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This paper is concerned with possible applications of semi-analytical methods of frictional

contact mechanics. The semi-analytical solutions, such as the Method of Memory

Diagrams, enable the load-displacement relationship for contact of two axisymmetric

bodies with friction to be written as an analytical expression with parameters calculated

via a numerical procedure. As a result, a complex history-dependent solution is obtained

for an arbitrary loading history in a computationally efficient way. This fact allows

one to calculate hysteretic responses to extremely complex loading histories, such

as random vibrations. Another case when complex loading histories appear is in a

harmonic excitation of a dynamic contact system in which inertia is taken into account.

Both examples are considered here. The random excitation case can be used as

a basis for modeling for wear in frictional contacts while the second one may be

extended to describe coupled dynamic contact systems, stick-slip phenomena, or

friction-induced instabilities.

Keywords: contact mechanics, Hertz-Mindlin, friction, semi-analytical contact solutions, method of memory

diagrams

INTRODUCTION

This paper concerns the use of one semi-analytical method of frictional contact mechanics. The
term “frictional contact mechanics” can comprise a large variety of problems. Here it is used in the
following sense: (i) friction is a phenomenon that arises due to tangential interactions of bodies in
contact, and (ii) frictional interaction is governed by the classical one-term law of friction (Coulomb
friction law) originating in the works of Amontons. The second aspect is discussed in more detail
from a historical point of view by Desplanques (2015) or Borodich and Savencu (2017). The first
feature is essential as friction can also appear in a purely compressional loading case [see e.g.,
Borodich and Keer (2004)]. In any situation, friction results in a hysteretic response which depends
not only on instantaneous values of drive parameters, but also on their history.

Further, methods belonging to the semi-analytical class (Dobry et al., 1991; Jäger, 2005; Aleshin
et al., 2015, 2019; Popov and Heß, 2015; Popov et al., 2019) allow one to obtain a frictional contact
response as an analytical solution that depends on parameters determined by an algorithm. For
the price of accepting a certain number of simplifications (such as axisymmetric contact geometry,
neglect for elastic dissimilarity of the bodies, and approximate fulfillment of the Coulomb friction
law) extremely rapid and efficient calculation techniques are developed. The high computational
performance makes these methods suitable for implementation in complex loading histories (e.g.,
random vibrations or acoustic waves).
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Aleshin Applications of Semi-Analytical Methods

In the fourth of the cited methods, the Method of Memory
Diagrams (MMD), the contact characteristics such as local and
global displacements, stress distributions, and contact loads are
calculated via an internal memory fiction or diagram constantly
updated following the excitation protocol. The memory function
is defined on an adaptive grid whose points are dynamically
adjusted in accordance to the applied excitation. In addition to
the mechanical response, the friction-induced energy dissipation
is analytically described. TheMMD is sketched in sectionmethod
of the memory diagrams of this paper preceded by section Hertz-
Mindlin mechanics in which some basic solutions of contact
mechanics are recalled.

In sections friction-induced energy dissipation in spherical
contacts excited by random vibrations and section contact system
with a finite mass dynamically excited by external forces, two
examples of MMD applications are considered. The first example
is concerned with a prestressed axisymmetric contact excited
by random vibrations that represent random displacement
time histories having fractal properties. In such a system, the
mechanical and energetic responses depend on a very restrained
number of parameters, such as the fractal dimension, the normal,
and tangential displacement amplitudes normalized on the
prestress value, and the ratio of the maximum and minimum
frequencies of the excitation spectrum. In particular, it can be
shown that at high amplitudes most of the energy is dissipated
near the contact center while for low amplitudes the energy
dissipation zone represents an annulus located inside of the mean
contact circle. These results can be of use for determining parts
of mechanical systems in which wear or thermal fatigue is most
likely to appear.

The second example is a dynamic (i.e., having a mass
and inertia) frictional contact system excited by a harmonic
tangential force. Even the simplest case of a single contact
with constant compression demonstrates rich dynamic effects.
In particular, various time scales can appear under various
combinations of a system’s parameters. The responses can be
categorized into several classes characterized by growing or
complex oscillatory behavior.

In another case considered elsewhere (Aleshin et al., 2019), a
solid material with a frictional crack is insonified by ultrasound.
It can be shown that rough faces of cracks behave approximately
as effective axisymmetric bodies (Jäger, 1995; Ciavarella, 1998)
having the same normal reaction, thus suggesting the use of
the MMD. The MMD-based contact model has been integrated
with a finite-element environment (COMSOL). Doing so, a
simulation tool called MMD-FEM has been elaborated for
modeling acoustic responses of damaged materials, including
nonlinear acoustic effects that are usually applied in modern
nondestructive testing technologies.

HERTZ-MINDLIN MECHANICS

Similarly to other semi-analytical methods in contact mechanics,
the MMD can be regarded as a direct generalization of
the classical Cattaneo-Mindlin (Cattaneo, 1938; Mindlin and
Deresiewicz, 1953) solution developed for elastic spheres in

contact loaded by a subsequent application of constant normal
and tangential forces. As it was shown, the contact zone consists
of stick and slip areas that represent a central circle, and outer
annulus, respectively. In the stick zone, no relative tangential
displacement between close points belonging to the opposite
surfaces is possible. In the slip zone, the shear stress τ equals the
normal stress σ times the friction coefficient µ, in accordance to
the Coulomb friction law. At the same time, in that zone, the
relative tangential displacement is a nonzero vector that must
be directed as the local shear stress vector. The latter condition
can be called the orientation aspect or property of the Coulomb
friction law.

The most compact derivation (Jäger, 1995) is based on
a superposition of the Bossiness solutions for rigid punches
straining an elastic half-space in both normal and tangential
senses. The smallest punch in the superposition coincides with
the stick circle radius that guarantees the no-slip condition
in the stick zone, and the largest one is the size of the
contact zone itself. By a proper choice of “strengths” of the
punches in the normal and tangential directions it is possible
to satisfy the Coulomb condition τ = µ σ . However, the
orientational property is satisfied only approximately. The issue
is that for punches applied in the x-direction parallel to the
half-space surface, the local vectors Eτ are all directed along
the same x-axis, while the tangential displacement vector has
a non-zero in-plane y-component [Equation (28c) in Jäger
(1995)]. Another simplification is related to the neglect of
the second term in the second line of Equation (28b) in the
cited paper. In addition, the Catteneo-Mindlin approximation
disregards dissimilarity phenomena (Munisamy et al., 1994)
which, if present, can produce local tangential displacement
for purely normal compression, since the Poisson effect can
be of different magnitudes for non-equal spheres of different
materials. However, despite some assumptions in the analysis,
the Cattaneo-Mindlin solution remains a good approximation of
frictional contact interaction of axisymmetric bodies largely used
since 1950’s. For equal bodies with the elastic constants E and ν

having the contact geometry as in Figure 1 (contact forces N and
T, and displacements a and b, contact zone radius c, and stick
zone radius s) the solution has the following form:

N =
4E∗

3R
c3, (1)

a =
1

R
c2, (2)

T =
4µE∗

3R

(

c3 − s3
)

, (3)

b =
µθ

R

(

c2 − s2
)

, (4)

with E∗ and θ defined as

E∗ =
E

2
(

1− ν2
) , (5)

θ =
2− ν

2 (1− ν)
. (6)
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FIGURE 1 | Geometry of the Hertz-Mindlin problem and important parameters.

FIGURE 2 | Illustration for the MMD: loading histories at the left and memory

diagrams at the right, for the simple loading (A), arbitrary loading in 2D (B),

and in 3D (C). Here, s<ρ<c is slip annulus, see also Figure 1.

In this solution, all geometric features of the contact system are
taken into account through the dependences N = N (c) and
a = a (c) in Equations (1, 2). The result can be rewritten using
these functions as

{

b = θµ (a (c) − a (c = s))
T = µ (N (c) − N (c = s))

(7)

where in the last terms of each equation the argument of
functions N (·) and a (·) is the radius of the stick zone s. The
result Equation (7) is frequently referred to as the reduced elastic
friction principle (Jäger, 2005). The principle Equation (7), in
contrast to Equations (1–4), is valid for any axisymmetric contact
geometry, not necessarily spherical.

METHOD OF THE MEMORY DIAGRAMS

The MMD (Aleshin et al., 2015, 2019) develops the principle
described in the previous section by applying it to more general
loading histories which consist in arbitrarily changing oblique
compressions in 2D or in 3D (the former means that the normal
and tangential forces stay in one plane). The calculation is
organized with the use of an auxiliary inter function D (ρ), called
a memory diagram, that encodes all memory information in the
frictional system. In 2D, the solution reads















b = θµ
c
∫

0

D (ρ) da
dc

∣

∣

∣

c=ρ
dρ

T = µ
c
∫

0

D (ρ) dN
dc

∣

∣

∣

c=ρ
dρ

(8)

In the previously considered “simple loading case” (Figure 2A)
[i.e., when the tangential action is added after application of
constant normal compression], the memory diagram has a
simple rectangular shape that corresponds to the classical result
Equation (7) after calculation of the integral in Equation (8).

An arbitrary loading history in 2D corresponds to a more
complex shape of the memory diagram that can consist of
positive and negative horizontal elements as well as from
curvilinear sections (Figure 2B). The algorithm (Aleshin et al.,
2015) keeps track of the evolution of the loading parameters
and updates the diagram shape accordingly, in order to keep
the balance equation (8). This formula does not require any
additional assumptions in comparison to the reduced elastic
friction principle Equation (7). Limitations related to this
principle are discussed by Jäger (2005) and also mentioned in
the paper (Aleshin et al., 2015) where the MMD in described in
more detail.

If the loading parameters are allowed to arbitrarily vary in
3D, the system can be described via a vector counterpart of
Equation (8) which reads,















Eb = θµ
c
∫

0

ED (ρ) da
dc

∣

∣

∣

c=ρ
dρ

ET = µ
c
∫

0

ED (ρ) dN
dc

∣

∣

∣

c=ρ
dρ

(9)

However, the analysis (Aleshin and BouMatar, 2016) neglects the
orientational aspect of the Coulomb friction law and therefore
should be considered as an approximation.

Equations (8) or (9), together with the algorithm governing
the memory diagram evolution, provide the possibility to
calculate the hysteretic tangential load-displacement relationship
through the known normal load-displacement relationship given
by N = N (c) and a = a (c). The method works when the forces
are considered as arguments and displacements are unknown or
vice versa. At the same time, it is important to emphasize that
the MMD introduced above is only valid for partial slip (i.e.,
when some stick zone remains around ρ = 0. If |T| reaches
µN or

∣

∣b
∣

∣ reaches θµa, the stick zone disappears). The force-
driven system excited by a tangential force exceeding µN will
experience accelerated movement which violates the current

Frontiers in Mechanical Engineering | www.frontiersin.org 3 June 2020 | Volume 6 | Article 30

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Aleshin Applications of Semi-Analytical Methods

FIGURE 3 | Partial tangential displacements due to shearing of the bodies and due to the shift between contact centers.

FIGURE 4 | Three contact states (contact loss, total sliding, and partial slip) and the corresponding solutions for T obtained via repartition b = b0 + b̃ for loading in 2D

(normal and tangential displacements always stay in one plane).

quasi-static character of description and generally complicates
the problem. Fortunately, in the case where the system is driven
by displacements, there exists a simple way to construct a quasi-
static force-displacement relationship valid in all situations which
may be encountered: partial slip, total sliding, and contact loss.

To do so, we introduce two displacement components of the
total displacement

Eb = Eb0 +
Ẽ
b. (10)

as illustrated in Figure 3;
Ẽ
b reflects deformation of one of the

contacting bodies due to shearing while Eb0 is a tangential shift
between the contact centers that develops due to total sliding.
Since we already consider small displacements in comparison
to all geometric features, the effects of the slight drop of the
upper body because of the tangential mismatch or contact plane
rotation are neglected.

For the 2D case, the algorithm that provides the unknown
tangential force is shown in Figure 4. When the contact is lost,
there is no contact interaction, and the bodies are unstrained
(i.e., N = T = 0). When total sliding takes place, T = ±µN
with the sign depending on the sliding direction. Finally, for
partial slip the MMD algorithm has to be applied, which is

symbolically expressed as T = MMD
(

b̃
)

. In each case, one of

the components, b0 or b̃, is known directly, and the other one is
immediately found since their sum equals the known argument.
Numerically, the algorithm is applied to small increments1b and
1a and updates previous values with small changes calculated
at the current step which become previous values at the next
step, etc.

In the 3D loading case, tangential displacement b, its

components b0 and b̃, and force T in Figure 4 become vectors.
In addition, the formulas for the total sliding case have to be
further modified since sliding does not occur in the positive or
negative direction as in 2D, but in a direction given by the unit

vector El ↑↑ 1Eb0 where 1Eb0 is an infinitesimal slip vector. These

vectors are also collinear with the tangential force, El ↑↑ ET,
since slip is caused by ET (orientational aspect of the Coulomb
friction law). From the previous considerations we also know that
∣

∣

∣

∣

Ẽ
b

∣

∣

∣

∣

= θµa [assume s = 0 in Figure 2A or in Equation (7)]. Then

the repartition Equation (10) takes the form

Eb = Eb0p + 1Eb0 +Elθµa (11)

in which Eb0p is the known component Eb0 at the previous step,

and the two last vectors are collinear. Finally, El is obtained as a
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unit vector collinear to

El ↑↑ Eb− Eb0p, (12)

and then ET = ElµN. The infinitesimal slip vector 1Eb0 becomes

equal 1Eb0 = Eb−Eb0p−Elθµa which means that all components of
the repartition Equation (11) at the current step are determined.

For brevity, the term MMD comprises the extension to the
contact loss and total sliding cases (Figure 4), not only thee
partial slip situation in Equations (8) or (9). The formulation
shown in Figures 2, 4 illustrated the efficiency of the method.
Indeed, instead of considering detailed evolving distributions
of local stresses and displacements, it is enough to introduce
and update one inner memory function (two functions in 3D).
Moreover, the function frequently contains constant segments
thus the memorization of only the beginning and the end of each
segment and not all intermediate points. The MMD algorithm is
based on an adaptive grid whose points are created and deleted
following the loading protocol instead of being predefined at
fixed positions. As a result, the method is especially suitable
to complex loading protocols such as random or acoustical
excitation. At the same time, the contact geometry should remain
relatively simple in order to be imitated by axisymmetric shapes.

In the next sections it is shown how the MMD solution to
the contact problem can be used for an efficient description of
frictional contacts excited by complex loading histories.

FRICTION-INDUCED ENERGY
DISSIPATION IN SPHERICAL CONTACTS
EXCITED BY RANDOM VIBRATIONS

The semi-analytic MMD formulation of the solution to the
contact problem makes it possible to derive an expression
(Truyaert et al., 2019) for the friction-induced energy dissipation
in the incremental form valid for all three contact states,
regardless the shape of the memory diagram:

1W = 2µ
(∣

∣1b
∣

∣ − θµ1a
)

[

N (a) − N
(

q
)

+
(

q− a
) dN

da

∣

∣

∣

∣

a=q

]

.

(13)

Here the normal load-displacement relationship N(a) derived
[e.g., in (Jäger, 1995)] for any axisymmetric contact geometry
is used. Moreover, the same considerations (Truyaert et al.,
2019) enable one to write the surface density of the energy loss
defined by

1W =

c
∫

s

1̟ (ρ) 2πρdρ

in the form

1̟(ρ)=2µ
(
∣

∣1b
∣

∣ − θµ1a
)

σ (ρ)

(

1−
2

π
arcsin

(

s

ρ

))

,

(14)

FIGURE 5 | Dissipated energy W as a function of time for different values of

problems’ parameters. The curves are approximately linear which means that

the average dissipated power P is constant.

FIGURE 6 | Normalized form-factor of the surface density of the dissipated

energy for different values of parameters.

in which the explicit knowledge of the normal stress distribution
σ (ρ) is required.

To reveal general tendencies in the frictional dissipation
behavior, it is meaningful to consider a frictional system with a
very restrained number of parameters. Aleshin and Papangelo
(2020) suggested the use of a prestressed contact of two spheres
excited by random normal and tangential displacements of equal
rms having fractal time dependences in a certain frequency range.
By the proper choice of normalization, it is possible to limit
the number of parameters to three: rms amplitudes ar = br
normalized on the prestress displacement, fractal dimension D,
and higher cut-off frequency fH normalized on the lower one. For
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a fractal curve, the power spectral density is given by

S
(

f
)

∼

{

f−5−2D if fL ≡ 1 < f < fH
0 otherwise

(15)

where D belongs to the interval 1<D<2. It is straightforward to
show (Aleshin and Papangelo, 2020) that extending the range for
D to 0<D<1 and −1<D<0 in Equation (15) will lead to fractal
behavior for the velocity and acceleration time dependences. The
fractal shape for S(f ) is selected since fractality of a random curve
is related to (i) the Gaussian distribution of the random value
which is in turn a consequence of a large number of factors
that impact that value, as well as (ii) the power-law frequency
dependence for S(f ) which means the absence of a characteristic
frequency in the spectrum and reduces the number of free
parameters by one. Certainly, in a real particular contact system,
the statistical properties of the random excitation can differ.

As expected, average power P dissipated during a sizable
interval of dimensionless time normalized on the inverse lower
cut-off frequency is approximately constant (Figure 5). In our
simulation, the number of time points equals 219 = 524288
and is high enough to neglect differences in two particular
realizations which accumulate a lot of random features during
a long observation time of 5,000 normalized units. The stiffness
of curves in Figure 5 having the sense of the dissipated power
depends on all parameters of the problem. Power P growths
with increasing amplitudes ar = br , with increasing frequency
range fH , and with increasing D. The last two effects are due to
the fact that higher frequencies added by extending the range
or amplifying existing HF components additionally generate
loading-unloading cycles. Despite their small amplitude, they
are frequent and therefore significantly contribute to the total
energy loss.

In Figure 5 each curve is primarily characterized by a single
parameter, its slope. More information is contained in the surface
density of the dissipated power. To compare surface densities for
different values of parameters, we calculate the form-factor8(ρ)

introduced by the relationship

W = Pt

〈 c
∫

s

8(ρ) 2πρdρ

〉

(16)

and normalized in order to have unit integral

c
∫

0

8(ρ) 2πρdρ = 1

for each realization.
Figure 6 shows that form-factors can vary a lot depending

on the problem’s parameters. First of all, for small (such as 0.1
of the prestress displacement) amplitudes of vibrations, most of
the energy is dissipated in a thin annulus located close to the
average contact border. For moderate amplitudes, the annulus in
which most of the dissipation takes place progresses inward and
becomes smeared. Finally, for strong vibrations (of about of 0.8

andmore), the maximum dissipation occurs in the contact center
(i.e., the dissipation zone becomes circular, as the violet curve
in Figure 6 indicates). Frequency content in the spectrum also
influences the form-factor, but to a lesser degree. For instance, for
low D = 1/2 most of the energy is contained in low frequencies,
and increasing the upper frequency limit practically does not
change anything (black and orange curves). At the same time, for
high D = 3/2, extending the frequency range produces a minor
effect (brown and green dashed curves). Generally, enhancing
high frequency content shifts the annulus closer to the contact
center, acting similarly to an amplitude increase, since higher
frequencies make the total traveled path longer.

The fact that the form-factors determining the dissipated
energy density portray the system’s parameters in a finer way
than the almost linearly growing total dissipation curves is
additionally illustrated in Figure 7. By changing the frequency
content of the vibrations spectrum with a simultaneous variation
of the vibrations amplitudes, the slopes of two total dissipation
curves can be matched. Indeed, in Figure 7A the red and blue
curves are close, except that the blue one which represents the
response on low-frequency vibrations can locally differ from
the average inclination to a greater degree. At the same time,
the surface densities of the dissipated energy are essentially
distinct (Figure 7B). For small amplitudes, sharp peaks in surface
densities curves are typically found. In practice, this means that
a profiled joint subject to small but prolonged vibrations will
experience wear in a thin annulus close to the contact border. For
strong vibrations, wear should start near the contact center.

CONTACT SYSTEM WITH A FINITE MASS
DYNAMICALLY EXCITED BY EXTERNAL
FORCES

Another example of a problem that can be successfully solved
with the use of theMMD, as well as by another method belonging
to the semi-analytical class, is the dynamics of a simple system
that consists of an axisymmetric body excited by a horizontal
tangential force. In the considered case, the body is vertically
prestressed on an elastic half-space and has certain mass m.
Below it is shown that this geometrically and physically simple
system has a rich dynamic behavior arising due to the presence
of friction.

The equation of motion for such a body reads:

m
d2b

dt2
= Ta sin 2π ft − µN0TMMD

(

b

θµa0

)

, b (0) = ḃ (0) = 0,

(17)

where b is, as previously, the tangential displacement, Ta is
the external tangential force amplitude, f is the harmonic
frequency, N0 is the constant vertical compression force, and
a0 is the normal displacement caused by that force. Here
TMMD is a dimensionless function of a dimensionless tangential
displacement; TMMD equals the friction force normalized on
µ N0.

Frontiers in Mechanical Engineering | www.frontiersin.org 6 June 2020 | Volume 6 | Article 30

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Aleshin Applications of Semi-Analytical Methods

FIGURE 7 | Two total energy dissipation curves can be close once enhanced HF content is compensated for by lowering vibrations amplitude (A), but the surface

energy distributions differ significantly (B).

In the considered case involving inertia, it is meaningful
to distinguish between excitation and loading protocol/history.
Here the former one is the sinusoidal term in Equation (17) while
the latter one is the argument of TMMD function. We will see that
in the considered frictional system the loading protocol becomes
rather complex even for a simple excitation signal (sinewave).
In the previous quasi-static case (section friction-induced energy
dissipation in spherical contacts excited by random vibrations)
this difference did not exist, the same way as the equation
of motion.

It is convenient to rewrite Equation (17) using
dimensionless variables

b∗ =
b

θµa0
, t∗ = ft, m∗ =

θa0f
2m

N0
, T∗

a =
Ta

µN0
(18)

and get an equation in which all variables and parameters
are dimensionless:

m∗ d
2b∗

dt∗2
= T∗

a sin 2π t
∗ − TMMD

(

b∗
)

. (19)

Actually, it has only two parameters:m∗ that characterizes inertial
properties for a given frequency, and T∗

a that corresponds to a
relative strength of the external force compared to the friction
force. In order to have comparable tangential responses for highly
different parameters values, it is appropriate to introduce another
dimensionless displacement

b̄
(

t∗
)

= m∗b∗/T∗
a . (20)

When the excitation amplitude is very high, friction is negligible,
and the solution has a simple form

b̄
(

t∗
)

= 1
2π

(

t∗ − 1
2π sin 2π t∗

)

(21)

that does not depend on any parameters. Here the increasing
term ∼ t∗ appears due to the second boundary condition in

Equation (17) and may change once this boundary condition
alters. For lower T∗

a friction becomes important, and the
system has a whole range of different behaviors illustrated
in Figures 8, 9 plotted for heavy (m∗ = 100, Figure 8) and
light (m = 0.01, Figure 9) bodies. The curves represent the
tangential displacements (at the left) and the corresponding
velocities (at the right) for decreasing drive amplitudes T∗

a =
104, 103, 102, 10, 1, 10−2 marked by various colors. Solution
Equation (21) is plotted in black and is labeled T∗

a → ∞.
The principal feature that shows up in Figures 8, 9 is the

presence of very different time scales. All curves always oscillate

with the period of 1 that corresponds to the driving frequency.
Besides the lowest scale of one, characteristic times of about

50 (Figures 8B,C), 20 [(Figure 9C) for T∗
a = 10−2, in blue]

or another can appear. Generally, observation time of 500 is

sufficient to see the character of the dependence. The entire
curves for velocities containing 500 oscillations are shown in gray

for all drive amplitudes, whereas their fragments at the beginning
and at the end of the observation time are plotted in colors
corresponding to the particular amplitudes.

For heavy and light bodies excited by strong tangential forces
of amplitudes T∗

a = 104, 103, displacement’s behavior represents

climbing saturating oscillations [it is expected that the curve for
T∗
a = 104 will finally saturate as it does for T∗

a = 103, only for

T∗
a → ∞ no saturation is present, Equation (21)]. A progressive

decrease in T∗
a leads to a quicker saturation at a lower level;

finally, any climbing disappears. Indeed, blue and orange curves
for heavy and light bodies are generally symmetric so the positive

trend [linear term in Equation (21)] is absent. For small drive

amplitudes, the behavior differs for heavy and light bodies. The
heavy one demonstrates secondary oscillations (Figures 8B,C)

while the orange curve in Figure 9C contains only the smallest
oscillations of a constant level.

The rich behavior illustrated in Figures 8, 9 is difficult
to reproduce without using a semi-analytical method.
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FIGURE 8 | Normalized tangential displacement (at the left) and corresponding velocity (at the right) for different excitation amplitudes T∗
a for m* =100: (A) T∗

a → ∞,

T∗
a = 104, and T∗

a = 103; (B) T∗
a = 102 and T∗

a = 10; (C) T∗
a = 1 and T∗

a = 10−2.

For very high drive amplitudes when a partial slip is not
essential, or for very low amplitudes when the contact
behaves as a linear lossless spring, some asymptotic

analysis is possible. However, for the most important
range of moderate amplitudes only numerical treatment
is appropriate.
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FIGURE 9 | Normalized tangential displacement (at the left) and corresponding velocity (at the right) for different excitation amplitudes T∗
a for m* = 0.01: (A) T∗

a → ∞,

T∗
a = 104, and T∗

a = 103; (B) T∗
a = 102 and T∗

a = 10; (C) T∗
a = 1 and T∗

a = 10−2.

CONCLUSIONS AND PERSPECTIVES

Semi-analytical methods in frictional contact mechanics

enable the efficient calculation of a hysteric tangential force-

displacement relationship of an axisymmetric contact system

for an arbitrary loading history. For instance, in the Method of
Memory Diagrams (MMD), all history-dependent information
is encoded in the internal function that is updated following the
loading history in accordance with certain rules. Updating the
memory diagram is computationally much cheaper than detailed
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calculations of the local stress and displacement fields in the
contact zone. In this paper, two simple examples are considered
which help determine a class of practical problems for which the
semi-analytical solutions can be of use.

The first example concerns the calculation of friction-induced
energy losses in contact with two spheres excited by random
vibrations. Knowledge of the mechanical response of a system
makes it possible to describe its energetic response (i.e., the total
energy dissipated during certain time interval together with a
spatial distribution of this energy over the contact zone). The
former dependence is close to a direct proportionality since
the average dissipated power should be constant as long as the
system is excited by a stationary random process. The latter
one is more informative; in particular, most of the energy is
dissipated in an annulus close to the average contact border
for weak excitation amplitudes, while for stronger amplitudes
the inner border of the annulus propagates inward so that
eventually the annulus becomes a circle. An obvious goal
of this kind of calculation is modeling for wear in contact
systems. Indeed, adding a wear model to MMD simulations
provides an opportunity to predict where and when wear is
most likely to occur for known statistical properties of the
random excitation. In that regard, it would be of interest to
compare a final shape of the profile to known results (Argatov
et al., 2018) obtained without a detailed analysis of energy
dissipation or wear processes, but from the assumption that
the final contact area coincides with the initial stick area for a
harmonic tangential excitation. Besides, the cited paper, as well
as the work by Chai and Argatov (2018), reports generalization
on the Cattaneo-Mindlin theory for transversely isotropic elastic
bodies that can be potentially incorporated into semi-analytical
contact analysis.

The second example is related to a contact associated with
a particular mass. Mass and inertial properties add dynamics
to the contact system and give rise to a very rich behavior
even for a simple harmonic excitation. In particular, for various
combinations of two system’s parameters (normalized mass and
normalized excitation amplitude), a number of different time
scales can be found in the tangential response. Besides the drive
period, characteristic times tens or hundreds of times longer

than the drive period can be found. Depending on the mass and
the drive amplitude, regimes of climbing saturated oscillations,
decaying LF oscillations on top of weak HF ones, and others
show up. The application field for numerical simulations of this
kind can cover coupled frictional systems, stick-slip phenomena,
friction-induced instabilities, or acoustic emission (squealing).

To summarize, three main conclusions can be formed:

• The MMD is especially suitable for modeling responses on
complex loading protocols in frictional contact systems of
simple geometries;

• The MMD allows one to model quasi-static mechanical and
energetic responses on random vibrations and eventually to
make a prediction on a configuration of wear zones;

• A contact system having a certain mass demonstrates rich
dynamic behavior when excited even by a simple harmonic
signal. Several classes of solutions have been identified that do
not exist in the point mass case.
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