the depletion of
distant objects from their LF with theTrujillo and Brown
(2001) method.

3. SIZE DISTRIBUTION VERSUS (APPARENT)
MAGNITUDE DISTRIBUTION

As mentioned before, we are interested in the size dis-
tribution of these small body population rather than just the
LF. The LF is just an initial proxy to the size distribution.

3.1 Converting from magnitude to size

We first review the different factors that connect the size
of an object to its apparent (or measured) magnitude. The
apparent magnitude of a TNO can be represented as:

m = m⊙ − 2.5 log[
νr2φ(γ)f(t)

2.25 × 1016R2∆2
] (4)

wherem⊙ is the apparent magnitude of the sun in the filter
used for observations (-26.92 in the AB system, for Bessel
R or KPNO R filter,http://www.ucolick.org/ cnaw/sun.html,
from Bruzual and Charlot, 2003 andFukugita, Shimasaku
and Ichikawa, 1995),ν the geometric albedo in the same
filter, r the radius of the object (expressed in km),γ is the
phase angle, i.e. the angle sun-object-observer,φ(γ) is the
phase function (equal to 1 forγ = 0), f(t) is the rotational
lightcurve function, andR and∆ are the heliocentric and
geocentric distances (expressed in AU).R, ∆ andγ depend
only on the geometry of the observation and are due to the
orbits of the object and the Earth around the sun.ν, r, φ(γ)
andf(t) depend on the physical and chemical properties of
the object itself.

f(t) is typically a periodic function of time with a rather
short period (few hours to few tens of hours) and moder-
ate amplitude variations (for large TNOs) with mean value
of 1. For asteroids, the amplitude tends to be larger for
smaller objects presumably due to greater relative depar-
ture from sphericity. For TNOs, the trend will proba-
bly be the same, although with possible large departures
from the general trend (for example, 2003 EL61 has a
lightcurve amplitude of 0.3, while some smaller objects
have no lightcurve). According toLacerda and Luu(2006)
30% of the objects have a lightcurve amplitude∆m ≥
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0.15 and 10% with amplitude∆m ≥ 0.4. So the typ-
ical lightcurve amplitude is of order the uncertainty on
magnitude estimates of the corresponding TNOs for large-
area surveys. The lightcurve is due to the rotation of
the object and either or both an elongated shape and sur-
face features and albedo variations.φ(γ) is a function
of the physical and chemical properties of the surface of
the TNO. It often manifests itself by an opposition surge,
that is, a non-linear increase in surface brightness that oc-
curs as the phase angle decreases to zero. Two causes
to give rise to the opposition effect are usually consid-
ered: (1) shadow-hiding and (2) interference-enhancement,
often called coherent-backscatter. Some general regolith
property-dependent characteristics of each mechanism are
understood, and some papers are devoted to a discussion
on the relative contribution of both mechanisms (Drossart,
1993; Helfenstein et al., 1997;Hapke et al., 1998;Shku-
ratov and Helfenstein, 2001). The width and amplitude of
the opposition surge depends on the dominant mechanism,
shadow-hiding giving a narrower and brighter opposition
surge. One can check for the effect of coherent backscatter
and/or shadow hiding by studying the influence of wave-
length dependence on the opposition brigthening.

To determine the size distribution from the reflected light
from the source we must first remove the geometrical ef-
fects. One first computes the absolute magnitude: the ap-
parent magnitude the object would have at a heliocentric
and geocentric distances of 1 AU, neglecting phase correc-
tions and assuming the object is visible only by reflected
sunlight. The absolute magnitude (Bowell et al., 1989) cor-
responds to∆ = R = 1, γ = 0, i.e. φ(γ) = 1, and
averaging over one rotational period:

H = 〈m〉 + 2.5 log[
φ(γ)

R2∆2
]

= m⊙ − 2.5 log[
νr2

2.25 × 1016
] (5)

The heliocentric and geocentric distances are easily deter-
mined with an accuracy of about 10% at discovery, even
with an arc of just 1 day. With a few follow-up observa-
tions at 2 months, 1 year and 2 years after discovery, the
distance can be estimated with a precission of 1% (2 month
arc) or less than 0.1% (1 year arc or more). The uncertainty
on the distance gives an error of 0.4 magnitude onHR at
discovery time, which is then easily reduced by a factor of
10 or 100.

Accounting for the rotational lightcurve and the phase
effect requires many more observations. The object must
be observed during one or more full rotational periods, at
a given phase angle, to determine the rotationally averaged
magnitude at that phase angle〈m〉. Although a few bright
objects have had their rotational periods determined in this
way, such observations are impractical for large scale sur-
veys and for objects at the limit of detection of these sur-
veys. Hence this effect is often omitted altogether, or mod-
elled with a simple fixed amplitude periodic function.

The next phenomenon to account for is the phase effect.

We need to know the variation ofφ(γ) between zero phase
angle and the actual observation angle. Modelling this vari-
ation is still in its infancy, and one usually resorts to em-
pirical formulae that were developed for asteroids (H − G
formalism fromBowell et al., 1989), or simple linear ap-
proximations (Shaefer and Rabinowitz, 2002;Sheppard and
Jewitt, 2002), both of which fail to reproduce the strong and
narrow opposition surge at very small phase angle that has
been detected for several TNOs and Centaurs (Rousselot et
al., 2006). Linear andH − G formalisms tend to under-
estimate the magnitude at zero phase angle by up 0.1-0.2
magnitudes.

The last needed parameter is the geometric albedo of
the object. The only model independent method to deter-
mine the albedo is actually to directly measure the size and
brightness of the object. Since this is not possible, the next
best thing to do is to try and measure the brightness of the
object both in the visible and in the thermal infrared, and
use some thermal modelling of the object. Knowing the vi-
sual band brightness and distance of the object gives a one
parameter family of solutions for the size, parameterized by
the albedo. The thermal infrared flux gives another, inde-
pendent, family of solutions. The intersection of the two
families gives an estimate of the size and the albedo. The
resulting estimate is only as good as the thermal model used
to derive it. The uncertainty is at least a factor 2 in surface
area if pole position is unknown (pole-on versus equato-
rial) (see chapter byStansberry et al.). Even measuring the
thermal flux, however, is very difficult and possible only for
the biggest objects, requiring the use of the largest and most
sensitive instruments available. Hence several of the biggest
objects have been assigned different size and albedo from
ground based observations and from Spitzer (1999 TC36,
Altenhoff et al., 2004;Stansberry et al., 2006; 2002 AW197,
Cruikshank et al., 2005).

Because of all these difficulties, not all authors have
dared to convert from apparent magnitude distributions to
size distributions and those who do must use many assump-
tions and simplifications. For example, in all the works pre-
sented before, the rotational lightcurve has been completely
neglected. This can be partly justified as the largest num-
ber of objects detected in a given survey is usually close to
the limiting magnitude of that survey’s detection. In fact,
half of the objects are generally within the 0.5-1 magni-
tude at the faint end of the survey. For these faint objects,
the uncertainty on the magnitude measurement is of order
or even larger than the expected amplitude of the rotational
lightcurve (Lacerda and Luu, 2006). Note however that this
can introduce a bias if the large amplitude objects are de-
tected only at their brightest rotation phase.

3.2 The limits of power-law distributions

All the previous works have used exponential functions
for their LF and power-law functions for their size distri-
butions. Classically, scientists look for scale-free, self sim-
ilar, functions to represent physical phenomena that don’t
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have an obvious scale. This is particularly true when those
phenomena extend over several decades of the governing
parameter, such as the size or mass of a small body, or dis-
tances, stellar masses. Another driver in choosing the func-
tional representation in modelling is the need to combine
functions from different parts of the models while still hav-
ing an easy to use function. Both power-law and exponen-
tial functions satify this requirement of keeping the same
form when combined. Finally, in several instances in astro-
physics, plotting data on double logarithmic graphs results
in aligned points. One is then tempted to represent such
data as a straight line, yielding a power-law function in the
original variables.

In the case of the size distribution of small bodies, the
work ofDohnanyi, (1969) has been responsible for the wide
spread use of power-law distributions. Dohnanyi has shown
that, under very strong assumptions regarding the effects
of hypervelocity collisions (the main of which being that
the collisional process is scale independent, proven to be
wrong, i.e. Benz and Asphaug, 1999), a quasi-steady-state
distribution is reached. The final distribution is the product
of a slowly decreasing function of time and a power-law of
index 11/6 for the differential mass distribution (n(M) ∝
M−11/6, M being the mass of the asteroid), corresponding
to an indexq = 3(11/6)− 2 = 7/2 for the differential size
distribution. The resulting ’equilibrium power-law slope’ is
mostly due to the adoption of a power-law functional form
to model the outcomes of hypervelocity collision (Gault et
al., 1963). Since the size of fragments in fragmentation
experiments span several orders of magnitudes, one tends
to show the logarithm of the number of fragments versus
the logarithm of their size. Fragmentation processes being
random in nature, this is usually a rather scattered plot, with
some kind of trend in it (see e.g.Giblin et al., 1994, 1998;
Ryan et al., 1999). Using a power-law here is a very rough
approximation.

Likewise, the observed LF of the asteroid belt shows
a wave-like structure superposed over an approximately
power-law trend. Although the general trend of the size dis-
tribution of fragments and the LF of the asteroid belt can be
roughly approximated by a power-law and an exponential,
the details may depart noticeably from these models.

At the small end of the size spectrum, a problem arises
depending on the value of the indexq. The mass of objects
with size in the rangermin < r < rmax is

M(rmin, rmax) =

∫ rmax

rmin

n(r)M(r)dr

=
4πρvA

3

∫ rmax

rmin

r3−qdr

=
4πρvA

3(4 − q)

[

r4−q
max − r4−q

min

]

, (6)

whereA is the normalizing constant of the differential size
distribution,M(r) the mass of an object of radiusr, andρv

its volume density,q 6= 4. Whenq > 4, the total mass
diverges at small sizes (G01). Most of the surveys pre-

sented above have found thatq is of order, but likely larger
than, 4, hence there clearly needs to be a limit to the power-
law size distribution at some small sizerk beyond which a
lower size index is required. This change inq was proposed
as soon as the surveys suggested a rather large value ofq,
since astronomers expected to haveq = 3.5 at small sizes,
where they assumed a collisional equilibrium would have
been reached.

The B04 survey reaching very faint objects, they started
to see a departure from the uniform exponential LF, which
they attributed to the expected change in size distribution
shape. They first modeled this change using a rolling expo-
nential

Σ(m) = Σ23 10α(m−23)+α′(m−23)2 , (7)

with Σ23 being the sky density of objects at magnitude 23.
They also investigated a double exponential fit, as the har-
monic mean of two exponentials:

Σ(m) = (1 + c)Σ23

[

10−α1(m−23) + c 10−α2(m−23)
]−1

,

(8)
c ≡ 10(α2−α1)(meq−23). (9)

The asymptotic behaviour is an exponential of indicesα1 at
one end of the size spectrum andα2 at the other end, with
the two exponentials contributing equally atmeq.

Eq. 3 was widely used in all those works, but relied on
a constant albedo for all objects. JLT98 noticed that there
seems to be a variation of albedo with size, ranging from
0.04 for the small bodies to 0.13 for 2060 Chiron to 0.6 for
Pluto. Regardless, they used a fixed albedo in their deriva-
tion of the size distribution. F07 explore the effect of a vary-
ing albedo on eq. 3 by examining the effect of a power-law
albedoν ∝ r−β as a toy model (here again, a power-law is
used for computational conveniency). Eq. 3 then becomes

q = 5(α − β/2) + 1. (10)

The albedo of Pluto is 0.6 for a size ofr ∼ 1000 km (Al-
brecht et al., 1994) while smaller objects (r ∼ 100 km
or smaller) seems to beν ∼ 0.06 with large fluctuations
(Grundy et al., 2005; chapter byStansberry et al.), imply-
ing β < 0, possibly down toβ ∼ −1. From Fig. 3 of the
chapter byStansberry et al., the situation can be even more
complex, with an albedo almost independent of size for di-
ameters smaller then 200-300 km, and a very steep rise of
the albedo for objects larger than 1000 km. In any case,
an estimate ofq which assumesβ = 0 potentially under-
estimates the steepness of the size distribution by up to 1 or
2.

4. HOW TO BEST ESTIMATE
TNO POPULATION CHARACTERISTICS

A survey may be characterized by the angular region sur-
veyed, the survey efficiency function, and, for each detected
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object, an estimate of its apparent magnitude and uncer-
tainty. We want to use these data to infer properties of the
TNO population as a whole. Most directly, we may seek
to estimate the LF. Less directly, but of more direct physi-
cal interest, we may seek to estimate the size distribution of
TNOs, or the distribution of orbital elements.

To infer properties of the TNO population using data
from multiple surveys is nontrivial for several reasons. For
a particular survey, the analysis must account for selec-
tion effects (which cause some parts of the population to
be over- or under-represented in the sample with respect to
others) and measurement error (which distorts the magni-
tude distribution shape as objects “scatter” in magnitude).
To combine surveys, the analysis must consider systematic
differences between surveys (e.g., due to use of different
bandpasses). These complications cannot be removed in a
model-independent way; there is no such thing as a unique
“debiased” survey summary. The nature and amount of the
distortions depends on the true population distribution, so
biases cannot be accounted for without making assumptions
about the distribution. The analyst must make some mod-
eling assumptions, explicitly or implicitly, and account for
the distortions in tuning the model.

These challenges are hardly unique to TNO studies.
They arise and have received significant attention in anal-
yses of the magnitude or flux distributions of stars, optical
and radio galaxies, X-ray sources,γ-ray bursts, and AGN,
to name a few notable examples (Loredo and Wasserman,
1995;Drell et al., 2000;Loredo and Lamb, 2002). Simi-
lar challenges are widely and deeply studied in the statistics
literature, in the field of survey sampling. In each disci-
pline, early analyses rely on intuitively appealing but fun-
damentally flawed methods such as least-squares analysis
of binned or cumulative counts (possibly weighted), or ad-
justed sample moments. As sample sizes grow, the need
for greater care is gradually recognized, and methodology
matures. In all of the fields mentioned, attention has grad-
ually converged on likelihood-based methods (at least for
analysis with parametric models).

The basic idea behind likelihood-based methods is that
hypotheses that make the observed data more probable
should be preferred. Thus the central quantity of interest
is the likelihood function, the probability for the observed
data, considered as a function of the hypotheses under con-
sideration.

We need to use the likelihood function to quantify our
uncertainty about thehypotheses, and there are rival ap-
proaches for creating confidence statements about hypothe-
ses using the likelihood function. Perhaps the best-known
approach, in the case of parameter estimation (where the
hypotheses are indexed by values of continuous parame-
ters), is to draw likelihood contours at levels chosen to give
a desired frequency of coverage of the true parameter values
(“confidence level”) in repeated sampling. Unfortunately,
except in simple settings, accurate coverage can only be
guaranteed asymptotically (i.e., in the limit of large sam-
ple size), a significant drawback when surveys may have

few or even no detected TNOs. In addition, accounting for
measurement error within this “frequentist” framework is
problematic and a topic of current research in statistics; the
best-developed solutions are also only asymptotically valid.
Finally, we often need to summarize the implications of the
data for a subset of the parameters (e.g., for the slope of
the LF, or the location of a break or cutoff). Properly ac-
counting for the uncertainty in the uninteresting “nuisance
parameters” in such summaries remains an open problem in
frequentist statistics despite decades of study.

These are some of the reasons recent works have adopted
a Bayesian approach for TNO population inference. In this
approach, one calculates aposterior probability densityfor
the parameters, interpreted more abstractly as indicatingthe
degree to which the data and model assumptions imply that
the true parameter values lie in various regions. Adopting
this more abstract goal for inference carries with it many
benefits. One can straightforwardly calculate probabilities
for parameter regions (now called “credible regions”) that
are accurate for any sample size. Measurement error is eas-
ily handled, and nuisance parameters are easily dealt with
(Gull, 1989). Further, statisticians have shown that para-
metric Bayesian procedures have good performance when
viewed as frequentist procedures, with asymptotic accuracy
as good as and sometimes superior to that of common fre-
quentist procedures. A possible drawback is that the pos-
terior distribution is found by multiplying the likelihood
by a prior densityfor the parameters, expressing an initial
state of uncertainty (before considering the data). When
data are sparse, one’s conclusions can depend on the prior,
though the dependence is explicit and can be used to quanti-
tatively probe the degree to which the data are informative.
A more challenging drawback is the absence of straight-
forward “goodness-of-fit” (GoF) tests in the Bayesian ap-
proach. SeeSivia and Skilling(2006) for a tutorial on
Bayesian methods.

ITZ95 first introduced likelihood methods for TNO pop-
ulation studies. They adopted a frequentist approach, and
did not consider complications due to measurement error or
detection efficiency. Several works in the last decade (G98,
G01, B04, P06, F07) adopted the Bayesian approach, but
have not presented the full correct details in the TNO litera-
ture. We derive the posterior distribution based on TNO sur-
vey data in three steps. First, we use the Poisson distribution
and the product rule from probability theory to construct the
likelihood function for an idealized survey reporting precise
magnitude measurements above some hard threshold. Next,
we use the law of total probability to modify the likelihood
to account for measurement error. Finally, we use Bayes’s
theorem to get the posterior from the likelihood and a prior.
We focus here on inferring the LF; in principle it is straight-
forward to generalize such an analysis to other TNO popu-
lation descriptions, e.g., to explicitly model the size distri-
bution, or, more ambitiously, the distribution of sizes and
orbital elements. In practice, existing surveys are not suffi-
ciently well characterized to permit accurate calculationof
the resulting likelihoods. Thus we are presently reduced to
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inferring the size distribution indirectly via LF estimation,
and to inferring orbital element distributions approximately
via simple scatter plots and histograms. Future large sur-
veys should ameliorate these issues and allow more careful
inferences; we will describe the generalized methodology
in future work.

We consider a Poisson point process modelM of the LF
with parametersP , specified by the differential magnitude
distribution,σ(m), defined so thatσ(m)dmdΩ is the prob-
ability for there being a TNO of magnitude in[m, m + dm]
in a small patch of the sky of solid angledΩ (soΣ(m) is
its integral). For simplicity we assume no direction depen-
dence in the surveyed patch. For idealized data, we imagine
themi values spread out on the magnitude axis. We divide
the axis into empty intervals indexed byǫ with sizes∆ǫ, be-
tween small intervals of sizeδm containing theN detected
valuesmi. The expected number of TNOs in empty interval
ǫ for a suvery covering solid angleΩ is,

µǫ = Ω

∫

∆ǫ

dm σ(m). (11)

The expected number in the intervalδm associated with de-
tected TNOi is µi = Ω δm σ(m), where we takeδm small
enough so the integral overδm is well approximated by this
product. The probability for seeing no TNOs in empty in-
tervalǫ is the Poisson probability for no events whenµǫ are
expected, given bye−µǫ . The probability for seeing a TNO
of magnitudemi in δm is the Poisson probability for one
event whenµi are expected, given byµie

−µi . Multiplying
these probabilities gives the likelihood for the parameters,
P , of modelM , specifyingσ(m). The expected values in
the exponents sum to give the integral ofσ(m) over all ac-
cessiblem values, so the likelihood can be written,

L(P) = (Ωδm)N exp

[

−Ω

∫

dm Θ(mth − m)σ(m)

]

×
N
∏

i=1

σ(mi), (12)

whereΘ(mth − m) is a Heaviside function restricting the
integral tom values smaller than the threshold,mth. The
factor in front is a constant that will drop out of Bayes’s
theorem and can henceforth be ignored.

Now we consider actual survey data, which differs from
idealized data in two ways: the presence of a survey ef-
ficiency rather than a sharp threshold, and the presence of
magnitude uncertainties. We immediately run into difficulty
with a point process model because we cannot make the pre-
vious construction, since we do not know the precise values
of the TNO magnitudes. To cope with this, we make use of
the law of total probability, which states that to calculatea
desired probabilityp(A|I), we may introduce a set of auxil-
iary propositions{Bi} that are independent and exhaustive
(so

∑

i p(Bi|I) = 1). Then

p(A|I) =
∑

i

p(A, Bi|I) =
∑

i

p(Bi|I) p(A|Bi, I).

(13)

Here we will takeA to be the data, and theBi to specify the
unknown true magnitudes for the detected TNOs.

To facilitate the calculation, we need to introduce some
notation. When occurring as an argument in a probability,
let mi denote the proposition that there is a TNO of mag-
nitudemi in an intervalδm at mi. We divide the data,D,
into two parts: the data from the detected objects,{di},
and the proposition,N , asserting that no other objects were
detected. Then, using the law of total probability and the
product rule, the likelihood can be written,

L(P) = p(D|P , M)

=

∫

{dmi} p({mi},N|P , M)

×p({di}|{mi},N ,P , M). (14)

The first factor in the integrand can be calculated using a
construction similar to that used for the idealized likelihood
above, with one important difference: the presence of the
N proposition means that we cannot assume that no TNO
is present in a∆ǫ interval, but rather that no TNO wasde-
tected. Thus these probabilities are Poisson probabilities for
no events whenµǫ are expected, with

µǫ = Ω

∫

dm η(m)σ(m), (15)

thedetectablenumber of TNOs in the interval, not the total
number. Thus the first factor in the integrand in (14) resem-
bles the right hand side of (12), but withη(m) replacing the
Heaviside function in the integral in the exponent.

The second factor in the integrand in (14) is the probabil-
ity for the data from the detected objects, given their mag-
nitudes. If we know the magnitude for a particular source,
we can easily calculate the probability for its detection data
(independent of the value of other data, or of the LF model
parameters). So this probability factors as a product of fac-
tors p(di|mi), the probability for the datadi from TNO i
presuming it has magnitudemi. We call this thesource
likelihood function, ℓi(mi) ≡ p(di|mi). It will often be ad-
equately summarized by a Gaussian function specified by
the best-fit (maximum likelihood) magnitude for the TNO
and its uncertainty (more rigorously, if one is doing pho-
tometry using some kind ofχ2 method, it would be propor-
tional to exp (−χ2(mi)/2)). With this understanding, we
can now calculate (14):

L(P) = exp

[

−Ω

∫

dm η(m)σ(m)

]

×
∏

i

∫

dm ℓi(m)σ(m), (16)

where we have simplified the notation by dropping the in-
dices from themi variables in the integrals, since they are
just integration variables for independent integrals. We
can easily evaluate these integrals using a Gauss-Hermite
quadrature rule.
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Finally, Bayes’s theorem indicates that the posterior den-
sity for the parameters is proportional to the product of the
likelihood and a prior density,

p(P|D, M) =
1

C
p(P|M)L(P), (17)

whereC is a normalization constant equal to the integral of
the product of the prior,p(P|M), and the likelihood. As
a conventional expression of prior ignorance, we use flat
priors (uniform probability) for most parameters, and log-
flat priors (uniform probability forlog(x) of parameter x,
or probability proportinal to1/x) for nonzero scale param-
eters (e.g., a multiplicative amplitude parameter forσ(m),
Jeffreys(1961)). The Bayesian “answer” to the parameter
estimation problem is the full, multivariate posterior distri-
bution. But it is useful to summarize it. The posterior mode
(the value ofP that maximizes the posterior) provides a
convenient “best-fit” summary. Credible regions are found
by integrating the posterior within contours of equal den-
sity; this can be done with simple quadrature rules in 1 or 2
dimensions, or via Monte Carlo methods in higher dimen-
sions. Finally, to summarize implications for a subset of
the parameters (e.g., just the LF slope), we integrate out
(“marginalize”) the uninteresting parameters.

Two surprising aspects of the likelihood in (16) are worth
highlighting (seeLoredo and Lamb(2002) andLoredo
(2004) for further discussion). First is the absence of an
η(m) factor in the source integrals. Adding it produces
inferences that are significantly biased, as is readily shown
with simulation studies. To understand its absence, recall
that the definition ofℓi(m) asp(di|m), the probability for
the data from a detected source. Separatedi into two parts:
Di which stands for“the raw data for candidate TNOi
indicate a detection,”andni which stands for all the data
we measured on that object (e.g., counts in pixels). Then
ℓi(m) = p(Di, ni|m), which we may factor two ways,

ℓi(m) = p(ni|m) p(Di|ni, m) (18)

= p(Di|m) p(ni|Di, m). (19)

Now note that the detection criterion is a “yes/no” criterion
decided by the data values. Thus the second factor in (18)—
the probability that objecti is detected, given its raw data
values—is unity (for detected objects). The first factor sum-
marizes the photometry, soℓi(m) is just as described above.
The second line gives an alternative expression, whose first
factor is the probability for detecting an object of magnitude
m, i.e.,η(m). But if we factorℓi(m) this way, the second
factor must be properly calculated. It requires finding the
probability for the raw data,given that we know the data
satisfy the detection criteria. This is not the usual likeli-
hood orχ2 photometry calculation; in fact, one can show it
corresponds to the photometry likelihood functiondivided
byη(m), thus cancelling the first factor.

The second surprise is the importance of theℓi(m) inte-
grals. Intuition may suggest that if uncertainties are small,
the integrals can be eliminated (theℓi(m) functions can be

approximated asδ-functions at the best-fit magnitudes). In-
tuition may also suggest that this should be especially valid
with large samples, i.e., that the uncertainties should “av-
erage out.” Statisticians have known for half a century that
such intuitions are invalid. Measurement error, if ignored,
not only biases estimates, but makes them formallyincon-
sistent(estimates converge to incorrect values even for infi-
nite sample size). One way to understand this is to realize
that, fundamentally, each new object brings with it a new
parameter (itsm value) that the analyst must estimate (im-
plicitly or explicitly). The number of (latent) parameters
in the problem thus grows proportional to the sample size,
invalidating our intuition from fixed-parameter problems.
The surprising consequence is that it becomesmoreimpor-
tant to properly account for measurement error as sample
size increases. Current TNO survey sizes appear to be right
on the border of where measurement error bias becomes
important, so it is imperative that future analyses properly
account for it.

So far we have discussed modeling a single survey. For
a group of surveys with consistent calibrations, surveying
nearby regions, the joint likelihood function based on all
data is just the product of the likelihoods from the indi-
vidual surveys. But in reality, calibration errors vary from
survey to survey, and different groups may use different
bandpasses requiring color-dependent photometric conver-
sions to a common bandpass, introducing systematic off-
sets. Also, even when surveyed regions are small enough
that the TNO density is nearly constant across each region,
the anisotropy of the TNO density can lead to significant
differences in the amplitude of the LF accessible to each
survey if the surveyed regions are not all near to each other.
These issues were not accounted for in analyses prior to P06
and F07, although CB99 noted the inconsistancy of combin-
ing different surveys. P06 noticed that LF estimates from
individual surveys had similar slopes but different ampli-
tudes, so they only used their own survey. F07 presents the
first analysis of multiple surveys explicitly accounting for
these complications.

We can handle these complications quantitatively by
suitably expanding the model. Photometric zero-point off-
sets can be handled by introducing an offset parameter for
each survey, denotedms for surveys. In the likelihood
function for surveys, we replaceσ(m) everywhere by
σ(m−ms). Without constraints onms, the data may allow
unrealistically large shifts, particularly for surveys with few
or no detections, so it is important to quantify the system-
atic errors, and include this information in the analysis via
a prior forms for each survey (e.g., via a Gaussian whose
mean is the estimated offset between the survey magnitude
scale and that adopted in theσ(m) model, and with standard
deviation reflecting calibration uncertainties). This prior is
essentially the likelihood function forms from analysis of
auxiliary calibration data.

A natural way to parameterize anisotropy effects is to in-
troduce direction explicitly (indicated by the unit vector, n),
and write the anisotropic LF asσ(n, m) = Af(n)ρ(m),

10



the product of an amplitude parameter,A, a direction de-
pendencef(n) and a normalized LF shape function,ρ(m)
(with

∫

dmρ(m) = 1). Hence we separate the LF param-
eters,P , into shape parameters,S, that specifyρ(m), di-
rection parameters,O, that specifyf(n), and the ampli-
tude. For most surveys, anisotropy within the surveyed re-
gion will be negligible. Denoting the centers of the sur-
veyed regions byns, the likelihood for surveys can be
approximated by substitutingAf(ns)ρ(m) for σ(m). The
direction parametersO then enter the likelihood solely via
f(ns). As a rough approximation, one could use the values
of f(n) at the survey centers directly as direction parame-
ters. Equivalently, one can replace the productAf(ns) with
a survey-dependent amplitude parameter,As ≡ Af(ns).
The apparent simplicity of this parameterization is some-
what illusory; e.g., one should somehow enforce that the
sky density falls away from the invariable plane. Thus it is
probably best to introduce some simple parameterization of
f(n), provided enough surveys are available to allow mean-
ingful estimates of the parameters.

For the LF model of (1), there is a possible identifiability
problem with these parameterizations: for a single survey,
m0 (which plays the role ofA) andms are conflated. The
ms priors thus play a crucial role, making the amplitude
and magnitude shift parameters identifiable. A similar issue
arises if we parameterize anisotropy via the amplitude at
the field center; this, too, is conflated withm0. It is not
clear how to handle this via priors, again arguing for explicit
parameterization of anisotropy.

Finally, we note that the normalization constant,C =
∫

dPp(P|M)L(P), though playing a minor role in param-
eter estimation, plays a crucial role in comparison of rival
parameterized models, where it acts as the likelihood of the
modelas a whole. This constant is called themarginal like-
lihood for the model. One of the main issues in LF de-
termination is whether the TNO magnitude distribution has
curvature. A uniquely Bayesian way to address this is to
compare aflat (i.e., exponential) model forσ(m) with one
that has curvature (like the ones proposed by B04). We can
compare models by looking at the marginal likelihood ra-
tio in favor of one over the other, called theBayes factor,
B12 = C1/C2, whereC1 and C2 are the normalization
constants for the rival models (Wasserman, 1997;Sivia and
Skilling, 2006). This is the odds favoring modelM1 over
modelM2 if one were to consider the two models equally
plausible a priori. The convention for interpreting Bayes
factors is that values less than 3 or so do not indicate signif-
icant evidence for the stronger model. Values from 3 to 20
indicate positive but not compelling evidence. Values over
20 or so (i.e., a probability> 0.95 for the favored model)
indicate strong evidence. An appealing and important as-
pect of Bayesian inference is that Bayes factors implement
an automatic and objective “Ockham’s razor” (Jefferys and
Berger, 1992; Gregory, 2005), penalizing more complex
models for their extra parameters. This happens becauseC
is anaverageof the likelihood function. A more complex
model may have a larger maximum likelihood, but by hav-

ing a larger parameter space to average over, its marginal
likelihood can be smaller than that of a simpler rival.

5. CURRENT SIZE DISTRIBUTION ESTIMATES
FROM DIFFERENT SURVEYS

A measure of the size distribution of the Kuiper belt is
a fundamental property that must be determined if we are
to understand the processes of planet formation. Given this
importance, a number of authors have provided estimates
of the size distribution, as derived from the LF. In this sec-
tion we discuss the differences between the results of these
different authors, in an attempt to provide a clearer picture
of the true distribution of material in the Kuiper belt. As
a visual aid, Fig. 1 presents the surface densities (or upper
limits in case of non detection) provided by the surveys up
to date. We also added a few of the proposed LF. Note that
this is given only from an illustrative point of view. One
should not use this kind of representation to derive the LF
(although this was used in the early ages, but no longer in
the recent works), but rather resort to Bayesian likelihood
methods, as explained in section 4.

Table 3 gives a summary of the LF and/or size distri-
butions proposed by the works listed in Table 1. Below,
we now comment on those values, their meaning, and also
mention some results from works listed in Table 2.

Initial published estimates (JL95, Monte-Carlo ap-
proach; ITZ95, Maximum Likelihood frequentist approach)
found the size distribution of material to be well represented
by a power-lawN(> D) ∝ D(1−q), with q < 3, D being
the diameter of the TNO. Already at this early stage, ITZ95
realized that a break in the exponential was needed to ac-
count for the lack of detection in former shallow surveys.
The slope proposed for their detections, together with those
of JL95 was very shallow,α = 0.32 , much shallower than
any other population of small bodies in the Solar System.
Such a shallow slope was inconsistent with the lack of de-
tection by previous surveys by LD90 (4 objects predicted)
and LJ88 (41 objects predicted). So they added a cutoff at
bright magnitudes in the form of a steeper slope for magni-
tudes brighter than a fitted valuem0 and a shallower slope
for fainter objects. They fixed the value of the bright end
slope atαb = 1.5 and found a best fit slope for the faint end
αf = 0.13 and a break atm0 = 22.4.

These initial, groundbreaking, attempts were based on
small samples of a few to tens of objects. The large num-
ber of parameters that come into play in producing a full-up
model of the Kuiper belt [radial, inclination and size dis-
tributions which perhaps differ between objects in differ-
ent orbital classes] ensures that attempting to constrain the
problem with only a dozen or so detections will very likely
lead to false conclusions.

Later works gradually steepened the slope of the size dis-
tribution. Using a Monte-Carlo approach, JLC96 claimed
q ∼ 4, while JLT98 showed thatq ∼ 4, depending only
mildly on the choice of radial distribution. With a larger
(73 ⊓⊔◦) and fainter (mR ∼ 23.7) survey that detected 86
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Fig. 1.—Cumulative surface density of TNOs brighter than a givenR magnitude. The solid circles represent the values derived from
the works by T61, JLC96, LJ98, L01, JL95, ITZ95, JLT98, G98, CB99, TJL01, G01, T01, B04, P06 and F07. The errors bars correspond
to a 68.3% probability. The solid diamonds represent the upper limit at 99.7% probability for non-detection from K89, LJ88, LD90, S00
and G01. The dashed lines show the shallowest (ITZ95), the most recent (F07) and the steepest (E05,α = 0.88) LF given in Table 3.
The dash-dotted line show the LF of B04, integrated to give a cumulative density. Note that such a plot should never be usedto “best-fit”
the LF.
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TABLE 3

LF AND SIZE DISTRIBUTIONS OF PAST SURVEYS

Survey LF slope Normalisation Size distrib.N(D ≥ 100km) Comments
(α) constanta slope (q) List of data usedb

Wide-area Surveys

JL95 C25 = 6 ± 2.3 q < 3 ∼ 35 000 30 ≤ R ≤ 50 AU region
T61, K89, LJ88, LD90, JL95

ITZ95 0.32+0.10
−0.08 C25 = 7.9+2.9

−2.3 JL95, ITZ95
∼ 0.6 Everything but JL95
∼ 0.13c C25 = 5.6 T61, K89, LJ88, LD90, JL95, ITZ95

JLT98 0.58 ± 0.05 m0 = 23.27 ± 0.11 4.0 ± 0.5 20 ≤ mR ≤ 25
Published data withmR > 23

TJL01 0.63 ± 0.06 m0 = 23.04+0.08
−0.09 4.0+0.6

−0.5 Maximum likelihoodd

Own data only

T01 0.66 ± 0.06 m0 = 23.32 ± 0.09 4.2+0.4
−0.3 4.7+1.6

−1.0 × 104 TJL01, T01

P06 0.76 ± 0.1 m0 = 23.3+0.2
−0.25 q ≃ 4.8 Own data only

Deep Surveys

G98 0.76+0.10
−0.11 m0 = 23.4+0.20

−0.18 LJ88, LD90, C95, ITZ95, JLT98, G98

CB99 0.52 ± 0.02 m0 = 23.5 ± 0.06 3.6 ± 0.5 All surveys and upper limits
0.66 ± 0.04 4.3 ± 0.5 ITZ95, JLT98, G98, CB99

G01 0.69 ± 0.07 m0 = 23.5 ± 0.03 q & 4 LJ88, LD90, C95, ITZ95, JLT98,
G98, CB99, G01

B04e α1 = 0.88 Σ23 = 1.08 Req = 23.6
α2 = 0.32 CB99, L01, TJL01, G01, ABM02,

TB03, B04

F07 0.6 ± 0.15 m0 = 23.25 ± 0.5 Own data only
0.73 ± 0.06f m0 = 23.55 ± 0.15f 4.6 ± 0.3f F07,

unpublished data byKavelaars et al.

aCx: number of object brighter than R magnitudex per⊓⊔◦; m0: R magnitude at which a cumulative density of 1 object per⊓⊔
◦is reached;

Σx: Number of object per⊓⊔◦, per unit magnitude at R magnitude x

bA reference to A on the line of B means that data acquired in work A are used in work B, not all the data used by A to derive the LF

c2 exponentials, break atm0 = 22.4, bright end slope = 1.5

dFitting the differential LF with a frequentist approach,α = 0.64+0.11
−0.10 andm0 = 23.23+0.15

−0.20

eDouble exponential differential LFΣ(R) = (1 + c)Σ23

h

10−α1(R−23) + c10−α2(R−23)
i

−1

with c = 10(α2−α1)(Req−23)

f3σ uncertainties
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TNOs, TJL01 concluded thatq = 4.0 ± 0.5. To reach
this conclusion, they used only their 74 detections close
to the ecliptic plane. They also directly estimated the LF
and foundα = 0.64+0.11

−0.10, but did not use this to derive
the size distribution (this would yieldq = 4.2+0.55

−0.5 ), al-
though they quote transformation eq. 3. G98 introduced a
Baysian weighted Maximum Likelihood approach to fit an
exponential LF and then translated this to a size distribution
of q ∼ 4.5 using equation 3.

CB99 extended the work toward the faint end with their
2 discovery survey, including the faintest TNO detected at
that time (mR = 26.9± 0.2 ). Combining a range of previ-
ous surveys, they find that0.5 < α < 0.7, and that the LFs
determined using different combinations of surveys result
in exponential slopes that are formally inconsistent at the
∼ 5σ level. This indicates that lumping all observations
together does not provide a very consistent picture of the
LF of the belt. The reason for this was first demonstrated by
P06, and an attempt to solve the problemwas proposed by
F07, along the lines mentioned in section 4. G01 also find
that only a sub-sample of the available surveys of the Kuiper
belt can be combined in a self consistent way and, using just
that sub-sample, findα ∼ 0.7 and concludeq & 4.0.

Using the HST Advanced Camera for Surveys, B04
searched 0.019⊓⊔◦of sky, to a flux limit of mR = 28.5,
more than 1.5 magnitudes fainter than any previous ground
based survey. They discovered 3 objects while a linear ex-
trapolation of the LF from G01 predicted the detection of∼
46 objects. Clearly the deviation from a uniform exponen-
tial has been reached.

B04 modeled the observed LF as a combination of 2
exponential functions and also as a function whose power
’rolled over’ from one slope onto another to account for the
observed lack of objects faintward ofmR = 26. In order to
constrain the bright end of the LF B04 combined all previ-
ous TNO-LF surveys together. Recall that previous authors
had already found that this often results in variations of the
exponential slope that are outside the range allowed by the
uncertainty measures of the individual projects. Based on
this combined fitting B04 determined that the bright end
slope is actually steeper than previous estimatesα ∼ 0.8
while faintward ofmR ∼ 24 the LF starts to be dominated
by a flatter slope ofα ∼ 0.3. Because the Kuiper belt has
an extent of a about∼ 20 AU, the roll-over occupies a fairly
large range of magnitude and, although starting atmR ∼ 23
the shallower slope is not dominant untilmR ∼ 25.5. Be-
cause the LF is no longer a simple exponential, there is not
a complete direct connection between the size distribution
powerq and the LF slopeα. However, the asymptotic be-
haviour of B04’s LF imply a size distribution’s power of
q ∼ 2.5, much shallower than the3.5 value expected for
Donanyhi-like distribution.

Other surveys have subsequently attempted to determine
the LF of the Kuiper belt in the22 < mR < 26 region,
thus more firmly establishing the steep component of the
LF and better constraining planetesimal accretion models.

E05 employ a novel survey efficiency model, but flawed
method in order to determine the slope of the size distribu-
tion based on analysis of their Deep Ecliptic Survey obser-
vations. They did not effectively measure their detection ef-
ficiency, so they tried to parameterize it and solve for these
new parameters together with the LF parameters. Unfortu-
nately, this is strongly degenerate and a slight change in the
efficiency function have strong implications on the derived
slope for the LF. They had to fix the efficiency parameters
in several cases in order to get reasonable slopes. Finally,
E05 find thatq ∼ 4.7 for objects in the classical Kuiper belt.
P06 present an analysis of the LF of Kuiper belt objects de-
tected in their survey for irregular satellites of Uranus and
Neptune and find thatq ≃ 4.8. They also show that this
slope is similar to that of G01, but with an offset in the sky
density, which they relate to change in the direction of the
surveys (see their Fig. 8 and Fig. 2). For these surveys we
see that there appears to be consensus on steepness of the
slope of the size distribution of Kuiper belt material in the
22 < mR < 25. These steep values for the slope ofq stand
in stark contrast to the original estimates ofq ∼ 2.5.

F07 present a more complete approach to combining
data from multiple surveys than has previously been at-
tempted. F07 observe that the value ofmo [the point at
which a survey sees 1 object per⊓⊔◦] in the LF of observed
TNOs at different ecliptic longitudes and latitudes need not
be identical. This is due to the narrow width of the Kuiper
belt and the effects of resonance libration angles causing the
sky density of plutinos to vary from month to month. Addi-
tionally, F07 note that the transformation between filter sets
and the absolute calibrations of various surveys cannot be
perfect. Therefore, F07 modified the single exponential LF
by allowingmo to vary between surveys [which all attain
different depths] and thus account for these unknown varia-
tions inmo. This change has the effect of removing the vari-
ations inα seen by CB99 and allows F07 to provide a very
robust measure of the slope between21 < mR < 25.7. F07
find that values ofq < 4 for this magnitude range are now
formally rejected with greater than5σ confidence. In the
same time, F07 rejects a change to shallower slope occur-
ing brightward ofmR ∼ 24.3 at more than3σ, and propose
that this change occurs aroundmR ∼ 25.5.

It is now demonstrated that for the whole ensemble of
TNOs, the size distribution slope is steeper than 4, most
likely aroundq ∼ 4.5, brightward ofmR ∼ 25.

To our knowledge, all published works on TNO accre-
tion assumed an unperturbed accretion phase that produce
a cumulative size distribution slopeq ∼ 3 (and always
q < 4) up to the largest bodies. They also tend to produce
disks that are much more massive than the current Kuiper
Belt mass. Steeper slopes for the largest bodies are actually
achieved during the accretion phase, and retaining them re-
quires some perturbations (external or endogenic) to halt
or change the collisional accretion of large bodies at some
early time (chapter byKenyon et al.). The slope reached for
large bodies, and the size at which the transition to a shal-
lower slope for small bodies occurs are strong constrains on
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Fig. 2.— Debiased cumulative surface density of TNOs for G01 (open squares), P0 (open diamonds) and MEGAPrime data of F07
(open circles). The data have been debiased using the published efficiency functions. The different lines represent thebest fit single
exponential LF for G01 (dotted line), P06 (dash-dotted line) and F07 (dashed line). All three surveys, taken independently, are well
approximated by a single exponential function with index ranging from 0.7 to 0.8. Clearly, one cannot simply combine them as was done
up to and including B04 (although CB99 noted that combining leads to inconsistent results). One must account for an offset in surface
density due to longitude and latitude variation, magnitudedifference in different passband filters, and calibration uncertainties. An
attempt to apply these corrections was done by F07, but this requires external determination of these offset in order to avoid unreasonable
fit values form0 for surveys with small number of detections (F07).
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the time at which these perturbations happend. The slope
for smaller bodies depends on the relative velocity distri-
bution (eccentricity and inclination) and the strength of the
bodies. The main perturbation mechanisms are a close flyby
of a star and Neptune steering. Flybys tend to leave too
much mass in the dust grains, while Neptune steering can
produce the correct slope and low dust mass implied by the
observations (chapter byKenyon et al.). The stopping of
coagulation accretion (slope at large sizes) and the dynam-
ical removal of most of the remaining material (transition
size between steep and shallow slopes) require that Neptune
steering occured before 100-200 My. This seems to present
a serious timing problem for the Nice model (chapters by
Kenyon et al.andMorbidelli et al.).

6. SIZE DISTRIBUTION OF THE DIFFERENT
DYNAMICAL POPULATIONS

The different dynamical populations of small bodies of
the outer Solar System described in the chapter byGlad-
man et al.are thought to result from different mechanisms.
So they could very well present various size distributions,
coming from different places, and having suffered different
accretion and collisional evolution.

In the early ages of size distribution determination, the
small number of objects made it difficult, almost impossible
to search for different size distributions for each dynamical
class. Thus, few people tried to address this question, and
most of those who did assumed a unique size distribution
for all classes, with only a change in the normalizing factor.

JLT98 had to assume some orbital distribution of objects
to solve for the size distribution. They used a two popula-
tion model composed of a classical Kuiper Belt and Pluti-
nos. In doing so, they used the same size distribution form
for both populations, and assumed a simplified model of the
semimajor axis and eccentricity distributions of the classi-
cal belt, as well as the eccentricity distribution of the Pluti-
nos. In doing so, they estimated that theapparentPlutino
fraction of ∼ 38% found in their data corresponds to a
10%-20% fraction of the TNOs in the 30-50 AU region.
Furthermore, they computed the bias in their survey against
finding objects in the 2:1 resonance with Neptune and con-
cluded that the non-detection of those could not formally
disprove the hypothesis that the 2:1 and 3:2 resonances are
equally populated (Malhotra, 1995). Note that the classi-
fication used rather short arcs, typically 1 year or less for
many objects in the survey, which may lead to misclassifica-
tion. TJL01 applied the same approach to their new survey,
for which they attempted to obtain better orbital determina-
tion by longer tracking effort. Using the bias toward find-
ing 3:2 resonant objects computed by JLT98, they converted
their observed 8% Plutino fraction to a 3%-4% real fraction,
much smaller than the previous estimate, and more in line
with the findings ofPetit and Gladman(2003). As for the
2:1 population, their conclusions were similar to those of
JLT98.

L00 used also a single slope for their LF for all TNOs

and give their sky density of classical belt and of scattering
(scattered in their paper) disk and find the latter to be about
6 times less populated than the former. They also consid-
ered what they called Centaurs (not a population of TNOs
per-se) of which they discovered 4, and derived a shallower
slope than for TNOs, and a much lower sky density of
0.017 ± 0.011 Centaurs brighter thanmR = 21.5. How-
ever, according to the new classification scheme KBB07
described in the chapter byGladman et al., only 2 objects
are Centaurs, one (1998 SG35=Okyrhoe) is a JFC and the
last one (33128=1998 BU48) is a Scattering Disk Object.
We note that the objects used in that work had typically a
decently determined orbit, and the change in classification
is due to the fuzzy definitions used at that time. T01 con-
firmed the sky density of Centaurs at the bright end, finding
one such object (using the same definition as L00) in their
survey.

B04 were the first to try and fit completely different LFs
to different dynamical classes. They define three differ-
ent classes that span one or more classes of KBB07. The
TNOsample contains all objects with heliocentric distance
R > 25 AU. TheCKBOsample roughly correspond to the
Classical Belt, with 38 AU< R < 55 AU and inclina-
tion i < 5◦. TheExcitedsample is the complement of the
CKBOs in the TNOs. They find that the differential LF of
the CKBO sample is well described by a very steep slope
(α ∼ 1.4) at the bright end, and a shallower, but still rising,
slope (α ∼ 0.4) at the faint end, while the differential LF of
the Excited sample would have a bright end slope similar to
that derived by other works to the whole belt (α ∼ 0.65),
and would be decreasing at the faint end (slopeα ∼ −0.5).
This result is to be taken with great caution as the classifi-
cation used was purely practical and has no connection to
any common (or lack of) origin of the bodies.

E05 had the best survey at the time to address the ques-
tion of size distribution versus dynamical population, hav-
ing the largest number of objects discovered in a single sur-
vey. In addition they were able to determine precisely the
orbit of a fair fraction of their objects. They consider three
major classes of TNOs, mainly the Classical Belt, the res-
onant objects, and the Scattered objects, with boundaries
similar to those of KBB07. They find that the slope of the
LF varies significantly from the Classical belt (0.72), to the
resonant objects (0.60) to the Scattered objects (1.29). In-
terestingly, the slope of their overall sample is steeper (0.88)
than for any sub-sample but the scattered one, which make
only a small fraction of the objects. However, a caveat is
in order here, since E05 did not actually measure their ef-
ficiency at discovery, but rather used a heuristic approach
to estimate it. Also, only about half of their objects had an
orbit precise enough to allow for classification.

7. FUTURE WORK AND LINK WITH FORMATION
AND COLLISIONAL EVOLUTION MODELS

The two major outstanding issues on this topic concern
the size distribution of the various dynamical classes, and
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the size(s) at which the shape of the distribution changes.
The work of B04 have shown that, going to the faint end

of the LF, there is a knee in the size distribution, which they
estimate to be aroundmR ∼ 24 − 25. But P06 and F07
have shown the straight exponential to extend to at least
mR = 26. To settle this question, we will need a⊓⊔◦survey
down to R magnitude 28 or so, beyond the expected knee
in the size distribution. At the other end of the LF, ear-
lier works (ITZ95, and to a lesser extend JLT98) have re-
ported the need for a steeper slope of the LF for objects
brighter thanmR ∼ 22 − 23. ITZ95 were the only one to
give an estimate of the needed slope, at 1.5. All subsequent
works assumed a single slope brightward ofmR ∼ 24−25.
However, these works were dealing mostly with LF faint-
ward ofmR ∼ 22, either explicitly, or implicitly. Decid-
ing if there is really a change in the LF slope brightward
of mR ∼ 22 − 23 requires surveying the∼ 1500⊓⊔deg
around the Ecliptic Plane were the Classical Kuiper Belt re-
side, down to R magnitude 22-23.

The challenge for determining the size distribution of the
different dynamical classes is that we need to have a fully
characterized survey finding a decent number of TNOs in
each class, and follow them all (or at least a large fraction
of them, without orbital bias) to firmly establish their class.
This requires a follow-up program for at least 2 years af-
ter discovery. The only current survey of this kind is the
Very Wide component of the CFHT Legacy Survey which
discover TNOs as faint asmR ≃ 23.5 − 24 depending on
the seeing conditions. It has covered 300⊓⊔◦in its discovery
phase and is still chasing the objects it has discovered. The
forthcoming Pan-STARRS survey will cover the entire sky
to 0.5-1 magnitude fainter than the current CFHTLS-VW
survey. Both can address the question of the size distribu-
tion for the large size bodies, larger than the transition knee
detected by B04. In the five to ten years to come, we should
have a good knowledge of the size distribution of the large
bodies (larger than 100 km in radius) in each of the main
dynamical classes, allowing useful comparison with early
accretion models.

The size distribution of TNOs smaller than the knee for
the CKBO class (the most abundant one in most of the
surveys) will also be determined during the same period,
thanks to large efforts on 8-m class telescopes. Determining
the shape of the size distribution of small TNOs in each dy-
namical class is the step after determining that of the TNOs
as a whole. This will require a large sample in each dynam-
ical class, hence surveying several⊓⊔◦of sky to be observed
to magnitude∼28. All objects thus discovered will have
to be followed until their orbit has been firmly established.
This will occur only when we have⊓⊔◦cameras on either Ex-
tremely Large Telescopes or on the new generation of Space
Telescopes.
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