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DOUBLING BIALGEBRAS OF FINITE TOPOLOGIES

MOHAMED AYADI AND DOMINIQUE MANCHON

Abstract. The species of finite topological spaces admits two graded bimonoid structures, recently

defined by F. Fauvet, L. Foissy, and the second author. In this article, we define a doubling of this

species in two different ways. We build a bimonoid structure on each of these species and describe

a cointeraction between them. We also investigate two related associative products obtained by

dualisation.

1. Introduction and preliminaries

Recall (see e.g. [14, 16, 9]) that a topology on a finite set X is given by the family T of open

subsets of X, subject to the three following axioms:

• ø ∈ T, X ∈ T,

• The union of (a finite number of) open subsets is an open subset,

• The intersection of a finite number of open subsets is an open subset.

Any topology T on X defines a quasi-order (i.e. a reflexive transitive relation) denoted by ≤T on

X:

(1.1) x ≤T y⇐⇒ any open subset containing x also contains y.

Conversely, any quasi-order ≤ on X defines a topology T≤ given by its upper ideals, i.e. subsets

Y ⊂ X such that (y ∈ Y and y ≤ z) =⇒ z ∈ Y . Both operations are inverse to each other:

(1.2) ≤T≤=≤, T≤T = T.

Hence there is a natural bijection between topologies and quasi-orders on a finite set X. Any

quasi-order (hence any topology T ) on X gives rise to an equivalence relation:

(1.3) x ∼T y⇐⇒ (x ≤T y and y ≤T x) .

More on finite topological spaces can be found in [3, 8, 15, 16].

Let us recall the construction from [8] of two bimonoids [1, 2] in cointeraction on the linear

species of finite topological spaces, which orginated from a previous Hopf-algebraic approach

[10, 11]. Let T and T′ be two topologies on a finite set X. We say that T′ is finer than T, and we

write T′ ≺ T, when any open subset for T is an open subset for T′. This is equivalent to the fact

that for any x, y ∈ X, x ≤T′ y⇒ x ≤T y.

The quotient T/T′ of two topologies T and T
′ with T

′ ≺ T is defined as follows ([9, Paragraph

2.2]): The associated quasi-order ≤T/T′ is the transitive closure of the relation R defined by:

(1.4) xRy⇐⇒ (x ≤T y or y ≤T′ x).
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2 MOHAMED AYADI AND DOMINIQUE MANCHON

Recall that a linear species is a contravariant functor from the category of finite sets with bijections

into the category of vector spaces (on some field k). The tensor product of two species E and F is

given by

(1.5) (E ⊗ F)X =

⊕

Y⊔Z=X

EY ⊗ FZ .

The species T of finite topological spaces is defined as follows: For any finite set X, TX is the

vector space freely generated by the topologies on X. For any bijection ϕ : X −→ X′, the

isomorphism Tϕ : TX′ −→ TX is defined by the obvious relabelling:

Tϕ(T) = {ϕ−1(Y), Y ∈ T}

for any topology T on X′.

For any finite set X, let us recall from [9] the coproduct Γ on TX:

(1.6) Γ(T) =
∑

T′#≺T

T
′ ⊗ T/T′.

The sum runs over topologies T′ which are T-admissible, i.e

• finer than T,

• such that T′
|Y
= T|Y for any subset Y ⊂ X connected for the topology T′,

• such that for any x, y ∈ X,

(1.7) x ∼T/T′ y ⇐⇒ x ∼T′/T′ y.

A commutative monoid structure ([9, Paragraph 2.3]) on the species of finite topologies is defined

as follows: For any pair X1, X2 of finite sets we introduce

m : TX1
⊗ TX2

−→ TX1⊔X2

T1 ⊗ T2 7−→ T1T2,

where T1T2 is the disjoint union topology characterized by Y ∈ T1T2 if and only if Y ∩ X1 ∈ T1

and Y ∩ X2 ∈ T2. The notation ⊔ stands for disjoint union, and the unit is given by the unique

topology on the empty set.

For any topology T on a finite set X and for any subset Y ⊂ X, we denote by T|Y the restriction

of T to Y . It is defined by:

T|Y = {Z ∩ Y, Z ∈ T} .

The external coproduct ∆ on T is defined as follows:

∆ : TX −→ (T ⊗ T)X =

⊕

Y⊔Z=X

TY ⊗ TZ

T 7−→
∑

Y∈T

T|X\Y ⊗ T|Y .

The internal and external coproducts are compatible, i.e. the following diagram commutes for

any finite X.
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TX
Γ //

∆

��

TX ⊗ TX

I⊗∆

��
(T ⊗ T)X

Γ⊗Γ ((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

TX ⊗ (T ⊗ T)X

⊕
Y⊂X

TX\Y ⊗ TX\Y ⊗ TY ⊗ TY

m1,3

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

Now consider the graded vector space:

(1.8) H = K(T) =
⊕

n≥0

Hn

where H0 = k.1, and where Hn is the linear span of topologies on {1, ..., n} when n ≥ 1, modulo

the action of the symmetric group S n. The vector space H can be seen as the quotient of the

species T by the ”forget the labels” equivalence relation: T ∼ T′ if T
(
resp.T′

)
is a topology on a

finite set X (resp. X′), such that there is a bijection from X onto X′ which is a homeomorphism

with respect to both topologies. The functor K̄ from linear species to graded vector spaces thus

obtained is intensively studied in ([1, chapter 15]) under the name ”bosonic Fock functor”. This

naturally leads to the following:

• (H,m,∆) is a commutative connected Hopf algebra, graded by the number of elements.

• (H,m, Γ) is a commutative bialgebra, graded by the number of equivalence classes minus

the number of connected components.

• (H,m,∆) is a comodule-bialgebra on (H,m, Γ). In particular the following diagram of

unital algebra morphisms commutes:

H
Γ //

∆

��

H ⊗H

I⊗∆
��

H ⊗H

Γ⊗Γ ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

H ⊗H ⊗H

H ⊗H ⊗H ⊗H
m1,3

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

On the vector space freely generated by rooted forests, Connes and Kreimer define in [6, 7, 12]

a graded bialgebra structure defined using allowable cuts. In [5], D. Calaque, K. Ebrahimi-Fard

and the second author introduced bases of a graded Hopf algebra structure defined using contrac-

tions of trees. M. Belhaj Mohamed and the second author introduced in [4] the doubling of these

two spaces and they built two bialgebra structures on these spaces, which are in interaction. They

have also shown that two bialgebra satisfied a commutative diagram similar to the diagram of [5]

in the case of rooted trees Hopf algebra, and in the case of directed graphs without cycles [13].
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In Section 2 of this paper, we define two different doubling species D and D̃ of the species T.

For later use will also consider D = K(D) and D̃ = K(D̃). The species D is defined as follows:

For any finite set X, DX is the vector space spanned by the pairs (T, Y) where T is a topology on

X and Y ∈ T. Similarly, D̃X is the vector space spanned by the ordered pairs (T,T′) where T is a

topology on X, and T′#≺T. We prove that there exist graded bimonoid structures on DX and D̃X,

where the external and internal coproducts are defined respectively by

(1.9) ∆(T, Y) =
∑

Z∈T|Y

(T|Z , Z) ⊗ (T|X\Z , Y\Z),

for all (T, Y) ∈ DX, and

(1.10) Γ(T,T′) =
∑

T′′#≺ T′

(T,T′′) ⊗ (T/T′′,T′/T′′).

for all (T,T′) ∈ D̃X. We show the inclusions ∆(DX) ⊂ (D ⊗ D)X =
⊕

Y⊔Z=X

DY ⊗ DZ and Γ(D̃X) ⊂

D̃X ⊗ D̃X, and that ∆ and Γ are coassociative. It turns out that only the internal coproduct Γ is

counital.

In Section 3, after a reminder of the main results of [9], we show an important restriction result,

namely the notion of T-admissibility is stable under restriction to any subset (Proposition 3.1), and

we prove that DX admits a comodule structure on D̃X given by the coaction Φ : DX −→ D̃X ⊗DX,

which is defined for all (T, Y) ∈ DX by:

Φ(T, Y) =
∑

T′#≺T,Y∈T/T′

T′
|X\Y

=DX\Y,T′

(T,T′) ⊗ (T/T′, Y)

where, for any topology T on a finite set X, the finest T-admissible topology is denoted by DX,T.

The connected components of DX,T are the equivalence classes of T, and DX,T restricted to each

connected component is the coarse topology. For any Y ⊂ X, we note DY,T for DY,T|Y .

Remark 1.1. We obviously have d(DX,T) = 0 where d is the grading given by the number of

equivalence classes minus the number of connected components [9]. We also clearly have

T/DX,T = T.

In Sction 4, we construct an associative product on D given by ∗ : D⊗D −→ D, defined for all

(T1, Y1) ∈ DX1
and (T2, Y2) ∈ DX2

, (where X1 and X2 are two finite sets) by:

(T1, Y1) ∗ (T2, Y2) 7−→


(T1, Y1 ⊔ Y2) if X2 = X1 \ Y1 and T2 = T1|X2

0 if not.

This product is obtained by dualizing the restriction of the coproduct ∆ to DX, identifying DX

with its graded dual using the basis
{
(T, Y),T topology and Y ∈ T

}
. We accordingly construct a

second associative algebra structure on D̃X by dualizing the restriction of the coproduct Γ to D̃X,

yielding the associative product > : D̃X ⊗ D̃X −→ D̃X, defined by:

(T1,T
′
1) > (T2,T

′
2) 7−→


(T1,U) if T2 = T1/T

′
1

0 if not,
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where U is defined by T′
2
= U/T′

1
.

Finally, we define in Section 5 a new map

ξ : D̃X ⊗
⊕

Y⊔Z=X

DY ⊗ DZ −→ D̃X ⊗
⊕

Y⊔Z=X

DY ⊗ DZ

by:

ξ
(
(T,T′) ⊗ (T1, Y1) ⊗ (T2, Y2)

)
= (T|Y1

T|X\Y1

,T′|Y1

T
′

|X\Y1

) ⊗ (T1, Y1) ⊗ (T2, Y2).

We prove that the coaction Φ and the map ξ make the following diagram commute:

DX
Φ //

∆

��

D̃X ⊗ DX

Id⊗∆
��

(D ⊗ D)X

Φ⊗Φ

��

D̃X ⊗ (D ⊗ D)X

ξ

��⊕
Y⊂X

D̃Y ⊗ DY ⊗ D̃X\Y ⊗ DX\Y
m1,3

// D̃X ⊗ (D ⊗ D)X

Applying the functor K leads to the diagram:

D
Φ //

∆

��

D̃ ⊗D

Id⊗∆
��

D ⊗D

Φ⊗Φ
��

D̃ ⊗D ⊗D

ξ
��

D̃ ⊗D ⊗ D̃ ⊗D
m1,3

// D̃ ⊗D ⊗D

where we have written ∆ for K(∆) and so on. All arrows of this diagram are algebra morphisms.

2. Doubling bialgebras of finite topologies

Let X be any finite set, and DX be the vector space spanned by the pairs (T, Y) where T is a

topology, and Y ∈ T. We define the coproduct ∆ by:

∆ : DX −→ (D ⊗ D)X =

⊕

Z⊂X

DZ ⊗ DX\Z

(T, Y) 7−→
∑

Z∈T|Y

(T|Z
, Z) ⊗ (T|X\Z

, Y\Z).

Theorem 2.1. D is a commutative graded connected bimonoid, and D = K(D) is a commutative

graded bialgebra.

Proof. To show that D is a bimonoid [1], it is necessary to show that ∆ is coassociative, and that

the species coproduct ∆ and the product defined by:

(T1, Y1)(T2, Y2) = (T1T2, Y1 ⊔ Y2)
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are compatible. The unit 1 is identified to the empty topology, and the grading is given by:

(2.1) d(T, Y) = |Y |.

The associativity of the product is given by the direct computation:

(T1T2, Y1 ⊔ Y2)(T3, Y3) = (T1T2T3, Y1 ⊔ Y2 ⊔ Y3) = (T1, Y1)(T2T3, Y2 ⊔ Y3).

The coassociativity of coproduct ∆ is also straightforwardly checked:

(∆ ⊗ id)∆(T, Y) = (∆ ⊗ id)



∑

Z∈T|Y

(T|Z
, Z) ⊗ (T|X\Z

, Y\Z)



=

∑

W∈T|Z
, Z∈T|Y

(T|W
,W) ⊗ (T|Z\W

, Z\W) ⊗ (T|X\Z
, Y\Z),

and

(id ⊗ ∆)∆(T, Y) = (id ⊗ ∆)


∑

Z∈T|Y

(T|Z
, Z) ⊗ (T|X\Z

, Y\Z)



=

∑

U∈T|Y\Z
, Z∈T|Y

(T|Z
, Z) ⊗ (T|U

,U) ⊗
(
T|X\(Z⊔U)

, Y\(Z ⊔ U)
)
.

Coassociativity then comes from the obvious fact that (W, Z) 7−→ (W, Z\W) is a bijection from

the set of pairs (W, Z) with Z ∈ T|Y
and W ∈ T|Z

, onto the set of pairs (W,U) with W ∈ T|Y
and

U ∈ T|Y\W
. The inverse map is given by (W,U) 7−→ (W,W ⊔ U). Finally, we show immediately

that

∆
(
(T1, Y1)(T2, Y2)

)
= ∆(T1T2, Y1 ⊔ Y2) = ∆(T1, Y1)∆(T2, Y2).

�

Remark 2.1. The bimonoid D is not counitary, because (T, Y)⊗ 1 never occurs in ∆(T, Y) unless

Y = X.

Let D̃X be the vector space spanned by the ordered pairs (T,T′) where T is a topology on X and

T′#≺T. We define the coproduct Γ for all (T,T′) ∈ D̃X by:

Γ(T,T′) =
∑

T′′#≺ T′

(T,T′′) ⊗ (T/T′′,T′/T′′).

Lemma 2.1. ([9, Propostion 2.7]) Let T and T′′ be two topologies on X. If T′′ #≺T, then T′ 7−→

T′/T′′ is a bijection from the set of topologies T′ on X such that T′′ #≺T′ #≺T , onto the set of

topologies U on X such that U#≺ T/T′′.

Theorem 2.2. D̃ is a commutative graded bimonoid, and D̃ = K(D̃) is a graded bialgebra.

Proof. To show that D̃ is a bimonoid, it is necessary to show that Γ is coassociative and that the

species coproduct Γ and the product defined by:

m
(
(T1,T

′
1)(T2,T

′
2)
)
= (T1T2,T

′
1T
′
2)

are compatible. The unit 1 is identified to the empty topology, the counit ǫ is given by ǫ(T,T′) =

ǫ(T′) and the grading is given by:

(2.2) d(T,T′) = d(T′),
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where the grading d on the right-hand side has been defined in the introdution.

We now calculate:

(Γ ⊗ id)Γ(T,T′) = (Γ ⊗ id)



∑

T′′#≺ T′

(T,T′′) ⊗ (T/T′′,T′/T′′)



=

∑

T′′′#≺T′′#≺ T′

(T,T′′′) ⊗ (T/T′′′,T′′/T′′′) ⊗ (T/T′′,T′/T′′).

On the other hand;

(id ⊗ Γ)Γ(T,T′) = (id ⊗ Γ)



∑

T′′#≺ T′

(T,T′′) ⊗ (T/T′′,T′/T′′)



=

∑

T′′#≺ T′, T1#≺ T
′/T′′

(T,T′′) ⊗ (T/T′′,T1) ⊗
(
(T/T′′)/T1, (T

′/T′′)/T1

)

=

∑

T′′#≺U#≺ T′

(T,T′′) ⊗ (T/T′′,U/T′′) ⊗ (T/U,T′/U).

The result then comes from Lemma 2.1. Hence, (Γ ⊗ id)Γ = (id ⊗ Γ)Γ, and consequently Γ is

coassociative. Finally we have directy:

Γ
(
(T1,T

′
1)(T2,T

′
2)
)
= Γ(T1,T

′
1)Γ(T2,T

′
2).

�

Proposition 2.1. The second projection

P2 : D̃ −→ T

(T,T′) 7−→ T
′

is a bimonoid morphism with respect to the internal coproducts.

Proof. The fact that P2 respects the product is trivial. It suffices to show that P2 is a coalge-

bra morphism for any finite set X, analogously to Proposition 1, i.e, P2 verifies the following

commutative diagram:

D̃X

P2 //

Γ

��

TX

Γ

��
D̃X ⊗ D̃X

P2⊗P2

// TX ⊗ TX
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which can be seen by direct computation:

Γ ◦ P2(T,T′) = Γ(T′)

=

∑

T′′#≺T′

T
′′ ⊗ T′/T′′

=

∑

T′′#≺T′

P2(T,T′′) ⊗ P2(T/T′′,T′/T′′)

= (P2 ⊗ P2)Γ(T,T′).

�

3. Comodule-Hopf algebra structure

3.1. Comodule-Hopf algebra structure on H. F. Fauvet, L. Foissy and the second author have

studied the Hopf algebra (H,m,∆) as a comodule-Hopf algebra on the bialgebra (H,m, Γ), where

H = K(T). Here the notations m,∆, Γ are shorthands for K(m),K(∆),K(Γ) respectively. The

coaction is the map K(φ) : H −→ H ⊗H where φ is defined as follows:

φ(T) = Γ(T) =
∑

T′#≺T

T
′ ⊗ T/T′.

Proposition 3.1. Let T be a topology on a finite set X. For any subset W ⊂ X and for any T′#≺T

we have T
′

|W
#≺ T|W

.

Proof. Let T be a topology on a finite set X, let W be any subset of X, and let T′ #≺T. Let

R (resp. R′) be the relation defined on X by aRb if and only if a ≤T b or b ≤T′ a (resp.

aR′b if and only if a ≤T′ b or b ≤T′ a). We have T′#≺T hence R′ implies R.

• The relation T
′

|W
≺ T|W

is obvious.

• If Y ⊂ W connected for the topology T
′

, and x ∈ Y , we have

Y = {y ∈ W, there is a chain xR′t1 · · ·R
′tnR′y,with t1, . . . , tn ∈ W} .

The set Ỹ := {y ∈ W, there is a chain xR′t1 · · ·R
′tnR′y,with t1, . . . , tn ∈ X} is a connected

component of X for the topology T′, so T
′

|Ỹ
= T|Ỹ

, hence a fortiori T
′

|Y
= T|Y

, because the

inclusion Y ⊂ Ỹ holds.

• Let x, y ∈ W. If x ∼T′ |W/T
′

|W
y there is t1, . . . , tn ∈ W, j ∈ [n], y = t j such that

xR′t1 · · ·R
′tnR′x. This implies xRt1...RtnRx, therefore x ∼

T|W/T
′

|W
y. Conversely, if x ∼

T|W/T
′

|W

y there is t1, . . . , tn ∈ W and j ∈ [n] with y = t j, such that xRt1 · · ·RtnRx. For A =

{x, t1, . . . , tn}, we have for all a and b in A, a ∼T/T′ b. Since T′ #≺T, we have a ∼T′/T′ b,

hence a and b in the same connected component Z for the topology T′.

We have T
′

|Z
= T|Z

and A ⊂ Z, hence T
′

|A
= T|A

. Then for all a, b ∈ A, aRb if and only

if aR′b, so we have xR′t1 · · ·R
′tnR′x, therefore x ∼T′ |W/T

′

|W
y.

�

Proposition 3.2. [9] The internal and external coproducts are compatible, i.e. the following

diagram commutes.
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T
Γ //

∆

��

T ⊗ T

Id⊗∆

��

(T ⊗ T)X

Γ⊗Γ

��⊕
Y⊔Z=X

TY ⊗ TY ⊗ TZ ⊗ TZ
m1,3

// T ⊗ (T ⊗ T)X

i.e., the following identity is verified:

(Id ⊗ ∆) ◦ Γ = m1,3 ◦ (Γ ⊗ Γ) ◦ ∆,

where m1,3 : TX1
⊗ TX2

⊗ TX3
⊗ TX4

−→ TX1⊔X3
⊗ TX2

⊗ TX4
is defined by

m1,3(T1 ⊗ T2 ⊗ T3 ⊗ T4) = T1T3 ⊗ T2 ⊗ T4.

Applying the functor K̄ yields the comodule-Hopf algebra structure of (H,m,∆) on the bial-

gebra (H,m, Γ). In particular the diagram above yields the commutative diagram

H
Γ //

∆

��

H ⊗H

Id⊗∆

��

H ⊗H

Γ⊗Γ

��
H ⊗H ⊗H ⊗H

m1,3

// H ⊗H ⊗H

3.2. Comodule structure on the doubling bialgebras of finite topologies. For any finite set X,

we define Φ : DX −→ D̃X ⊗ DX, for all (T, Y) ∈ DX by:

Φ(T, Y) =
∑

T′#≺ T,Y∈T/T′,
T′|X\Y

=DX\Y,T′

(T,T′) ⊗ (T/T′, Y).

The map Φ is well defined.

Theorem 3.1. D admits a comodule structure on D̃ given by Φ.

Proof. The proof amounts to show that the following diagram is commutative for any finite set X:

DX
Φ //

Φ

��

D̃X ⊗ DX

Γ⊗id
��

D̃X ⊗ DX
id⊗Φ

// D̃X ⊗ D̃X ⊗ DX
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Let (T, Y) ∈ DX:

(Γ ⊗ id)Φ(T, Y) = (Γ ⊗ id)



∑

T′#≺T, Y∈T/T′,
T
′
|X\Y
=DX\Y,T′

(T,T′) ⊗ (T/T′, Y)



=

∑

T′′#≺T′#≺ T,Y∈T/T′,
T
′
|X\Y
=DX\Y,T′

(T,T′′) ⊗ (T/T′′,T′/T′′) ⊗ (T/T′, Y).

On the other hand, we have

(id ⊗Φ)Φ(T, Y) = (id ⊗Φ)



∑

T′#≺T, Y∈T/T′,
T′|X\Y

=DX\Y,T′

(T,T′) ⊗ (T/T′, Y)



=

∑

T′#≺ T,Y∈T/T′,
T′|X\Y

=DX\Y,T′

∑

T1#≺ T/T
′,Y∈(T/T′)/T1 ,

T1 |X\Y
=DX\Y,T1

(T,T′) ⊗ (T/T′,T1) ⊗
(
(T/T′)/T1, Y

)

=

∑

T′#≺U#≺ T, Y∈T/T′

U|X\Y=DX\Y,U

(T,T′) ⊗ (T/T′,U/T′) ⊗ (T/U, Y).

Then,

(id ⊗ Φ) ◦Φ = (Γ ⊗ id) ◦Φ,

and consequently Φ is a coaction. �

4. Associative algebra structures on the doubling spaces

4.1. Associative product on D. For any finite set X, recall here that an element (T, Y) belongs

to DX if T is a topology on X and Y ∈ T.

Theorem 4.1. The product ∗ : D ⊗ D −→ D defined for all (T1, Y1) ∈ DX1
and (T2, Y2) ∈ DX2

by:

(T1, Y1) ∗ (T2, Y2) 7−→


(T1, Y1 ⊔ Y2) if X2 = X1 \ Y1 and T2 = T1|X2

,

0 if not

is associative.

Proof. Let (T1, Y1), (T2, Y2) and (T3, Y3) be three elements of DX1
, DX2

and DX3
respectively. We

suppose first that X2 = X1 \ Y1 and T2 = T1|X2

, otherwise the result is zero.

(
(T1, Y1) ∗ (T2, Y2)

)
∗ (T3, Y3) = (T1, Y1 ⊔ Y2) ∗ (T3, Y3)

= (T1, Y1 ⊔ Y2 ⊔ Y3),

whenever X3 = X\(Y1 ⊔ Y2) and T3 = T1|X3

, the left-hand side vanishing otherwise. Hence,

(
(T1, Y1)∗(T2, Y2)

)
∗(T3, Y3) =



(T1, Y1 ⊔ Y2 ⊔ Y3)

if X2 = X1 \ Y1, X3 = X1 \ (Y1 ⊔ Y2), T2 = T1|X2

and T3 = T1|X3

0 if not.



DOUBLING BIALGEBRAS 11

On the other hand, we have

(T1, Y1) ∗
(
(T2, Y2) ∗ (T3, Y3)

)
= (T1, Y1) ∗ (T2, Y2 ⊔ Y3)

= (T1, Y1 ⊔ Y2 ∪ Y3),

whenever X3 = X2 \ Y2 and T3 = T2|X3
, as well as X2 = X1 \ Y1 and T2 = T1|X2

. Then

(T1, Y1)∗
(
(T2, Y2)∗(T3, Y3)

)
=



(T1, Y1 ⊔ Y2 ⊔ Y3)

if X2 = X1 \ Y1, X3 = X2 \ Y2, T2 = T1|X2

and T3 = T2|X3

0 if not.

We therefore conclude that for all (T1, Y1), (T2, Y2), (T3, Y3) ∈ DX, we have
(
(T1, Y1) ∗ (T2, Y2)

)
∗ (T3, Y3) = (T1, Y1) ∗

(
(T2, Y2) ∗ (T3, Y3)

)
,

which proves the associativity of the product ∗. �

4.2. Associative product on D̃. Recall here that an element (T,T′) belongs to D̃X if T and T
′

are both topologies on X such that T′#≺T.

Theorem 4.2. The product > : D̃X ⊗ D̃X −→ D̃X, defined by:

(T1,T
′
1) > (T2,T

′
2) 7−→


(T1,U) if T2 = T1/T

′
1,

0 if not

is associative, where U is defined by T′2 = U/T′1. ([9, Proposition 2.7], see Lemma 2.1).

Proof. Let (T1,T
′
1
), (T2,T

′
2
) and (T3,T

′
3
) be three elements of D̃X, i.e., T′

1
#≺T1, T′

2
#≺T2 and T′

3
#≺ T3.

We suppose first that T2 = T1/T
′
1
, otherwise the result is zero.

(
(T1,T

′
1) > (T2,T

′
2)
)
> (T3,T

′
3) = (T1,U) > (T3,T

′
3),

where U is defined by T′2 = U/T′1, then

(
(T1,T

′
1) > (T2,T

′
2)
)
> (T3,T

′
3) = (T1,V)

where V and U are defined by T
′
3 = V/U, and T

′
2 = U/T′1. Then,

(
(T1,T

′
1) > (T2,T

′
2)
)
> (T3,T

′
3) 7−→


(T1,V) if T2 = T1/T

′
1 and T3 = T1/U

0 if not.

Where T′2 = U/T′1, and T′3 = V/U.

On the other hand, for T3 = T2/T
′
2
, we have

(T1,T
′
1) >
(
(T2,T

′
2) > (T3,T

′
3)
)
= (T1,T

′
1) > (T2,W),

where T′3 = W/T′2, where T3 = T2/T
′
3, and T2 = T1/T

′
2. Then T3 = T2/T

′
3 = T1/W, and

W = Z/T′
1
. Hence

(T1,T
′
1) >
(
(T2,T

′
2) > (T3,T

′
3)
)
=


(T1,Z) if T3 = T1/(T

′
2
⊔ T′

3
) and T2 = T1/T

′
2

0 if not.

Where Z is defined by W = Z/T′1, and T
′
3 =W/T′2. It remains to show that V = Z: We have

V/U = T
′
3 =W/T′2 = (Z/T′1)/(U/T′1) = Z/U.
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Moreover, T3 = T2/T
′
2
= (T1/T

′
1
)/(U/T′

1
) = T1/U. We therefore conclude that for all (T1,T

′
1
),

(T2,T
′
2) and (T3,T

′
3) in D̃X, we have

(
(T1,T

′
1) > (T2,T

′
2)
)
> (T3,T

′
3) = (T1,T

′
1) >
(
(T2,T

′
2) > (T3,T

′
3)
)
,

which proves the associativity of the product >. �

5. Relations between the laws on D and D̃

Definition 5.1. For any finite set X, let Ψ : D̃X ⊗ DX −→ DX be the map defined by:

Ψ
(
(T,T′) ⊗ (U, Y)

)
=


(T, Y) if U = T/T′

0 if not.

Proposition 5.1. Ψ is an action of D̃ on D.

Proof. We have to verify the commutativity of this diagram:

D̃X ⊗ D̃X ⊗ DX
id⊗Ψ //

>⊗id
��

D̃X ⊗ DX

Ψ

��
D̃X ⊗ DX

Ψ

// DX

Let (T1,T
′
1
) and (T2,T

′
2
) be two elements of D̃X , and (U, Y) ∈ DX. We have

(id ⊗Ψ)
(
(T1,T

′
1) ⊗ (T2,T

′
2) ⊗ (U, Y)

)
=


(T1,T

′
1) ⊗ (T2, Y) if U = T2/T

′
2

0 if not.

Then,

Ψ ◦ (id ⊗ Ψ)
(
(T1,T

′
1) ⊗ (T2,T

′
2) ⊗ (U, Y)

)
=


(T1, Y) if U = T2/T

′
2

and T2 = T1/T
′
1

0 if not.

On the other hand, we have

(> ⊗ id)
(
(T1,T

′
1) ⊗ (T2,T

′
2) ⊗ (U, Y)

)
=


(T1,V) ⊗ (U, Y) if T2 = T1/T

′
1

0 if not.

where T
′
2 = V/T′1. Then,

Ψ ◦ (> ⊗ id)
(
(T1,T

′
1) ⊗ (T2,T

′
2) ⊗ (U, Y)

)
=


(T1, Y) if T2 = T1/T

′
1

and U = T1/V

0 if not.

Moreover, U = T2/T
′
2 = (T1/T

′
1)/(V/T′1) = T1/V. We conclude then

Ψ ◦ (> ⊗ id) = Ψ ◦ (id ⊗Ψ).

which proves that Ψ is an action of D̃ on D. �
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Proposition 5.2. Φ is a monoid morphism, i.e. the following diagram is commutative:

DX
Φ // D̃X ⊗ DX

(D ⊗ D)X

Φ⊗Φ

��

Φ̃ //

m

OO

D̃X ⊗ (D ⊗ D)X

Id⊗m

OO

⊕
Y⊂X

D̃Y ⊗ DY ⊗ D̃X\Y ⊗ DX\Y

τ23 //
⊕
Y⊂X

D̃Y ⊗ D̃X\Y ⊗ DY ⊗ DX\Y

m̃⊗Id⊗Id

OO m̃⊗m

hh

Proof. Let (T1, Y1) ∈ DX1
and (T2, Y2) ∈ DX2

, with X1 ⊔ X2 = X. Let T′
1
#≺T1 and T′

2
#≺T2. Then

T′
1
T′

2
#≺T1T2. Conversely, any topology U on X such that U #≺ T1T2 can be written T′

1
T′

2
with

T′i = U|Xi
for i = 1, 2, and we have T′i #≺Ti. We have then:

Φ ◦ m
(
(T1, Y1) ⊗ (T2, Y2)

)
=

∑

U#≺T, Y1⊔Y2∈T1T2/U
U|X1⊔X2\Y1⊔Y2

=DX1⊔X2\Y1⊔Y2,U

(T1T2,U) ⊗
(
(T1T2)/U, Y1 ⊔ Y2

)

On the other hand, we have

(Φ ⊗ Φ)
(
(T1, Y1) ⊗ (T2, Y2)

)
= ∑

T′
1
#≺T1 , T

′
1 |X1\Y1

=DX1\Y1 ,T
′
1
, Y1∈T1/T

′
1

T
′
2
#≺T2 , T

′
2 |X2\Y2

=DX2\Y2 ,T
′
2
, Y2∈T2/T

′
2

(T1,T
′
1) ⊗ (T1/T

′
1, Y1) ⊗ (T2,T

′
2) ⊗ (T2/T

′
2, Y2),

therefore

(m̃ ⊗ m) ◦ τ23 ◦ (Φ ⊗ Φ)
(
(T1, Y1) ⊗ (T2, Y2)

)

=

∑

T′
1
#≺ T1, T

′
1 |X1\Y1

=DX1\Y1,T
′
1
, Y1∈T1/T

′
1

T′
2
#≺ T2, T

′
2 |X2\Y2

=DX2\Y2,T
′
2
, Y2∈T2/T

′
2

(T1T2,T
′
1T
′
2) ⊗ ((T1/T

′
1)(T2/T

′
2), Y1 ⊔ Y2)

= Φ ◦ m
(
(T1, Y1) ⊗ (T2, Y2)

)
.

Hence

Φ ◦m = (m̃ ⊗ m) ◦ τ23 ◦ (Φ ⊗ Φ).

�

Theorem 5.1. For any finite set X, let ξ : D̃X ⊗ (D ⊗ D)X −→ D̃X ⊗ (D ⊗ D)X be the map defined

by:

(5.1) ξ
(
(T, T̃) ⊗ (T1, Z) ⊗ (T2,W)

)
= (T|Z

T|X\Z
, T̃|Z

T̃|X\Z
) ⊗ (T1, Z) ⊗ (T2,W).
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The following diagram is commutative:

DX
Φ //

∆

��

D̃X ⊗ DX

Id⊗∆
��

(D ⊗ D)X

Φ⊗Φ

��

D̃X ⊗ (D ⊗ D)X

ξ

��⊕
Y⊂X

D̃Y ⊗ DY ⊗ D̃X\Y ⊗ DX\Y
m1,3

// D̃X ⊗ (D ⊗ D)X

i.e.,

ξ ◦ (id ⊗ ∆) ◦ Φ = (m1,3) ◦ (Φ ⊗Φ) ◦ ∆.

Proof. In (5.1), the finite set X is partitioned into two subsets X1 and X2, and Z (resp. W) is

an open subset of X1 (resp. X2) for T1 (resp. T2). According to Proposition 3.1, the relation

T|Z
T|X\Z

#≺T′|Z
T′|X\Z

holds, hence the map ξ is well defined. For any (T, Y) ∈ DX, we have

(id ⊗ ∆) ◦ Φ(T, Y) = (id ⊗ ∆)



∑

T̃#≺ T,Y∈T/T̃

T̃|X\Y
=DX\Y,T̃

(T, T̃) ⊗ (T/T̃, Y)



=

∑

T̃#≺ T, Y∈T/T̃

T̃|X\Y
=DX\Y,T̃

∑

Z∈(T/T̃)|Y

(T, T̃) ⊗
(
(T/T̃)|Z

, Z
)
⊗
(
(T/T̃)|X\Z

, Y\Z
)

therefore

ξ ◦ (id ⊗ ∆) ◦Φ(T, Y) =
∑

T̃#≺T, Y∈T/T̃

T̃|X\Y
=DX\Y,T̃

∑

Z∈(T/T̃)|Y

(T|Z
T|X\Z

, T̃|Z
T̃|X\Z

) ⊗
(
(T/T̃)|Z

, Z
)
⊗
(
(T/T̃)|X\Z

, Y\Z
)
.

On the other hand, we have

(Φ ⊗ Φ) ◦ ∆(T, Y)

=

∑

Z∈T|Y

∑

T′#≺T|Z

∑

T′′#≺ T|X\Z
, Y\Z∈T|X\Z

/T′′

T′′|X\Y
=DX\Y,T′′

(T|Z
,T′) ⊗ (T|Z

/T′, Z) ⊗ (T|X\Z
,T′′) ⊗ (T|X\Z

/T′′, Y\Z),

therefore

m1,3 ◦ (Φ ⊗ Φ) ◦ ∆(T, Y)

=

∑

Z∈T|Y

∑

T′#≺T|Z

∑

T′′#≺ T|X\Z
, Y\Z∈T|X\Z

/T′′

T′′|X\Y
=DX\Y,T′′

(T|Z
T|X\Z

,T′T′′) ⊗ (T/T′, Z) ⊗ (T|X\Z
/T′′, Y\Z).

To show that the both expressions above coincide, we use the two following lemmas.

Lemma 5.1. Let T and T̃ be two topologies on X, such that T̃#≺T and let Y ∈ T. Then Y ∈ T/T̃

if and only if both Y and X\Y are open subsets of X for T̃.
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Proof. From Y ∈ T and T̃ #≺T we immediately get Y ∈ T̃. Now let x ∈ X\Y and y ∈ X with

x ≤T̃ y. From x ≤T̃ y we get y ≤T/T̃ x. Suppose that y ∈ Y then x ∈ Y (because Y ∈ T/T̃), which

is absurd. Hence X\Y ∈ T̃.

Conversely, suppose that both Y and X\Y are open subsets of X for T̃, let y ∈ Y and let z ∈ X

with y ≤T/T̃ z. There is a chain

yRt1 · · ·RtkRz

with t1, . . . , tk ∈ X, where aRb means a ≤T b or a ≥T̃ b. Supposing a ∈ Y we have either a ≤T b

which yields b ∈ Y , or b ≤T̃ a, which would yield the contradiction a ∈ X\Y if b were to belong

to X\Y . Hence we necessarily have b ∈ Y . Progressing along the chain, from y ∈ Y we therefore

infer z ∈ Y . �

Lemma 5.2. Let T be a topology on a finite set X, and let Z be an open subset of X for T . Let U

be the topology T|Z
T|X\Z

. Then we have

U#≺ T.

Proof. The relation U ≺ T is obvious. Any connected component W for U is contained either in

Z or in X\Z, hence T|W
= U|W

. Finally, consider x, y ∈ X such that x ∼T/U y. There is a chain

xRt1R · · ·RtkRx with some j ∈ {1, . . . , k} such that t j = y. By the argument which was used in the

end of the proof of Proposition 3.1, the whole chain belongs to the same U-connected component,

hence we have xR̃t1R̃ · · · R̃tkR̃x, where aR̃b stands for a ≤U b or b ≤U a. Hence x ∼U/U y. �

Proof of theorem 5.1 (continued). Let E be the set of triples (Z,T′,T′′) which occur in the expres-

sion of m1,3 ◦ (Φ ⊗ Φ) ◦ ∆(T, Y) above, i.e. subject to the conditions

Z ∈ T|Y
, T

′′
#≺T|X\Z

, T
′
#≺T|Z

, T
′′

|X\Y
= DX\Y,T′′ , Y\Z ∈ T|X\Z

/T′′,

and let F be the set of pairs (Z, T̃) which occur in the expression of ξ ◦ (id ⊗ ∆) ◦ Φ(T, Y) above,

i.e. subject to the conditions

T̃#≺T, Y ∈ T/T̃, T̃|X\Y
= DX\Y,T̃, Z ∈ (T/T̃)|Y

.

To prove Theorem 5.1, it suffices to show that (Z,T′,T′′) 7→ (Z,T′T′′) is a bijection from E

onto F. For any (Z,T′T′′) ∈ E, it is clear from Lemma 5.2 that T̃ #≺T holds, with T̃ := T
′
T
′′.

From Y ∈ T we get Y\Z ∈ T|X\Z
. Together with Y\Z ∈ T|X\Z

/T′′ one deduces from Lemma 5.1

that both Y\Z and X\Y are open subsets of X\Z for T′′. Hence we have a partition

(5.2) X = Z ⊔ Y\Z ⊔ X\Y

of X into three open subsets for the topology T̃. From Y ∈ T̃ and X\Y ∈ T̃ we get Y ∈ T/T̃ from

Lemma 5.1. We also have

T̃|X\Y
= T

′′

|X\Y
= DX\Y,T′′ = DX\Y,T̃.

Finally, from the fact that both Z and X\Z are open for T̃ and Z ∈ T , we get Z ∈ T/T̃ from Lemma

5.1, hence Z ∈ (T/T̃)|Y
. This proves (Z, T̃) ∈ F.

Conversely, for any (Z, T̃) ∈ F, from Y ∈ T/T̃ and Lemma 5.1 we get that both Y and X\Y

are open subsets of X for T̃, and from Z ∈ T/T̃ and the same lemma we get that both Z and

X\Z are open subsets of X for T̃. Hence the splitting (5.2) into three open subsets holds, and we

have T̃ = T′T′′, with T′ := T̃|Z
and T′′ := T̃|X\Z

. The triple (Y,T′,T′′) verifies the five required



16 MOHAMED AYADI AND DOMINIQUE MANCHON

conditions to belong to E. Both correspondences from E to F are obvioulsly inverse to each other,

which ends up the proof of Theorem 5.1.

�

Remark 5.1. If we apply the functor K, we notice here that this diagram yields the commutative

diagram:

D
Φ //

∆

��

D̃ ⊗D

Id⊗∆
��

D ⊗D

Φ⊗Φ
��

D̃ ⊗D ⊗D

ξ
��

D̃ ⊗D ⊗ D̃ ⊗D
m1,3

// D̃ ⊗D ⊗D

where Φ is a shorthand for K(Φ) and so on.
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