Bruno Dinis
email: bmdinis@fc.ul.pt

Étienne Miquey
email: etienne.miquey@ens-lyon.fr

Realizability with stateful computations for nonstandard analysis

Keywords: 2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation → Constructive mathematics realizability, nonstandard analysis, states, glueing, ultrafilters, Łoś ' theorem

In this paper we propose a new approach to realizability interpretations for nonstandard arithmetic. We deal with nonstandard analysis in the context of intuitionistic realizability, focusing on the Lightstone-Robinson construction of a model for nonstandard analysis through an ultrapower. In particular, we consider an extension of the λ-calculus with a memory cell, that contains an integer (the state), in order to indicate in which slice of the ultrapower M N the computation is being done. We shall pay attention to the nonstandard principles (and their computational content) obtainable in this setting. We then discuss how this product could be quotiented to mimic the Lightstone-Robinson construction.

Introduction

In this paper we propose a new approach to realizability interpretations for nonstandard arithmetic. On the one hand, we deal with nonstandard analysis in the context of intuitionistic realizability. On the other hand, we focus on Lightstone and Robinson's construction of a model for nonstandard analysis through an ultrapower [START_REF] Lightstone | Nonarchimedean Fields and Asymptotic Expansions[END_REF].

Throughout the history of mathematics, infinitesimals were crucial for the intuitive development of mathematical knowledge by authors such as Archimedes, Stevin, Fermat, Leibniz, Euler and Cauchy, to name but a few (see e.g. [START_REF] Katz | Leibniz's infinitesimals: their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond[END_REF][START_REF] Bair | Leibniz's wellfounded fictions and their interpetations[END_REF][START_REF] Bair | Continuity between Cauchy and Bolzano: issues of antecedents and priority[END_REF]). In particular, in Leibniz's Calculus one may recognize calculation rules -sometimes called the Leibniz rules [START_REF] Lutz | Rêveries infinitésimales[END_REF][START_REF] Callot | Trois leçons d'analyse infinitésimale[END_REF][START_REF] Dinis | Neutrices and external numbers: A flexible number system[END_REF] -which correspond to heuristic intuitions for how the infinitesimals should operate under calculations: the sum and product of infinitesimals is infinitesimal, the product of a limited number (i.e. not infinitely large) with an infinitesimal is infinitesimal,... In [START_REF] Robinson | Non-standard analysis[END_REF][START_REF] Robinson | Non-standard analysis[END_REF] Robinson showed that, in the setting of model theory, it is possible to extend usual mathematical sets (N, R, etc.) witnessing the existence of new elements, the so-called nonstandard individuals. In this way, it is possible to deal consistently with infinitesimal and infinitely large numbers via ultraproducts and ultrapowers, in a way that is consistent with the Leibniz rules. Since the extended structures are nonstandard models of the original structures, this new setting was dubbed nonstandard analysis.

These constructions are meant to simplify doing mathematics: notions like limits or continuity can for instance be given a simpler form in nonstandard analysis. Later in the 70s, Nelson developed a syntactical approach to nonstandard analysis, introducing in particular three key principles: idealization, standardization and transfer [START_REF] Nelson | Internal set theory: A new approach to nonstandard analysis[END_REF]. The validity of these principles for constructive mathematics has been studied in many different settings, in particular, following some pioneer work by Moerdijk, Palmgren and Avigad [START_REF] Moerdijk | A model for intuitionistic non-standard arithmetic[END_REF][START_REF] Moerdijk | Minimal models of Heyting arithmetic[END_REF][START_REF] Avigad | Weak theories of nonstandard arithmetic and analysis[END_REF] in nonstandard intuitionistic arithmetic, several recent works, inspired by Nelson's approach, lead to interpretations of nonstandard theories in intuitionistic realizability models [START_REF] Benno Van Den Berg | A functional interpretation for nonstandard arithmetic[END_REF][START_REF] Dinis | Interpreting weak Kőnig's lemma in theories of nonstandard arithmetic[END_REF][START_REF] Hadzihasanovic | Nonstandard functional interpretations and categorical models[END_REF][START_REF] Dinis | Intuitionistic nonstandard bounded modified realisability and functional interpretation[END_REF].

The very first ideas of realizability are to be found in the Brouwer-Heyting-Kolmogorov interpretation [START_REF] Heyting | Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie[END_REF][START_REF] Kolmogorov | Zur Deutung der intuitionistischen Logik[END_REF], which identifies evidences and computing proofs (the realizers). Realizability was designed by Kleene to interpret the computational content of the proofs of Heyting arithmetic [START_REF] Kleene | On the interpretation of intuitionistic number theory[END_REF], and was later extended to more expressive frameworks [START_REF] Gödel | Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes[END_REF][START_REF] Kreisel | On the interpretation of non-finitist proofs[END_REF][START_REF] Krivine | Realizability in classical logic[END_REF]. While the Curry-Howard isomorphism focuses on a syntactical correspondence between proofs and programs, realizability rather deals with the (operational) semantics of programs: a realizer of a formula A is a program which computes adequately with the specification that A provides. As such, realizability constitutes a technique to develop new models of a wide class of theories (from Heyting arithmetic to Zermelo-Fraenkel set theory), whose algebraic structures has been studied in [START_REF] Jaap Van Oosten | Realizability: an introduction to its categorical side[END_REF][START_REF] Krivine | Bar Recursion in Classical Realisability: Dependent Choice and Continuum Hypothesis[END_REF][START_REF] Miquel | Implicative algebras: A new foundation for realizability and forcing[END_REF].

With the development of his classical realizability, Krivine evidences the fact that extending the λ-calculus with new programming instructions may result in getting new reasoning principles: call/cc to get classical logic [START_REF] Griffin | A formulae-as-type notion of control[END_REF][START_REF] Krivine | Realizability in classical logic[END_REF], quote for dependent choice [START_REF] Krivine | Typed lambda-calculus in classical Zermelo-Fraenkel set theory[END_REF], etc. In this paper, we follow this path to show how the addition of a monotonic reference allows us to get a realizability interpretation for nonstandard analysis. The realizability interpretation proposed here can be understood as a computational interpretation of the ultraproduct construction in [START_REF] Lightstone | Nonarchimedean Fields and Asymptotic Expansions[END_REF], where the value of the reference indicates the slice of the product in which the computation takes place. In particular, we obtain a realizer for the idealization principle whose computational behaviour increases the reference in the manner of a diagonalization process.

Outline

We start this paper by recalling the main ideas of the ultraproduct construction (Section 2) and the definition of a standard realizability interpretation for second-order Heyting arithmetic (Section 3). We then introduce stateful computations and our notion of realizability with slices in Section 4. As shown in Section 5, this interpretation provides us with realizers for several nonstandard reasoning principles. Finally, we discuss the possibility of taking a quotient for this interpretation in Section 6.1 and we conclude the paper in Section 6.2 with a comparison to related works and questions left for future work. Some counter-examples and remarks on how to proceed to obtain a quotient are given in the appendix.

2

The ultrapower construction

The main contribution of this paper consists in defining a realizability interpretation to give a computational content to the ultrapower construction of Robinson and Lightstone in [START_REF] Lightstone | Nonarchimedean Fields and Asymptotic Expansions[END_REF].

We shall begin by briefly explaining how this construction works in the realm of model theory.

Let us start by recalling some definitions.

◮ Definition 1. Let I be a set. We say that F ⊂ P(I) is a filter over I if: (i) F is non empty and ∅ / ∈ F (non triviality) (ii) for all F 1 , F 2 ∈ F, F 1 ∩ F 2 ∈ F (closure under intersection) (iii) for any F, G ∈ P(I), if F ∈ F and F ⊂ G, then G ∈ F (upwards closure) An ultrafilter is a filter U such that for any F ∈ P(I), either F or its complement F are in U.

For instance, the set of cofinite subsets of N defines the so-called Fréchet filter, which is not an ultrafilter since it contains neither the set of even natural numbers nor the set of odd natural numbers. Nonetheless, it is well-known that any filter F over an infinite set I is contained in an ultrafilter U over I: this is the so-called ultrafilter principle. An ultrafilter that contains the Fréchet filter is called a free ultrafilter. The existence of free ultrafilters was proved by Tarski in 1930 [START_REF] Tarski | Une contribution à la théorie de la mesure[END_REF] and is in fact a consequence of the axiom of choice.

◮ Definition 2. Given two sets V and I and an ultrafilter U over I, we can define an equivalence relation ∼ =U over V I by u ∼ =U v {i ∈ I : u i = v i } ∈ U. We write V I /U for the set obtained by performing a quotient on the set V I by this equivalence relation, which is called an ultrapower.

Consider a theory T (say ZFC) and its language L, for which we assume the existence of a model M. The goal is to build a nonstandard model M * of the theory T that validates new principles. Let us denote by V the set which interprets individuals in M, and let us fix a free ultrafilter U over N. Roughly speaking, the new model M * is defined as the ultrapower M N /U. Individuals are interpreted by functions in V N while the validity of a relation R(x 1 , ..., x k) (where the x i are interpreted by f i , for i ∈ {1, ..., k}) is defined by

M * R(f 1 , ..., f k) iff {n ∈ N : M R(f 1 (n), ..., f k (n))} ∈ U.
We can now extend the language with a new predicate st(x) to express that x is standard.

Standard elements are defined as the ones that, with respect to ∼ =U , are equivalent to constant functions, i.e. M * st(f) if and only if there exists p ∈ N such that {n ∈ N :

f (n) = p} ∈ U. M * st(f) iff ∃p ∈ N.{n ∈ N : f (n) = p} ∈ U.
Formulas that involve this new predicate are called external, while formulas of the original language L are called internal.

Lightstone and Robinson's construction relies on the well-known Łoś ' theorem [START_REF] Łoś | Quelques remarques, théorèmes et problèmes sur les classes définissables d'algèbres[END_REF] which states that if ϕ is an internal formula (with parameters in V N), then M * ϕ if and only {n ∈ N : M ϕ n } ∈ U, where ϕ n refers to the formula ϕ whose parameters have been replaced by their values in n. This construction indeed defines a model of T which satisfies other relevant properties, namely transfer, idealization and standardization. As a consequence of Łoś ' theorem, to see that an internal formula ϕ(x) holds for all elements, it is enough to see that it holds for all standard elements: this is the transfer principle. In our setting, idealization amounts to a diagonalization process: it is for instance easy to see that if one defines δ : n → n (where we, with abuse of notation, write n for both the natural number n and its interpretation in V), then M * ∀x.(st(x) → x < δ). Finally, standardization is a sort of "comprehension scheme" which states that we can specify subsets of standard sets by giving a membership criterion for standard elements (by means of an internal formula).

3

Realizability in a nutshell

Heyting second-order arithmetic

We start by introducing the terms and formulas of Heyting second-order arithmetic (HA2), for which we follow Miquel's presentation [START_REF] Miquel | Existential witness extraction in classical realizability and via a negative translation[END_REF]. Second-order formulas are build on top of first-order arithmetical expressions, by means of logical connectives, first-and second-order quantifications and primitive predicates. We use upper case letters for second-order variables and lower case for first-order ones. We use a primitive predicate Nat(e) to denote that e is a natural number (0 then has type Nat(0) and the term s t has type Nat(S(e)) provided that t has type Nat(e)). We consider the usual λ-calculus terms extended with pairs, projections (written π i), injections (written ι i), case analysis, natural numbers and a recursion operator:

1st-order expressions e ::= x | 0 | S(e) | f (e 1 , . . . , e n) Formulas A, B ::= Nat(e) | X(e 1 , . . . , e n) | A → B | A ∧ B | A ∨ B | ∀x.A | ∃x.A | ∀X.A | ∃X.A Terms t, u ::= x | 0 | s | rec | λx.t | t u | (t, u) | π 1 (t) | π 2 (t) | ι 1 (t) | ι 2 (t) | case t {ι 1 (x 1) → t 1 |ι 2 (x 2) → t 2 }
where f : N n → N is any arithmetical function. We write Λ for the set of all closed λ-terms.

As in Miquel's presentation, we consider formulas up to the following congruences:

(∃x.A) → B ∼ = ∀x.(A → B) (∃X.A) → B ∼ = ∀X.(A → B) (1)
These congruences allow us to avoid having elimination rules for the existential quantifiers, thus simplifying the resulting type system. The type system, which is given in Figure 1, corresponds to the usual rules of natural deduction. The reader may observe that we do not give computational content to quantifications.

In the sequel, we make use of the following usual abbreviations:

s n+1 0 s (s n 0) n s n 0 ⊤ ∃X.X ⊥ ∀X.X ¬A A → ⊥ e = e ′ ∀Z.(Z(e) → Z(e ′)) ∀ N x.A ∀x.(Nat(x) → A) ∃ N x.A ∃x.(Nat(x) ∧ A)
It is well-known that the above definition of equality (often called Leibniz law) enjoys the usual expected properties (reflexivity, symmetry, transitivity) and allows to perform substitution of equal terms. The quantifications ∀ N x.A and ∃ N x.A are often said to be relativized to natural numbers. The one-step (weak) reduction over terms is defined by the following rules:

(λx.t)u ⊲ β t[u/x] rec u 0 u 1 0 ⊲ β u 0 rec u 0 u 1 (s t) ⊲ β u 1 t (rec u 0 u 1 t) π 1 (t, u) ⊲ β t π 2 (t, u) ⊲ β u case ι i (t) {ι 1 (x 1) → t 1 |ι 2 (x 2) → t 2 } ⊲ β t i [t/x i]
We write → β for the congruent reflexive-transitive closure of ⊲ β . The reduction → β is known to be confluent, type-preserving and normalizing on typed terms [START_REF] Barendregt | Lambda calculi with types[END_REF].

Realizability interpretation of HA2

In this subsection we define the realizability interpretation of the type system defined in Figure 1, in which formulas are interpreted as saturated sets of terms, i.e. as sets of closed terms S ⊆ Λ such that t → β t ′ and t ′ ∈ S imply that t ∈ S. We write SAT to denote the set of all saturated sets and, given a formula A, we call truth value its realizability interpretation.

Γ ⊢ t : A ′ A ∼ = A ′ Γ ⊢ t : A (∼ =)

Given a valuation ρ, a second-order variable X of arity k and a truth value function

F : N k → SAT, the valuation defined by (ρ, X → F) ρ | dom(ρ)\{X} ∪ {X → F } will be denoted by ρ, X → F . We say that a valuation ρ is closing the formula A if F V (A) ⊆ dom(ρ).

◮ Definition 4 (Realizability interpretation). We interpret closed arithmetical expressions e in the standard model of first-order Peano arithmetic N. Given a valuation ρ and a firstorder expression e (whose variables are in the domain of ρ) we denote its interpretation by e ρ . The interpretation of a formula A together with a valuation ρ closing A is the set |A| ρ defined inductively according to the following clauses:

|Nat(e)| ρ {t ∈ Λ : t → β s n 0, where n = e ρ } |X(e 1 , . . . , e n)| ρ ρ(X)(e 1 ρ , . . . , e n ρ) |A → B| ρ {t ∈ Λ : ∀u ∈ |A| ρ .(t u ∈ |B| ρ)} |A 1 ∧ A 2 | ρ {t ∈ Λ : π 1 (t) ∈ |A 1 | ρ ∧ π 2 (t) ∈ |A 2 | ρ } |A 1 ∨ A 2 | ρ {t ∈ Λ : ∃i ∈ {1, 2}. case t {ι 1 (x 1) → x 1 |ι 2 (x 2) → x 2 } ∈ |A i | ρ } |∀x.A| ρ n∈N |A| ρ,x →n |∃x.A| ρ n∈N |A| ρ,x →n |∀X.A| ρ F :N k →SAT |A| ρ,X →F |∃X.A| ρ F :N k →SAT |A| ρ,X →F
Observe that in the previous definition, the universal quantifications cannot be seen as generalized conjunctions. Indeed, the conjunction is given computational content through pairs, while the universal quantifications are defined as intersections of truth values.

It is easy to see that for any formula A and any valuation ρ closing A, one has |A| ρ ∈ SAT. As it turns out, the congruences defined by Equation (1) are sound w.r.t. the interpretation.

◮ Proposition 5 ([25]). If A and A ′ are two formulas of HA2 such that A ∼ = A ′ , then for all valuations ρ closing both A and A ′ we have

|A| ρ = |A ′ | ρ .
Proof. By induction on A ∼ = A ′ . Congruence easily goes through by induction, we only prove the base cases:

|(∃x.A) → B| ρ = {t ∈ Λ : ∀u ∈ |∃x.A| ρ , t u ∈ |B| ρ } = {t ∈ Λ : ∀u ∈ n∈N |A| ρ,x →n , t u ∈ |B| ρ } = {t ∈ Λ : ∀u, (∃n, u ∈ |A| ρ,x →n) → t u ∈ |B| ρ } = {t ∈ Λ : ∀u, ∀n, (u ∈ |A| ρ,x →n → t u ∈ |B| ρ)} = n∈N {t : ∀u, u ∈ |A| ρ,x →n → t u ∈ |B| ρ } = |∀x.(A → B)| ρ
The proof for second-order quantifiers is the same. ◭

In order to show that the realizability interpretation is sound with respect to the type system we need the following preliminary notions.

◮ Definition 6 (Substitution). A substitution is a finite function σ from λ-variables to closed λ-terms. Given a substitution σ, a λ-variable x and a closed λ-term u, we denote by (σ, x := u) the substitution defined by (σ, x := u) σ | dom(σ)\{x} ∪ {x := u}. ◮ Definition 7. Given a context Γ and a valuation ρ closing the formulas in Γ, we say that a substitution σ realizes ρ(Γ) and write σ ρ(Γ) if dom(Γ) ⊆ dom(σ) and σ(x) ∈ |A| ρ for every declaration (x : A) ∈ Γ.

◮ Definition 8. A typing judgement Γ ⊢ t : A is adequate if for all valuations ρ closing A and Γ and for all substitutions σ ρ(Γ) we have σ(t) ∈ |A| ρ . More generally, we say that an inference rule

J 1 • • • J n J 0
is adequate if the adequacy of all typing judgements J 1 , . . . , J n implies the adequacy of the typing judgement J 0 .

◮ Theorem 9 (Adequacy [START_REF] Miquel | Existential witness extraction in classical realizability and via a negative translation[END_REF]). The typing rules of Figure 1 are adequate.

Proof. The proof is standard, by case analysis. We draw the reader's attention to the particular case of the second-order elimination rule

Γ ⊢ t : ∀X.A Γ ⊢ t : A[X(x 1 , . . . , x n) := B] (∀ 2 E)
which relies on the fact that the truth value of any formula (here B) is a saturated set. The adequacy theorem is the key result when defining realizability interpretations in that fundamental properties stem from it. For example, we have the following corollary.

◮ Corollary 11 (Consistency).

There is no proof term t such that ⊢ t : ⊥.

Proof. The proof is by reductio ad absurdum. If ⊢ t : ⊥, then by Theorem 9 one has t ∈ |⊥| = |∀X.X| = S∈SAT S = ∅. To see that this intersection is indeed empty, one can take for example S 0 = {t ∈ Λ : t → β 0} ∈ SAT and S 1 = {t ∈ Λ : t → β s0} ∈ SAT, then clearly S 0 ∩ S 1 = ∅. ◭

We would like to point out that the proof of adequacy is very flexible. Indeed, if one wants to add a new instruction to the language of terms via its typing rule, it is enough to check that this typing rule is adequate while the remainder of the proof is exactly the same.

Introducing value restrictions

The realizability interpretation of Definition 4 is also flexible regarding the set of formulas that are interpreted. We illustrate this point here by introducing a new construction extending formulas. For these formulas we shall not give any typing rule, instead we will see how this construction allows us to enforce value restrictions, which will turn out to be crucial afterwards in a setting where stateful computations occur. We start by defining the subset V ⊆ Λ of values by the following grammar:

Values V ::= 0 | s V | λx.t | (V 1 , V 2) | ι i (V)
Observe that variables are not values, otherwise the system would not be stable by substitution. In the remainder of this paper, we adopt the convention that λ-terms are denoted by lowercase letters t, u, ... while uppercase letters V, W, ... refer to values. Distinguishing the set of values allows for instance to restrict the β-reduction rule to applications of functions to values:

(λx.t)V ⊲ v t[V /x] t ⊲ v t ′ t u ⊲ v t ′ u u ⊲ v u ′ V u ⊲ v V u ′
The reflexive transitive closure → v of the one-step reduction ⊲ v is known as the (left-to-right) call-by-value evaluation strategy. While it is well-known that the reduction system of the λ-calculus is confluent, so that the choice of a particular evaluation strategy does not have any consequence in terms of expressiveness, this is no longer the case when side effects (such as stateful computations in the next sections) come into play.

To enforce value restrictions, let us now extend the language of formulas with a new construction:

Formulas

A, B ::= . . . | {A} → B and the realizability interpretation accordingly by

|{A} → B| ρ {t ∈ Λ : ∀V ∈ |A| ρ .(t V ∈ |B| ρ)}
In particular, we have

|{Nat(e)} → B| ρ = {t ∈ Λ : t n ∈ |B| ρ where n = e ρ } |{A 1 ∧ A 2 } → B| ρ = {t ∈ Λ : ∀V 1 ∈ |A 1 | ρ , V 2 ∈ |A 2 | ρ .t (V 1 , V 2) ∈ |B| ρ where n = e ρ }
It is easy to check that for any formulas A and B, |{A} → B| ρ is a saturated set, and the adequacy of the (∀ 2 E)-rule is thus preserved. While there is currently no rule to type a term t with a formula of the shape {A} → B, we can nonetheless extend the type system with any rule as long as it is adequate with respect to the realizability interpretation. In particular, the rules (→I) and (→E) are adequate.

◮ Proposition 12. The following typing rules are adequate:

Γ ⊢ t : A → B Γ ⊢ t : {A} → B (→I) Γ ⊢ t : {A} → B Γ ⊢ V : A Γ ⊢ t V : B (→E)
Proof. For the first rule it suffices to see that for any valuation ρ, we have

{t ∈ Λ : ∀u ∈ |A| ρ .(t u ∈ |B| ρ)} ⊆ {t ∈ Λ : ∀V ∈ |A| ρ .(t V ∈ |B| ρ)}
As for the second one, if ρ is a valuation and σ a substitution such that σ ρ(Γ), σ(t

) ∈ |{A} → B| ρ and σ(V) ∈ |A| ρ , then by definition of |{A} → B| ρ we have that σ(t) σ(V) = σ(t V) ∈ |B| ρ (because σ(V) is necessarily a value). ◭
We can also extend, maintaining the adequacy of the interpretation of {A} → B , the congruence relation with the following rules:

{∃x.A} → B ∼ = ∀x.{A} → B {∃X.A} → B ∼ = ∀X.{A} → B ◮ Proposition 13.
For any formulas A and B, we have

1. |{∃x.A} → B| ρ = |∀x.{A} → B| ρ 2. |{∃X.A} → B| ρ = |∀X.{A} → B| ρ
Proof. The proof is analogous to the proof of Proposition 5, for instance for the first part, we have:

|{∃x.A} → B| ρ = {t ∈ Λ : ∀V ∈ |∃x.A| ρ , t V ∈ |B| ρ } = {t ∈ Λ : ∀V ∈ n∈N |A| ρ,x →n , t V ∈ |B| ρ } = {t ∈ Λ : ∀V, (∃n, V ∈ |A| ρ,x →n) ⇒ t V ∈ |B| ρ } = {t ∈ Λ : ∀V, ∀n, (V ∈ |A| ρ,x →n ⇒ t V ∈ |B| ρ)} = n∈N {t : ∀V, ∈ |A| ρ,x →n ⇒ t V ∈ |B| ρ } = |∀x.({A} → B)| ρ ◭
We will make use of the following abbreviations:

∀ {N} x.A ∀x.({Nat(x)} → A) ∃ {N} x.A ∀X.(∀ {N} x.(A → X)) → X
While the first definition is natural, the second one may be a bit more puzzling at first sight. As we saw, the truth value of any formula has to be a saturated set. However, given a formula A(x), the set {(n, t) : t ∈ |A(n)| ρ } is not saturated, and so we cannot define a formula ∃x.{Nat(x)} ∧ A(x) whose realizers would be this set. Nonetheless, the definition of ∃ {N} x.A is somehow doing the trick in continuation-passing style, in the sense that we have:

◮
v ∈ |∀ {N} x.(A → X)| ρ,X →X , we have that t v ∈ X. Let us define the set X = {w ∈ Λ : ∃n, u.w → β (n, u) ∧ u ∈ |A[x := n]| ρ }, which is obviously saturated. It is clear that λxy.(x, y) ∈ |∀ {N} x.(A → X)| ρ,X →X since for any n ∈ N and any u ∈ |A[x := n]| ρ } one has (λxy.(x, y)) n u → β (n, u) ∈ X.
We conclude that t (λxy.(x, y)) → β (n, u). ◭ ◮ Definition 15. We define T λzx.(rec (λy.y 0) (λxyz.y (λx.z (s x))) x) z.

The next proposition relates these new quantifications with the relativized quantifications ∀ N x.A and ∃ N x.A using the term T . ◮ Proposition 16. We have

1. T ∀ {N} x.A → ∀ N x.A 2. λx.x ∀ N x.A → ∀ {N} x.A 3. λz.z λxy.(x, y) ∃ {N} x.A → ∃ N x.A 4. λxy.T y π 1 (x) π 2 (x) ∃ N x.A → ∃ {N} x.A Proof. 1. Let t be a term in |∀ {N} x.A|, n ∈ N a natural number and u a term in |Nat(n)|.
To prove the result, since |A[x := n]| is saturated, it suffices to prove that:

(rec (λy.y 0

) (λxyz.z (s x)) u) t A[x := n] Let us define the formula B(z) (∀ {N} x.A) → A[x := z]. It is straightforward to check that: λy.y 0 B(0) λxyz.y (λx.z (s x)) ∀ N x.B(x) → B(S(x))
Using the adequacy of the (rec)-rule, we deduce that rec (λy.y 0) (λxyz.z (s x)) u B(n) and the result follows from the hypothesis that t ∈ |∀ {N} x.A|. 2. Follows directly from ??.

Ref ?

3. Follows directly from Proposition 14. 4. Let t be a term in |∃ N x.A|, X ∈ SAT be a predicate and u a term in

|∀ {N} x.(A → X)| X →X .
By assumption, there exists a natural number n and two terms

t 1 ∈ |Nat(n)|, t 2 ∈ |A[x := n]| such that t → β (t 1 , t 2)
. We thus have:

(λxy.T y π 1 (x) π 2 (x)) t u → β T u π 1 (t) π 2 (t) → β T u t 1 t 2 From part 1 we know that T u is in |∀ N x.(A → X)| X →X , hence T u t 1 t 2 ∈
X and the result follows from the fact that X is saturated. ◭ The term T , which forces the evaluation of an argument of type Nat(n) to get the underlying value n to make it compatible with a function ∀ {N} x.A, is somehow simulating a call-by-value evaluation (for natural numbers). Such a term is usually called a storage operator [START_REF] Krivine | Realizability in classical logic[END_REF].

While Proposition 16 indicates that the different ways of relativizing the quantifiers are equivalent (in the sense that one admits a realizer if and only if the other does), it is important to keep in mind that this result is peculiar to the current effect-free settings. In particular, this result no longer holds once stateful computations are allowed.

4

Realizability with slices

Stateful computations

The first step in the Lightstone-Robinson construction aims at getting a product M N of the (initial) model M. In order to achieve this goal in our setting, we add a memory cell to our calculus that contains an integer, which we call the state. The purpose of the state is to keep track of which "slice" of the product is the interpretation being done. This product allows us to interpret first-order individuals as functions in N N , so that the interpretation accounts for new elements -the so-called nonstandard elements -for instance the diagonal function (see Proposition 36).

In our extended calculus, the first-order expressions are the same, while second-order formulas now use a value restriction for natural numbers and include a predicate st(e), as per usual in nonstandard analysis, denoting that the expression e is standard. This means that in our framework we will also have two types of nonstandard quantifications: the usual ∀ st , ∃ st and the relativised ∀ {st} ,∃ {st} x. We say that a formula is internal if it does not contain the predicate st(•), and external otherwise. Terms are extended with two new instructions get and set. The former allows to obtain the content of the current state while the latter allows to increase its content. Formally, we extend the different grammars as follows:

Formulas A, B ::= st(e) | X(e 1 , . . . , e n) | {Nat(e)} → A | A → B | A ∧ B | A ∨ B | ∀x.A | ∃x.A | ∀X.A | ∃X.A Terms t, u ::= ... | get | set States S N
Since the formulas no longer include an unrestricted constructor Nat(e), the typing rules for 0, s and rec are no longer required 1 . Other than that, the type system is unchanged. In particular, the get and set instructions are not given any typing rule. We will make use of the following abbreviations:

∀ st x.A ∀x.(st(x) → A) ∀ {st} x.A ∀x.(st(x) → ({Nat(x)} → A)) ∃ st x.A ∃x.(st(x) ∧ A) ∃ {st} x.A ∀X.((∀ {st} x.(A → X)) → X)
With the exception of the get / set instructions, the syntax of terms does not account for states. In fact, only the reduction rule for the set instruction allows to change the state. Nonetheless, states play a crucial role in the reduction system. In particular, one-step reductions are now defined for terms together with a state. We write t ⊲ s s ′ t ′ to denote that the term t in state s reduces to the term t ′ in state s ′ . The one-step reduction over terms is defined by the following rules:

t ⊲ β t ′ t ⊲ s s t ′ get ⊲ s s s s ′′ = max(s, s ′) set s t ⊲ s ′ s ′′ t t ⊲ s s ′ t ′ C[t] ⊲ s s ′ C[t ′]
where

C[] ::= rec u 0 u 1 [] | [] u | π i ([]) | case [] {ι 1 (x 1) → t 1 |ι 2 (x 2) → t 2 } | s [] | set [] u.
We write t s ↓ s ′ t ′ for the reflexive-transitive closure of this relation. Since we now consider effectful computations, we have to fix an evaluation strategy in order to ensure the confluence of the reduction system2 . Here we follow a call-by-name evaluation strategy (we substitute unevaluated arguments), while for rec and set one of their arguments must be reduced.

Stateful realizability interpretation

The fact that our syntax now includes states allows us to interpret formulas as terms-withstates 3 . Truth values are then defined as saturated sets in P(Λ × S). Individuals are now individuals with states, so elements of N S , and similarly predicates of arity k are elements of the set of functions from N k to P(Λ×S). This creates a mismatch in the sense that predicates are no longer shaped to be applied to individuals 4 . In order to define our interpretation, we need to deal with this mismatch between the structure of individuals and the one of predicates, by defining a suitable notion of application.

◮ Definition 17. Let F : N k → P(Λ × S) be a predicate. We define the application of

F to individuals f 1 , . . . , f k ∈ N S by F @(f 1 , . . . , f k) {(t; s) : (t; s) ∈ F (f 1 (s), . . . , f k (s))}.
◮ Definition 18. An individual f ∈ N S is said to be standard if it is a constant function, i.e. if there exists n ∈ N such that ∀s ∈ S.(f (s) = n). We then write f = n * . ◮ Definition 19. We define saturated sets with respect to the stateful reduction to be sets S ∈ Λ × S s.t. for any terms t, t ′ ∈ Λ and any states s, s ′ ∈ S, if (t ′ ; s ′) ∈ S and t s ↓ s ′ t ′ then (t; s) ∈ S. With abuse of notation we denote the set of these saturated sets by SAT.

In the realizability interpretation with slices below, truth values are defined as saturated sets. This allows us to reason by anti-reduction (sometimes also called expansion) in any fixed state. By anti-reduction, we mean that to show that a term t with a state s belongs to such a saturated set S, it is enough to find s ′ and t ′ such that t s ↓ s ′ t ′ and (t ′ ; s ′) ∈ S.

We now consider valuations which are functions that associate a function in N S to every first-order variable x and a truth value function from N k to SAT to every second-order variable X of arity k. Again, with abuse of notation we denote such valuation by ρ.

We also extend the usual interpretation of first-order expressions to range over N S . To that end, we simply define arithmetical functions pointwise on the domain. For instance, if f ∈ N S , we write S * (f) for the function s → (S(f (s))). When it is clear from the context, we abuse the notation by writing 0, S, • ρ , etc. instead of 0 * , S * , • * ρ . ◮ Definition 20 (Realizability with slices). The interpretation of a formula A together with a valuation ρ is the set |A| S ρ defined inductively according to the following clauses: Observe that this stateful interpretation has the structure of a product of the interpretation given by Definition 4. The interpretation corresponding to a given state can thus be seen as a slice of this product. However, it is important to keep in mind that the set instruction still allows terms to change the value of the state, therefore the slices are not completely independent. We write |A| s ρ to denote the truth value {(t; s) ∈ |A| S ρ } in the slice induced by s.

|st(e)| S ρ Λ × S if e ρ is standard ∅ otherwise |X(e 1 , . . . , e n)| S ρ ρ(X)@(e 1 ρ , . . . , e n ρ) |{Nat(e)} → A| S ρ {(t; s) ∈ Λ × S : (t n; s) ∈ |A| S ρ , where n = e ρ (s)} |A → B| S ρ {(t; s) ∈ Λ × S : ∀u. (u; s) ∈ |A| S ρ ⇒ (t u; s) ∈ |B| S ρ } |A 1 ∧ A 2 | S ρ {(t; s) ∈ Λ × S : (π 1 (t); s) ∈ |A 1 | S ρ ∧ (π 2 (t); s) ∈ |A 2 | S ρ } |A 1 ∨ A 2 | S ρ {(t; s) ∈ Λ × S : ∃i ∈ {1, 2}.(case t {ι 1 (x 1) → x 1 |ι 2 (x 2) → x 2 }; s) ∈ |A i | S ρ } |∀x.A| S ρ f ∈N S |A| S ρ,x →f |∀X.A| S ρ F :N k →SAT |A| S ρ,X →F |∃x.A| S ρ f ∈N S |A| S ρ,x →f |∃X.A| S ρ F :N k →SAT |A| S ρ,
S ρ = |A ′ | S ρ .
Proof. The proof, by induction on A ∼ = A ′ , is similar to the proof of Proposition 5. Congruence easily goes through by induction, and again we have

|(∃x.A) → B| S ρ = {(t; s) ∈ Λ × S : ∀u.(u; s) ∈ |∃x.A| S ρ ⇒ (t u; s) ∈ |B| S ρ } = {(t; s) ∈ Λ × S : ∀u.(u; s) ∈ n∈N |A| ρ,x →n ⇒ (t u; s) ∈ |B| S ρ } = {(t; s) ∈ Λ × S : ∀u.(∃n.(u; s) ∈ |A| ρ,x →n) ⇒ (t u; s) ∈ |B| S ρ } = {(t; s) ∈ Λ × S : ∀u, n.((u; s) ∈ |A| ρ,x →n ⇒ (t u; s) ∈ |B| S ρ)} = n∈N {(t; s) : ∀u.(u; s) ∈ |A| ρ,x →n ⇒ (t u; s) ∈ |B| S ρ } = |∀x.(A → B)| S ρ
The proofs for second-order quantifiers and value restrictions are analogous. ◭

We need to adapt a few definitions to prove the adequacy theorem in this setting. Proof. The proof, by case analysis, is essentially the same as the usual adequacy proof for HA2, since none of the instructions involved in the typing rules allows to change the value of the state.

◮
In each case, we write Γ for the typing context, ρ for a valuation closing all the considered formulas, s for the considered state and σ for a substitution such that (σ; s) ρ(Γ).

(Ax)

Directly from the assumption that (σ; s) ρ(Γ).

(→ I)

By assumption, for any substitution σ ′ such that (σ ′ ; s)

ρ(Γ), x : ρ(A),
⇔ (t n; s) ∈ |B s | s ρ where n = e(s) ⇔ t ∈ |{Nat(e)} → B s | s ρ A 1 ∧ A 2
We have

(t; s) ∈ |A 1 ∧ A 2 | S ρ ⇔ (π 1 (t); s) ∈ |A 1 | S ρ ∧ (π 2 (t); s) ∈ |A 2 | S ρ (HI) ⇔ (π 1 (t); s) ∈ |A 1 s | S ρ ∧ (π 2 (t); s) ∈ |A 2 s | S ρ ⇔ (t; s) ∈ |A 1 ∧ A 2 s | S ρ
The case of the disjunction is similar.

∀x.A

We have

(t; s) ∈ |∀x.A| S ρ ⇔ ∀f ∈ N S .(t; s) ∈ |A| S ρ (HI) ⇔ ∀f ∈ N S .t ∈ |A s | s ρ ⇔ t ∈ |∀x.A s | s ρ ∃x.A We have (t; s) ∈ |∃x.A| S ρ ⇔ ∃f ∈ N S .(t; s) ∈ |A| S ρ (HI) ⇔ ∃f ∈ N S .t ∈ |A s | s ρ ⇔ t ∈ |∃x.A s | s ρ
The cases of the second-order quantifiers are similar to the corresponding first-order quantifiers. ◭

Let B(x) be a formula whose only free variable is x, and ρ a valuation. In general, the function F B that associates to any individual f the truth value |B(f)| S ρ is a function from N S to SAT. If B is internal, by the glueing theorem, to determine F B it is enough to know its value for standard individuals. This means that we only need to know a function from N to SAT. As such, we can now formally state the intuition developed in Remark 27.

◮ Proposition 32. The elimination rule for the 2nd-order universal quantification and the introduction rule for the 2nd-order existential quantification

Γ ⊢ t : ∀X.A Γ ⊢ t : A[X(x 1 , ..., x k) := B] (∀ 2 E) Γ ⊢ t : A[X(x 1 , . . . , x n) := B] Γ ⊢ t : ∃X.A (∃ 2 I)
are adequate for any internal formula B whose only free variables are (x 1 , ..., x k).

Proof. This essentially follows from the glueing theorem and Definition 17. Indeed, recall that by definition we have |∀X.A| S ρ = F :N k →SAT |A| S ρ,X →F . Let us define the following function from N k to SAT:

F : (n 1 , ..., n k) → |B[x 1 := n * 1 , ..., x k := n * k]| S ρ
We can prove by an easy induction on A that |A| S ρ,X →F = |A[X(x 1 , ..., x k) := B]| S ρ , from which the proposition follows trivially. The only interesting case is when A ≡ X(x 1 , ..., x n). Let us write f 1 , ..., f k for ρ(x 1) , ..., ρ(x k) . We have:

|X(x 1 , ..., x n)| S ρ,X →F = F @(f 1 , . . . , f k) = {(t; s) : t ∈ F s (f 1 (s), . . . , f k (s))} = s∈S F s (f 1 (s), . . . , f k (s)) × {s} = s∈S |B[x 1 := f 1 , ..., x k := f k s | s ρ × {s} = |B[x 1 := f 1 , ..., x k := f k]| S ρ =
) → ⊥ s | s = |st(τ (s) *) → ⊥| s = |⊤ → ⊥| s = ∅.
It is well-known that the comprehension scheme CA B ∃X.∀x.

(X(x) ⇔ B) is a logical consequence of the elimination principle Elim

B A (∀X.A) ⇒ A[X(x) := B] (by taking A = ∃Y.∀x.(Y (x) ⇔ X(x))
). Since we have the (∀ 2 E)-rule restricted to internal formulas B, the comprehension scheme is also valid for these formulas. In particular, this implies standardization for internal formulas, i.e. for B an internal formula, ∀ st X.∃ st Y.∀ st z.(Y (z) ⇔ X(z) ∧ B(z)) holds. The usual standardization scheme, formulated for all formulas, requires further investigation and is left for future work. Of course, the comprehension scheme does not hold for external formulas, so the relativization on the quantifiers in standardization is in this sense necessary.

5

Nonstandard principles in realizability with slices

Natural numbers

Observe that the language of HA2 does not express the existence of specific nonstandard elements, e.g. δ is not in the language. However, to refer to some nonstandard element τ , we can always consider a valuation that maps a variable x to τ . With abuse of notation, in the remainder of this paper, we will write nonstandard elements directly in formulas as if they were in the language. Also, we will use the notation † to refer to an arbitrary λ-term with no further assumption.

In the stateful interpretation (Definition 20), we considered a value restriction to natural numbers. Nonetheless, we can assert that an expression is a natural number through the formula Nat ′ (e)

∀X.({Nat(e)} → X) → X. It is easy to see, by an argument similar to Proposition 14, that for any individual f ∈ N S , if t is a term such that (t; s) ∈ |Nat ′ (f)| S , then t λx.x s ↓ s n where n = f (s). In other words, t is an effect-free term producing n. This is to be compared with Nat(f), for which the requirement for its truth value to be saturated, would have entailed its interpretation to reduce to a natural number f (s ′) in a possibly different state. We show that (by-value) natural numbers, i.e. Nat ′ , contain 0, and are closed under the successor and recursion for internal formulas.

◮ Proposition 34.

Let A be an internal formula.We have 1. λx.x 0 Nat ′ (0) 2. λxy.y (s x) ∀ {N} x.Nat ′ (S(x))

rec A(0) → ∀ {N} y.(A(y) → A(S y)) → ∀ {N} x.A(x))

Proof. Easy realizability proofs by anti-reduction. 1. Follows from the definition of Nat ′ (0): if X ∈ SAT is a saturated set, s a state and t a term such that (t; s) ∈ |{Nat(0)} → X| S , we have (λx.x 0) t s ↓ s t 0 ∈ X. Since X is saturated, we conclude by anti-reduction. 2. Let f ∈ N S , X be a saturated set, s be a state and t be a term such that (t; s) ∈ |{Nat(Sf)} → X| S ρ . Let us write n f (s). Then (λxy.y (s x)) n t s ↓ s t (s n). Since s n = n + 1 = S(f)(s), we get that t (s n) ∈ X and we conclude by anti-reduction.

Directly from Propositions 28 and 32. ◭

The interpretation now witnesses the existence of new elements. The canonical example is the diagonal, i.e. the function δ : n → n. Indeed, the diagonal is a nonstandard natural number which is realized by the get instruction. We first show a lemma concerning the storage operator T in this new context. ◮ Lemma 35. Let s ∈ S and t, u be terms.

For any

n ∈ N, if u s ↓ s n, then T t u s ↓ s t n. 2. For any f ∈ N S , if u s ↓ s f (s) and (t; s) ∈ |∀ {N} x.A(x)| S , then T t u ∈ |A(f)| S .
Proof. The first part is an easy induction on n, and the second part follows from the first by anti-reduction.

By induction on n.

If n = 0, we have In particular, the latter implies that for any term t, (u s t; s) ∈ X. Since X is saturated, the result then follows from the fact that T u get t s ↓ s u s t which is a consequence of part 1 of Lemma 35. ◭ Part 2 in Proposition 36 is sometimes referred to as the ENS 0 (existence of nonstandard elements) principle [START_REF] Benno Van Den Berg | A functional interpretation for nonstandard arithmetic[END_REF]. As a consequence of Proposition 32, Leibniz equality is only compatible with the (∀ 2 E)-rule restricted to internal formulas. In our setting, this encoding only reflects equality in the current state, i.e. a local knowledge of individuals (slice by slice), while the usual notion of equality (for N S) requires a global knowledge (on all the slices). If A(x) is an external formula, we cannot hope to have an internal definition of equality such that its elimination principle x = y → A(x) → A(y) is valid. ◮ Example 37. Consider an individual f , equal to 1 everywhere except for some state s 0 where it is equal to 0.

T
For any state s = s 0 , we have (λx.x; s) 1 * = f . However, if we consider the formula A(x) (st(x) → ⊥) → ⊥, then, for s = s 0 , we have (λx.x †; s) ∈ |A(1)| and |A(f

)| s = |(⊥ → ⊤) → ⊥| s . Thus, if (t; s) is a realizer of ∀Z.(Z(1 *) → Z(f)) → A(1 *) → A(f), we immediately get that (t(λx.x)(λx.x)(λx.x †); s) ⊥.
Nonetheless, the elimination of Leibniz equality is realizable for standard individuals or for internal formulas.

◮ Proposition 38. Let f and g be individuals in N S , then 1. For any formula A(x), λx.

x st(f) → st(g) → (∀Z.(Z(f) → Z(g))) → A(f) → A(g) 2. If A(x) is an internal formula, then λx.x (∀Z.(Z(f) → Z(g))) → A(f) → A(g)
Proof. 1. If either f or g is not standard, the result is trivial. Assume that f and g are standard. The case f = g is trivial, and if f = g, we have

|(∀Z.(Z(f) → Z(g))| S = |⊤ → ⊥| S .

2.

The result easily follows from Proposition 32. ◭

Nonstandard reasoning principles

In this section, we prove some properties which are usual in frameworks that use nonstandard analysis: transfer, overspill, external induction, idealization, etc. Theorem 39 below indicates that the transfer property (for internal formulas) is devoid of computational content. This is a somewhat reassuring fact: properties that are true for standard individuals are automatically true for all individuals.

◮ Theorem 39 (Transfer). For any internal formula A we have:

1. f ∈N S |A| S x →f = n∈N |A| S x →n * 2. λxy.x ∀x.A(x) → ∀ st x.A(x) 3. λx.x † ∀ st x.A(x) → ∀x.A(x) 4. f ∈N S |A| S x →f = n∈N |A| S x →n * 5. λx.(†, x) ∃x.A(x) → ∃ st x.A(x) 6. λx.π 2 (x) ∃ st x.A(x) → ∃x.A(x)
Proof.

Parts 1 and 4 follow from the glueing theorem. Indeed, we have: The proof for part 4 is analogous. Parts 2 and 3 (resp. 5, 6) are direct consequences of the first (resp. fourth) part. For instance, for part 3, let s be a state and u be a term such that (u; s) ∈ |∀ st x.A(x)| S . Recalling that |st(n *)| S = Λ × S for any n ∈ N, we have:

f ∈N S |A| S x →f = f ∈N S s∈S |A s | S x →f × {s} = f ∈N S s∈S |A s | S x →(f (s)) * × {s} = n∈N s∈S |A s | S x →n * × {s} = n∈N |A| S
∀f ∈ N S , v ∈ Λ.(v; s) ∈ |st(f)| S ⇒ (u v; s) ∈ |A(x)| S x →f ⇒ ∀n ∈ N, v ∈ Λ.(u v; s) ∈ |A(x)| S x →n * ⇒ ∀v ∈ Λ.(u v; s) ∈ n∈N |A(x)| S x →n * ⇒ ∀v ∈ Λ.(u v; s) ∈ f ∈N S |A(x)| S x →f
where the last implication is obtained using part 1. In particular, (u t; s) belongs to |∀x.A(x)| S and by anti-reduction, so does ((λx.x t)u; s). ◭

As expected, transfer does not hold for all formulas. A counter-example is given in the next proposition by the external formula stating that all individuals are (not not) standard.

◮ Proposition 40. Let A(x) denote the formula ¬st(x). The formulas ∀ st x.¬A(x) → ∀x.¬A(x) and ∃x.A(x) → ∃ st x.A(x) have no realizer.

Proof. Both statements follow from the definitions. For instance, for the second formula, observe that

f ∈N S {(t; s) : (π 1 (t); s) ∈ |st(f)| S ∧ (π 2 (t); s) ∈ |¬st(f)| S } = ∅ since for any f ∈ N S , either |st(f)| S or |¬st(f)| S is empty. Consequently, we have |∃ st x.A(x)| S = ∅ while |∃x.A(x)| S = |⊤| S = Λ × S.
◭

The principle of external induction [START_REF] Nelson | Radically Elementary Probability Theory[END_REF] allows to prove that a certain property is valid for all standard natural numbers, for instance, that every nonstandard element is larger than all standard natural numbers 5 . We show that in our context, this principle can be realized using the rec instruction.

◮ Proposition 41 (External induction). For any formula A(x) whose only free variable is

x rec A(0 *) → ∀ {st} x.(A(x) → A(S(x))) → ∀ {st} x.A(x).
Proof. Let s be a state, n ∈ N be a natural number and u 0 , u S be terms and V be a value such that (u 0 ; s) ∈ |A(0 *)| S , (u S ; s) ∈ |∀ st y.(A(y) → A(S(y))| S and (V ; s) ∈ |Nat(n *)| S . The latter implies that V = n. Let us prove, by induction on n, that

rec u 0 u S n ∈ |A(n *)| S
If n = 0, then we have that rec u 0 u S 0 s ↓ s u 0 , the result follows by anti-reduction from the hypothesis on u 0 . If n = S(m), then we have that rec u 0 u S (s m) s ↓ s u S m (rec u 0 u S m). By induction hypothesis, we have that (rec u 0 u S m; s) ∈ |A(m)| S . The result thus follows (by antireduction) from the hypothesis on u S . ◭

The next two propositions, show that one cannot separate standard natural numbers from nonstandard natural numbers using an internal formula [START_REF] Robinson | Non-standard analysis[END_REF]. This fact is usually formalized by the properties of overspill and underspill. We first show that, in our context, overspill can be realized by combining the realizers for ENS 0 and for the transfer principle.

◮ Proposition 42 (Overspill). For any internal formula A, we have

λx.(x †, †) ∀ st x.A(x) → ∃x.(¬st(x) ∧ A(x)).
Proof. Let (u; s) ∀ st x.A(x). Let us show that ((λx.(x t, t))u; s) ∃x.(¬st(x) ∧ A(x)). Following the proof of part 3 in Theorem 39, we obtain (u t; s) ∀x.A(x) and thus (u t; s) A(δ). By ENS 0 (Proposition 36), we have (t; s) ¬st(δ). Finally, we obtain that ((u t, t); s) ∃x.(¬st(x) ∧ A(x)) and we can conclude by anti-reduction. ◭

The usual proof of underspill is by contradiction, hence using classical logic, which we do not have here. Nevertheless, we can obtain the following version in which a double-negation occurs.

◮ Proposition 43 (Underspill). For any internal formula A, we have

λxy.(λz.y (†, z))(x †) (∀x.¬st(x) → A(x)) → ¬¬∃ st x.A(x).
Proof. Let s be a state, and u, v be terms such that (u; s) ∀x.¬st(x) → A(x) and (v; s) ¬∃ st x.A(x). Using the adequacy of congruence rules (Proposition 23), observe that (v; s) ∀x.((st(x) ∧ A(x)) → ⊥), and by currying

(λwz.v (w, z); s) ∀ st x.A(x) → ⊥
Since A is internal, by transfer, we get (λz.v (t, z); s) ∀x.A(x) → ⊥ By the hypothesis on u and ENS 0 , we have (u t; s) A(δ), hence (λz.v (t, z))(u t); s) ⊥ and we can conclude by anti-reduction. ◭

Idealization

We first extend the realizability interpretation to take into account relations R : N 2 → N on the natural numbers:

|R(e 1 , e 2)| S ρ {(t; s) : R(e 1 ρ (s), e 2 ρ (s)) holds}

This coincides with the interpretation of the relation R through a second-order variable and the corresponding semantic relation from N 2 to SAT in the interpretation.

Let us now briefly illustrate the main idea behind the proof of idealization by showing that there exists a (nonstandard) natural number greater than or equal to any standard number. The usual proof relies on the fact that δ is such a number, since for any standard number n, in any slice greater than or equal to n, the relation n ≤ δ holds. In our setting, we use the set instruction to reach such a state.

◮ Proposition 44 (Diagonalization). We have λz.T z get (λxy. set y †) ∃ {N} x.∀ {st} y.y ≤ x. Proof. Let s be an arbitrary state. Following the proof of part 2 of Lemma 35, it is clear that it is enough to prove that (λxy. set y †; s) ∀ {st} y.y ≤ δ (the rest of the proof is exactly the same replacing ¬st(δ) by ∀ {st} y.y ≤ δ). Let n ∈ N and t an arbitrary term. Then (λxy. set y t) t n s ↓ s set n t s ↓ s ′ t where s ′ = max(n, s). In particular, n ≤ δ(s ′) holds, hence (t; s ′) ∈ |n ≤ δ| S and we can conclude by anti-reduction. ◭ ◮ Remark 45. Consider a term loop + such that for any state s ∈ S, loop + s ↓ s incr loop + where incr λx. set (s get) x. Then for any natural number n ∈ N and any state s ∈ S, loop + s ↓ s ′ loop + where s ′ ≥ n. Since for any s ′ ≥ n, (†; s ′) ∈ |∀ st x.x < δ| S , by anti-reduction we obtain loop + ∀ st x.x < δ. Observe that here the value of n is not required so that the quantifier does not need to be relativized. Yet, the computation never terminates and we do not even know when the computation reaches a correct state.

As mentioned above, the idea to prove the general case of idealization is very similar. If for any n ∈ N there exists τ n ∈ N such that for any m ≤ n, R(τ n , m) holds, we can consider the nonstandard natural number τ (τ s) s∈S ∈ N S . As shown by the following lemma, we can compute τ from any realizer of ∀ {st} n.∃ {st} x.∀ {st} y.(y ≤ n → R(x, y)).

◮ Lemma 46. For any formula A, any valuation ρ, any state s and any term t such that (t; s) ∈ |∃ {st} x.A| S ρ , there exists a natural number n ∈ N and a term u such that (u; s) ∈ |A| S ρ,x →n and t (λxyz.(y, z)) s ↓ s (n, u). Proof. The proof is analogous to the proof of Proposition 14. Assume that (t; s) ∈ |∃ {st} x.A| S ρ . By definition, for any X ∈ SAT and any (v; s)

∈ |∀ {st} x.(A → X)| ρ,X →X , we have that (t v; s) ∈ X. Let us define the set X {(w; s ′) ∈ Λ × S : ∃n ∈ N.∃u ∈ Λ. w s ′ ↓ s (n, u) ∧ (u; s) ∈ |A| S ρ,x →n }
which is obviously saturated. It is clear that (λxyz.(y, z); s) ∈ |∀ {st} x.(A → X)| S ρ,X →X since for any n ∈ N, any v ∈ Λ and any (u; s) ∈ |A| S ρ,x →n , it holds that (λxyz.(y, z)) v n u s ↓ s (n, u) ∈ X. We conclude that (t (λxyz.(y, z)); s) ∈ X, i.e. t (λxyz.(y, z)) s ↓ s (n, u). ◭

The term ideal λx.λy.T y (π 1 (T (x †) get (λwyz.(y, z)))) (λyz. set z y) is a realizer for the idealization principle. Indeed, in any state s the first component of ideal computes τ (s), using Lemma 46, while the second component increases the state to ensure the validity of the relation (as in Proposition 44). In order to fully mimic Lightstone and Robinson's construction, an extra step would be required where one would take a quotient of the interpretation with slices. This would allows us to consider a more flexible notion of realizability where realizers are only required to be compatible with almost all states, in the sense that the set of compatible states belongs to the ultrafilter. The study of such an interpretation is outside the scope of this paper and is left for future work. Nevertheless, we would like to take advantage of this section to briefly comment on a such a possibility. Let us fix a free ultrafilter U over the set of states. Given any set V , we denote by ∼ = the equivalence relation over V S defined by f ∼ = g {s ∈ S : f (s) = g(s)} ∈ U. First, we can, within the realizability with slices, change the way st(f) is interpreted to consider standardness up to the ultrafilter. In this way, f ∈ N S is said to be standard if and only if there exists n ∈ N s.t. f ∼ = n * . As a consequence, we for instance get that: ◮ Proposition 48. λxy.loop + ∀x, y.¬st(x) → st(y) → y < x Proof. If f ∈ N S is a nonstandard individual and n ∈ N any natural number, one proves by contradiction that S = {s ∈ S : n < f (s)} ∈ U. Indeed, otherwise one would have S ∈ U.

◮ Theorem 47 (Idealization). ideal ∀ {st} n.∃ {st} x.∀ {st} y.(y ≤ n → R(x, y)) → ∃ {N} x.∀ {st} y.R(x,
For any k ∈ N, let us write S k for the set {s ∈ S : f (s) = k}. Since the sets S 0 , ..., S n form a partition of S, it is easy to see that (exactly) one of these sets, say S m , belongs to U. Then f ∼ = m * , which contradicts the fact that f is nonstandard.

In particular, for any individuals f, g, any state s, and any terms t, u such that (t; s) ∈ |st(f) → ⊥| S and (u; s) ∈ |st(g)| S , we have that f is necessarily nonstandard and that there exists n ∈ N such that g ∼ = n * . By the claim above, we know that there exists s ′ > s such that s < f (s ′). The result then follows by anti-reduction from the fact that loop + s ↓ s ′ loop + . ◭

We then need to define a new notion of realizability in which realizers are also considered up to the equivalence relations induced by U. To that end, a natural attempt consists in considering Łoś ' theorem as a guideline. For the sake of clarity, let us denote by |A| * the truth values in this interpretation, which we shall call realizability up to U.

◮ Definition 49. We say that a formula A is Łoś -reducible if for any valuation ρ closing A, t ∈ |A| * if and only if {s ∈ S : (t; s) ∈ |A| S ρ } ∈ U.

We actually define the interpretation of connectives by this equivalence (e.g., the interpretation |A → B| * ρ for the implication is defined by {t ∈ Λ : {s ∈ S : (t; s) ∈ |A → B| S ρ } ∈ U, }) while the interpretation of the quantifiers is still defined via intersections (resp. unions) over the same domain as in the interpretation with slices (e.g., |∀x.A| * ρ f ∈N S |A| * ρ,x →f).

◮ Definition 50 (Realizability up to U). The interpretation of a formula A together with a valuation ρ is the set |A| * ρ defined inductively according to the following clauses:

|st(f)| * ρ Λ if f ∼ = n * ,
) ∈ |A → B| S ρ } ∈ U} |A 1 ∧ A 2 | * ρ {t ∈ Λ : {s ∈ S : (π 1 (t); s) ∈ |A 1 | S ρ ∧ (π 2 (t); s) ∈ |A 2 | S ρ } ∈ U} |A 1 ∨ A 2 | * ρ {t ∈ Λ : {s ∈ S : ∃i ∈ {1, 2}. case t {ι 1 (x 1) → x 1 |ι 2 (x 2) → x 2 } ∈ |A i | S ρ } ∈ U} |∀x.A| * ρ f ∈N S |A| * ρ,x →f |∃x.A| * ρ f ∈N S |A| * ρ,x →f |∀X.A| * ρ F :N k →SAT |A| * ρ,X →F |∃X.A| * ρ F :N k →SAT |A| * ρ,X →F We write t * A if t ∈ |A| * .
As shown in the following theorem, first-order quantifiers behave well w.r.t. the ultrafilter.

◮ Theorem 51 (Łoś ' theorem). First-order internal formulas as well as arbitrary disjunctions, conjunctions and implications are Łoś -reducible.

Proof. The proof goes by induction on the structure of A. In the cases {Nat(e)} → A, X(e 1 , . . . , e n), A → B, A ∨ B and A ∧ B, the result follows directly from the definitions. The proof for quantifiers is similar to the usual proof of Łoś ' theorem. Theorem 51 implies that if a term t is a realizer of a first-order internal formula A "often enough" in the interpretation with slices, then t is still a realizer in the interpretation up to U. Since all the realizers in Section 5 were universal, they are still realizers in this new setting, meaning that all the results from that section remain valid in the interpretation up to U. In particular, Theorem 51 applies to transfer, idealization, overspill or underspill.

∃x.A

A simple example illustrating this new interpretation is the formula ∀ st x.x < δ, which was realized by loop + in the interpretation with slices (see Remark 45) and is now realized by any term (because for any n ∈ N, the set of states such that n < δ is equal to [n; +∞[which belongs to U). Similarly, loop + can be replaced by † in Proposition 48.

However, this construction is still prospective and it raises several questions. Before discussing them, let us state two more properties of this interpretation. We shall now attract the reader's attention on some7 peculiarities of this interpretation. On the one hand, such a definition is not as compositional as one usually expects in realizability. Indeed, while we have that for any internal formulas A and B and any valuation ρ, ρ , but the (→ I)-rule is not adequate when considering substitutions of variables by realizers in the quotiented truth values. More generally, such a definition does not exactly match the intuition of the quotient in the Lightstone-Robinson construction, just like the interpretation with slices does not exactly define a product due to the ability to change the state via set.

|A → B| * ρ ⊆ {t : ∀u ∈ |A| * ρ .t u ∈ |B| * ρ },
On the other hand, the interpretation up to U is indeed a new and more flexible interpretation in that it allows us to get realizers for principles that were inaccessible in the interpretation with slices (e.g., ∀x, y.¬st(x) → st(y) → y < x). We would like to determine whether it allows us to realize other, more involved, nonstandard reasoning principles such as standardization but prima facie this principle does not seem to be realizable with the current definitions.

Related and future work

Some related works concern notions of realizability for nonstandard arithmetic which are variants of Kreisel's modified realizability [START_REF] Benno Van Den Berg | A functional interpretation for nonstandard arithmetic[END_REF][START_REF] Dinis | Intuitionistic nonstandard bounded modified realisability and functional interpretation[END_REF]. These notions of realizability are more inspired by Nelson's syntactical approach to nonstandard analysis. In particular, they rely on translations of formulas inducing conservative extensions of Heyting arithmetic. An important difference with our work is that we are able to give non-trivial computational content to idealization. It could be interesting to better understand the relation between this approach and the approaches based on Kreisel's realizability. In particular, we would like to know whether we can obtain a preservation result for some class of formulas (e.g. internal, quantifier-free, ∃-free formulas).

It seems that our interpretation with slices can be adapted without difficulty to Krivine's classical realizability. In particular, a similar interpretation (but with a very different purpose) for a classical calculus with a global environment is given in [START_REF] Miquey | Realizability interpretation and normalization of typed call-by-need λ-calculus with control[END_REF]. This setting could possibly allow to validate new principles by taking advantage of the computational power brought by control operators.

Finally, similar ideas have been adressed by Aschieri. In [START_REF] Aschieri | Constructive forcing, CPS translations and witness extraction in interactive realizability[END_REF] the author uses a notion of state which allows to construct a forcing model. In particular, natural numbers are interpreted as functions from states to N. Yet, his work does not pay attention to the nonstandard principles that can be obtained in his setting but rather to forcing. It would be natural to investigate whether our setting also allows for forcing techniques. This connection with forcing is reinforced by the fact that in the realm of Krivine's realizability, which generalizes Cohen's forcing, the latter is given a computational content via the addition of a monotone memory cell to the abstract machine in order to store forcing conditions [START_REF] Krivine | Realizability algebras: a program to well order R[END_REF][START_REF] Miquel | Forcing as a program transformation[END_REF].

A Food for thought

We want to point out that Remark 53 highlights the existence of "counter-intuitive" peculiarities of the interpretation up to U with respect to the quotient in Robinson's construction.

The latter indeed appears to be more regular, seemingly for two main reasons. First, as we highlight in Section 4, in the stateful interpretation the set instruction allows terms to change the value of the states during computations, and thus of the slices. This phenomenon does not occur in Robinson's construction where slices of the product are complety isolated between them. Second, while Robinson's construction is based on Boolean-valued models, realizability interpretations associate to each formula a set of realizers (instead of one unique Boolean). Besides, the use of relativized quantifiers (for instance in the statement for idealization) forces us to use only computable functions 8 . As explained in the paper, the interpretation that we briefly introduced here is an attempt to provide a quotient, guided by the rationale of Łoś ' theorem. Nonetheless, there might be more refined ways to arrive at a satisfying definition of a quotient9 . To illustrate how defining a quotiented realizability interpretation can be tricky, we give two (counter-)examples showing that while we could contemplate a notion of reduction up to U as follows Let us now define a function f which, given any integer n ∈ N, computes the lowest odd number greater than or equal to n: f (0) = 1, f (1) = 1, f (2) = 3, etc. It is clear that this function is primitive recursive, hence there is a term next_odd that computes it. We let u λx.x and t set (next_odd get) u. For any state s ∈ S, we then have t = set (next_odd get) u s ↓ s set (next_odd s) s ↓ s set f (s) u s ↓ f (s) u where f (s) is odd. We thus have: ◮ Proposition 58. There exists an internal propositional formula A, a term t and two states s 0 , s 1 such that (t; s) ∈ |A| S but (t; s ′) / ∈ |A| S .

Proof. Take for instance A (A 1 ∧ ¬A 1) → A 1 , t rec (λx.π 1 (x)) (λxyz.π 2 (z)) get, s 0 = 0 and s 1 = 1. We have: (t; 0) ∈ |A| S : for any (u; 0) ∈ |A 1 ∧ ¬A 1 | S , u 0 ↓ s (u 1 , u 2) with (u 1 ; s) ∈ |A 1 | S , and t 0 ↓ 0 (rec (λx.π 1 (x)) (λxyz.π 2 (z)) 0) u 0 ↓ 0 (λx.π 1 (x)) u 0 ↓ 0 π 1 (u) 0 ↓ s u 1

The result follows by anti-reduction. (t; 1) / ∈ |A| S : for any (u; 1) ∈ |A 1 ∧ A 2 | S , u 1 ↓ s (u 1 , u 2) with (u 2 ; s) ∈ |¬A 1 | S , and t 1 ↓ 1 (rec (λx.π 1 (x)) λxyz.π 2 (z) 1) u 1 ↓ 1 (λxyz.π 2 (z))0 (rec ...) u 1 ↓ 1 π 2 (u) 1 ↓ s u 2 Since (u 2 ; 1) ∈ |¬A 1 | S , it cannot be the case that (u 2 ; 1) ∈ |A 1 | S . ◭

◮ Example 21 .

 21 Give a nice example here ... We first verify that truth values are indeed saturated sets and that the interpretation validates the congruence rules. ◮ Proposition 22. Let A be a formula and ρ a valuation closing A. Then |A| S ρ ∈ SAT. Proof. By induction on the structure of A. The case st(f) is clear from the definition and the case X(e 1 , . . . , e n) follows from the fact that, by definition, ρ(X) takes values in SAT.

 x →n * (by glueing) (by def. of • s) (by glueing)

◮

 t ↓ U u {s ∈ S : ∃s ′ .t s ↓ s ′ u} ∈ Uwe cannot use the corresponding notion of saturation to define the realizability interpretation.For the following propositions, let us consider a free ultrafilter U on S, and without loss of generality let us assume that {s ∈ S : ∃n ∈ N.s = 2n} ∈ U. In particular, this implies that {s ∈ S : ∃n ∈ N.s = 2n + 1} / ∈ U. Proposition 54. There exist a formula A, a valuation ρ and two terms t, u such that 1. {s ∈ S : (u; s)∈ |A| S ρ } ∈ U 2. {s ∈ S : ∃s ′ .t s ↓ s ′ u} ∈ U 3. ∀s, s ′ .t s ↓ s ′ u ⇒ (u; s ′) / ∈ |A| Sρ Proof. Consider the (nonstandard) individual τ defined by τ : n ∈ N → n mod 2 (i.e τ (2n) = 0 and τ (2n + 1) = 1). By construction, we have |τ = 0 * | S = {(t; s) ∈ Λ × S : ∃n ∈ N.s = 2n}.

1 .◮◮

 1 {s ∈ S : (u; s) ∈ |τ = 0 * | S } = {s ∈ S : ∃n ∈ N, s = 2n} ∈ U 2. {s ∈ S : ∃s ′ .t s ↓ s ′ u} = S ∈ U 3. for any s, t s ↓ f (s)u and (u; f (s)) / ∈ |A| S since f (s) is odd. ◭ Proposition 55. There exist an atomic formula A and two terms t, u such that: 1. {s ∈ S : ∃s ′ .t s ↓ s ′ u ∧ (u; s ′) ∈ |A| S } ∈ U 2. {s ∈ S : (u; s) ∈ |A| S } / ∈ U Proof. Take again the (nonstandard) individual τ defined by τ : n ∈ N → n mod 2. Let us define u λx.x, incr λx. set (s get) x t incr u. By construction, we have that |τ = 1| S = {(v; s) : ∃n ∈ N, s = 2n + 1} and t = set (get +1) u s ↓ s+1 u. Therefore: 1. {s ∈ S : ∃s ′ .t s ↓ s ′ u ∧ (u; s ′) ∈ |τ = 1| S } = {s ∈ S : ∃n.s = 2n} ∈ U 2. {s ∈ S : (u; s) ∈ |A| S } = {s ∈ S : ∃n.s = 2n + 1} / ∈ U ◭ Proposition 56. There exist internal formulas A, B and a term t such that: (∀u ∈ |A| * .t u ∈ |B| *) ⇒ {s ∈ S : (t; s) ∈ |A → B| S } ∈ U Proof. Take again a (very) non-computable function τ : S → N, in the sense that there is no term u such that ∀s ∃s ′ ≥ s.u s ↓ s ′ τ (s ′). Define A Nat(τ) and B ⊥, then we have: 1. |A| * = ∅ 2. ∀u ∈ |Nat(τ)| * .λx.x u ∈ |⊥| * 3. ∀(u; s) ∈ |Nat(τ)| S .(λx.x u; s) ◭ ◮ Remark 57. In general, we have that |A → B| * {t : ∀u ∈ |A| * .t u ∈ |B| * }. Nonetheless, we can see terms in the right-hand set as terms allowing to validate the rule: A B rather than the implication A → B. Propositional internal formulas do not induce standard truth values.

 Let t, t ′ be two terms such that t ′ ; s ′ ∈ |A → B| S ρ and t ⊲ s s ′ t ′ for some states s, s ′ . Let (u; s ′) ∈ |A| S ρ . We have that t u ⊲ s s ′ t ′ u, which by definition belongs to |B| S ρ . We conclude the result by the induction hypothesis for B. The same proof applies to the case {Nat(e)} → A. Let t, t ′ be two terms such that t ′ ; s ′ ∈ |A 1 ∧ A 2 | S ρ and t ⊲ s s ′ t ′ for some states s, s ′ . For any i ∈ {1, 2}, we have that π i (t) ⊲ s s ′ π i (t ′), which by definition belongs to |A 1 | S ρ . We conclude the result by the induction hypothesis for A i . The proof for the case A 1 ∨ A 2 is analogous. Let t, t ′ be two terms such that (t ′ ; s ′) ∈ |∀x.A| S ρ and t⊲ s s ′ t ′ for some state s, s ′ . By definition, for any f ∈ N S , it holds that (t ′ ; s ′) ∈ |A| S ρ,x →f . Hence by the induction hypothesis for A, we get that (t; s) ∈ |A| S ρ,x →f . This being true for any f ∈ N S , we deduce that (t; s) ∈ |∀x.A| S ρ . The cases for the other quantifiers are similar.

	A → B
	A 1 ∧ A 2
	∀x.A

◭ ◮ Proposition 23. If A and A ′ are two formulas of HA2 such that A ∼ = A ′ , then for all valuations ρ closing both A and A ′ we have |A|

 An inference rule is adequate w.r.t. a state s if the adequacy (w.r.t. s) of all its premises implies the adequacy (w.r.t. s) of its conclusion.

	We are now able to show that, with the exception of the (∀ 2 E)/(∃ 2 I)-rules, our rules are
	adequate. The (∀ 2 E)/(∃ 2 I)-rules are shown to be adequate, for internal formulas only, in
	Proposition 32.

Definition 24. Given a context Γ, a state s and a valuation ρ closing the formulas in Γ, we say that a substitution σ realizes ρ(Γ) in the state s and write

(σ; s) ρ(Γ) if dom(ρ(Γ)) ⊆ dom(σ) and (σ(x); s) ∈ |A| S ρ ,

for every declaration (x : A) ∈ Γ. ◮ Definition 25. We say that a typing judgement Γ ⊢ t : A is adequate w.r.t. a state s in the stateful system if for any valuation ρ and any substitution (σ; s) ρ(Γ) we have (σ(t); s) ∈ |ρ(A)|. ◮ Theorem 26 (Adequacy). The typing rules of Figure 1, except the (∀ 2 E)/(∃ 2 I)-rules, are adequate.

 we have that (σ(t); s) ∈ |B| S ρ . We have to prove that (λx.σ(t); s) ∈ |A → B| S ρ . Let then u be a term such that (u; s) ∈ |A| S ρ . By definition, we have λx.σ(t) u s ↓ s σ(t)[u/x]. Since σ(t)[u/x] = (σ, x := u)(t) and (σ, x := u; s) ρ(Γ, x : A), we obtain (σ(t)[u/x]; s) ∈ |B| S ρ . We conclude that (λx.σ(t) u; s) ∈ |B| S ρ by anti-reduction. 2} we have that π i (σ(t 1 , t 2)) = π i (σ(t 1), σ(t 2)) s ↓ s σ(t i), where the latter belongs to |A i | S ρ . Then, by antireduction π i (σ(t 1 , t 2)) ∈ |A i | S ρ and hence σ(t 1 , t 2) ∈ |A 1 ∧ A 2 | S |A| ρ,x →n * . The result directly follows from the fact that |A| ρ,x →n * ⊆ f ∈N S |A| ρ,x →f = |∃x.A| S ρ . ∈ f ∈N S |A| ρ,x →f . The result follows directly from the fact that f ∈N S |A| ρ,x →f ⊆ |A| ρ,x →n * . Given an internal formula A, we define A s as the formula whose individuals are all applied in s. Formally, it amounts to replacing each individual by the standard individual with which it coincides in the state s: F (e 1 , ..., e k) The next result ensures that truth values of internal formulas can be split into slices. ◮ Theorem 31 (Glueing). For any internal formula A and valuation ρ closing A, we have that (t; s) ∈ |A| S ρ ⇔ t ∈ |A s | s ρ . Proof. The proof is by induction on the structure of A. F (e 1 , ..., e k) By Definition 17, we have (t; s) ∈ |F (e 1 , ..., e k)| s

	ρ . The cases (∨ 1 I)/(∨ 2 I) are
	similar.
	(∧ 1 E)
	(∀ 1 E)
	By assumption, (t; s) (∀ 1 I)

(→ E)

By assumption, we have that (σ(t); s) ∈ |A → B| S ρ and (σ(u); s) ∈ |A| S ρ . By the definition of |A → B| S ρ , we obtain that

σ(t u) = σ(t) σ(u) ∈ |B| S ρ .

(∧ I)

By assumption, (σ(t 1); s) ∈ |A 1 | S ρ and (σ(t 2); s) ∈ |A 2 | S ρ . For any i ∈ {1, By assumption, we have that (t; s) ∈ |A 1 ∧ A 2 | S ρ , which entails by definition that (π 1 (t); s) ∈ |A 1 | S ρ . The cases for (∧ 2 E) and (∨ E) are similar. (∃ 1 I) By assumption, there exists a natural number n ∈ N such that (t; s) ∈ |A[x := n]| S ρ = By assumption, (t; s) ∈ |A| ρ ′ for any valuation ρ ′ closing A which, since x does not occur in Γ, can freely map x to any individual in N S . In other words, (t; s) ∈ f ∈N S |A| ρ,x →f . The case for (∀ 2 I) is similar. ◮ Definition 30. s F ((e 1 (s)) * , . . . , (e k (s)) *) A → B s A s → B s {Nat(e)} → B s {Nat((e(s)) *)} → B s A ∧ B s A s ∧ B s A ∨ B s A s ∨ B s ∀x.A s ∀x.A s ∃x.A s ∃x.A s ∀X.A s ∀X.A s ∃X.A s ∃X.A s ρ ⇔ (t; s) ∈ ρ(F)@(e 1 ρ , ..., e k ρ) ⇔ t ∈ (ρ(F)) s (e 1 ρ (s), . . . , e k ρ (s)) ⇔ t ∈ |F ((e 1 (s)) * , . . . , (e k (s)) *)| s ρ ⇔ t ∈ |F (e 1 , ..., e k) s | s ρ A → B We have (t; s) ∈ |A → B| S ρ ⇔ ∀(u; s) ∈ |A| S ρ .(t u; s) ∈ |B| S ρ (HI) ⇔ ∀u ∈ |A s | s ρ .t u ∈ |B s | s ρ ⇔ t ∈ |A → B s | s ρ {Nat(e)} → B The proof is similar to the case A → B. (t; s) ∈ |{Nat(e)} → B| S ρ ⇔ (t n; s) ∈ |B| S ρ where n = e(s) (HI)

 (λx.t (s x)) n s ↓ s t sn where we used the induction hypothesis to obtain the penultimate reduction. 2. By definition, it holds that (t; s) ∈ |{Nat(f)} → A(f)| S . By part 1, we obtain that T t u s ↓ s t f (s), hence the result follows by anti-reduction.

	s ↓ s (λxyz.y (λx.z (s x))) n (rec (λy.y 0) (λxyz.y (λx.z (s x))) n) t
	s ↓ s (rec (λy.y 0) (λxyz.y (λx.z (s x))) n) (λx.t (s x))
		◭
	◮ Proposition 36. We have that	
	1. † ¬st(δ)	3. λx.T x get Nat ′ (δ)
	2. † ∃x.¬st(x)	4. λx.T x get † ∃ {N} x.¬st(x)
	t u s ↓ s rec (λy.y 0) (λxyz.y (λx.z (s x))) u t

s ↓ s rec (λy.y 0) (λxyz.y (λx.z (s x))) 0 t s ↓ s (λy.y 0) t s ↓ s t 0 If s = S(n), we have T t u s ↓ s rec (λy.y 0) (λxyz.y (λx.z (s x))) u t s ↓ s rec (λy.y 0) (λxyz.y (λx.z (s x))) sn t s ↓ s Proof. 1. By definition, |st(δ) → ⊥| S = Λ × S, which entails the result. 2. Obvious from part 1. 3. Follows from the fact that δ verifies that δ(s) = s and that by part 1 of Lemma 35, for any t (λx.T x get) t s ↓ s T t get s ↓ s t s 4. The proof is similar to the proof of Proposition 16. Let X ∈ SAT be a predicate and u be a term such that (u; s) ∈ |∀ {N} x.¬st(x) → X| S ρ .

 y) Proof. Let s be any state and u a term such that (u; s) ∈ |∀ {st} n.∃ {st} x.∀ {st} y.(y ≤ n → R(x, y))| S . By part 2 of Lemma 35, this entails that (T (u †) get; s) ∈ |∃ {st} x.∀ {st} y.(y ≤ s → R(x, y))| S ρ . By Lemma 46, we know that there exists a natural number p s ∈ N and a term v s ∈ Λ such that T (u †) get (λzxy.(x, y)) s ↓ s (p s , v s) and (v s ; s) ∈ |∀ {st} y.(y ≤ s → R(p s , y))| S . The latter implies that for any m ∈ N such that m ≤ s and any term t, it holds that (v s t m t; s) ∈ |R(p s , m)| S and hence R(p s , m) holds (otherwise |R(p s , m)| s = ∅).Consider the (nonstandard) individual τ ∈ N S defined by τ (s) = p s . We haveideal u s ↓ s λy.T y (π 1 (T (u †) get (λwyz.(y, z)))) (λyz. set z y)hence, by part 2 of Lemma 35, to conclude by anti-reduction it suffices to prove that 1. π 1 (T (u †) get (λwyz.(y, z))) s ↓ s τ (s). Indeed, we know that this term reduces as follows:π 1 (T (u †) get (λwyz.(y, z))) s ↓ s π 1 (p s , v s) s ↓ s p sand by definition τ (s) = p s . 2. (λyz. set z y; s) ∀ {st} y.R(τ, y). To prove this, it suffices to show that for any m ∈ N and any t ∈ Λ, we have ((λyz. set z y) t m; s) R(τ, m *). With s ′ max(s, m), we have that (λyz. set z y) t m s ↓ s set m t s ↓ s ′ t. By construction, since m ≤ s ′ , we know that R(τ (s ′), m) holds, hence (t; s ′) ∈ |R(τ (s ′), m)| S ρ and we conclude by anti-reduction. ◭

	6	Conclusion and future work
	6.1 Towards a quotient

 for some n ∈ N ∅ otherwise |X(e 1 , . . . , e n)| *

	ρ	{t ∈ Λ : {s ∈ S : (t; s) ∈ ρ(X)@(e 1 ρ , . . . , e n ρ)} ∈ U}
	|{Nat(e)} → A| * ρ	{t ∈ Λ : {s ∈ S : (t; s) ∈ |{Nat(e)} → A| S ρ } ∈ U}}
	|A → B| * ρ	{t ∈ Λ : {s ∈ S : (t; s

 By the induction hypothesis, we have that for any f ∈ N S , Observe that, by glueing, the right-hand side is equivalent to {s ∈ S : ∃n ∈ N.t ∈ |A| s ρ,x →n * } ∈ U. ⇒⌋ If there exists f ∈ N S such that t ∈ |A| * ρ,x →f . We easily see that {s ∈ S : t ∈ |A| s ρ,x →(f (s)) * } ⊆ {s ∈ S : ∃n ∈ N.t ∈ |A| s ρ,x →n * } hence we can conclude by upwards closure of the ultrafilter. ⇐⌋ Assume that E {s ∈ S : ∃n ∈ N.t ∈ |A| s ρ,x →n * } ∈ U For any s ∈ E, using countable choice we can pick an integer n s such that t ∈ |A| s }, hence this set belongs to U by upwards closure. Therefore we can conclude by induction hypothesis that t ∈ |A| * ρ,x →f .

	We may then define the function g ∈ N S by:	ρ,x →n * s .
	g(s)	n s if s ∈ E 0 otherwise
	By definition, E ⊆ {s ∈ S : t ∈ |A| s ρ,x →(g(s)) ∀x.A
	and we conclude that t / ∈ |A| * ρ,x →f .	∈ |A| s ρ,x →(g(s)) * }, ◭
	|A| * ρ,x →f = {t : {s ∈ S : t; s ∈ |A| S ρ,x →f } ∈ U}
	By glueing, we have that |A| S ρ,x →f = |A s | s ρ,x →f = |A s | s ρ,x →(f (s)) * . We want to prove that for
	any t ∈ Λ	
	∃f ∈ N S .t ∈ |A| * ρ,x →f iff {s ∈ S : t; s ∈ |∃x.A| S ρ } ∈ U

* By the induction hypothesis, for any f ∈ N S , |A| * ρ,x →f = {t : {s ∈ S : t; s ∈ |A| S ρ,x →f } ∈ U} By glueing, |A| S ρ,x →f = |A s | s ρ,x →f = |A s | s ρ,x →(f (s)) * . We want to prove that for any t ∈ Λ ∀f ∈ N S .t ∈ |A| * ρ,x →f iff {s ∈ S : t; s ∈ |∀x.A| S ρ } ∈ U Observe that, by glueing, the right-hand side is equivalent to S {s ∈ S : ∀n ∈ N.t ∈ |A| s ρ,x →n * } ∈ U ⇒⌋ We easily see that for any f ∈ N S S = {s ∈ S : ∀f ∈ N S .t|A| s ρ,x →(f (s)) * } ⊆ {s ∈ S : t ∈ |A| s ρ,x →(f (s)) * } and by upwards closure we conclude that t ∈ |A| * ρ,x →f . ⇐⌋ By contraposition, assume that {s ∈ S : ∀n ∈ N.t ∈ |A| s ρ,x →n * } / ∈ U and let us show that there exists f ∈ N S such that t / ∈ |A| s ρ,x →f . Because U is an ultrafilter, the assumption is equivalent to:

E = {s ∈ S : ∀n ∈ N.t ∈ |A| s ρ,x →n * } = {s ∈ S : ∃n ∈ N.t / ∈ |A| s ρ,x →n * } ∈ U

We are essentially left with a situation similar to the existential case: for any s ∈ E, using countable choice we can pick an integer n s such that t / ∈ |A| s ρ,x →n * s . We can then define the function g ∈ N S such that for any s ∈ E, g(s) = n s . Hence E ⊆ {s ∈ S : t /

◮

 Proposition 52. For any internal formulas A and B, and any valuation ρ closing both A and B, we have |A → B| * ρ ⊆ {t : ∀u ∈ |A| * ρ .t u ∈ |B| * ρ }. we have tu; s ∈ |B| S ρ . By upwards closure, we deduce that {s : (tu; s) ∈ |B| S ρ } ∈ U, hence tu ∈ |B| * ρ , and the result follows. ◭ ◮ Remark 53. One could have been tempted to define the truth value |A → B| * ρ as the set of terms t such that for any u ∈ |A| * ρ , t u ∈ |B| * ρ , as is usual in realizability. Unfortunately, such a definition is incompatible with Theorem 51, as the other inclusion in Proposition 52 does not hold. To see this, let A Nat ′ (τ) and B ⊥ where τ is a non-computable function 6 τ : S → N for which there is no term u such that ∀s.u s ↓ s τ (s). By construction, we have that |A| * = ∅, so that obviously for any u ∈ |Nat ′ (τ)| * , the function (λx.x) u ∈ |⊥| * . Yet, for each state s the truth value |Nat ′ (τ)| S ρ is not empty (it contains at least (n, s), for n = τ (s)) and therefore (λx.x; s) / ∈ |Nat ′ (τ) → ⊥| S

	Proof. By Theorem 51, we have	
	|A| * ρ = {u ∈ Λ : {s ∈ S : (u; s) ∈ |A| S ρ } ∈ U } and
	|B| * ρ = {v ∈ Λ : {s ∈ S : (v; s) ∈ |B| S ρ } ∈ U }.
	For any term t and any formula A, let us denote by S A t the set {s ∈ S : (t; s) ∈ |A| S ρ }.
	Let t ∈ Λ be such that S A→B t	∈ U and u ∈ |A| * ρ . By hypothesis, S A u ∈ U. We need to
	show that tu ∈ |B| * ρ . Again, for any s ∈ S A→B t	∩ S A u ∈ U,

ρ (since for any (u; s) ∈ |Nat ′ (τ)| S , (λx.x u; s) / ∈ |⊥| *).

 this inclusion is strict in general (see Remark 53) . In other words, we can compose a realizer t ∈ |A → B| * ρ with a realizer in u ∈ |A| * ρ to get t u ∈ |B| *

Γ ⊢ 0 : Nat(0)(0) Γ ⊢ s : ∀ N x.Nat(S(x)) (S) Γ ⊢ rec : ∀Z.Z(0) → (∀ N y.(Z(y) → Z(S(y)))) → ∀ N x.Z(x) (rec) (x : A) ∈ Γ Γ ⊢ x : A (Ax) Γ, x : A ⊢ t : B Γ ⊢ λx . t : A → B (→I) Γ ⊢ t : A → B Γ ⊢ u : A Γ ⊢ t u : B (→E) Γ ⊢ t : A Γ ⊢ u : B Γ ⊢ (t, u) : A ∧ B (∧I) Γ ⊢ t : A ∧ B Γ ⊢ π 1 (t) : A (∧ 1 E) Γ ⊢ t : A ∧ B Γ ⊢ π 2 (t) : B (∧ 2 E) Γ ⊢ t : A Γ ⊢ ι 1 (t) : A ∨ B (∨ 1 I) Γ ⊢ t : B Γ ⊢ ι 2 (t) : A ∨ B (∨ 2 I) Γ ⊢ t : A 1 ∨ A 2 Γ, x i : A i ⊢ t i : C Γ ⊢ case t {ι 1 (x 1) → t 1 |ι 2 (x 2) → t 2 } : C (∨E) Γ ⊢ t : A[x := n] Γ ⊢ t : ∃x.A (∃ 1 I) Γ ⊢ t : ∀x.A Γ ⊢ t : A[x := n] (∀ 1 E) Γ ⊢ t : A x / ∈ F V (Γ) Γ ⊢ t : ∀x.A (∀ 1 I) Γ ⊢ t : A[X(x 1 , . . . , x n) := B] Γ ⊢ t : ∃X.A (∃ 2 I) Γ ⊢ t : ∀X.A Γ ⊢ t : A[X(x 1 , . . . , x n) := B] (∀ 2 E) Γ ⊢ t : A X / ∈ F V (Γ) Γ ⊢ t : ∀X.A (∀ 2 I)

In Proposition 34, we show how these terms define realizers for the value restricted natural numbers.

Observe that our definition for C[] ensures that our reduction system has no critical pair. We refer the reader unfamiliar with side effects to ??, given in the appendices.

A realizability interpretation with a similar structure, although with a different notion of state, can be found in[START_REF] Miquey | Realizability interpretation and normalization of typed call-by-need λ-calculus with control[END_REF]. The perspective of the latter is also different in that it aims at proving the normalization of a classical call-by-need calculus.

This phenomenon also occurs in the Lightstone-Robinson construction of an ultrapower[START_REF] Lightstone | Nonarchimedean Fields and Asymptotic Expansions[END_REF].

Actually, this requires to consider a quotiented definition of the standardness predicate, see Proposition 48.

To that end, one can for instance consider the function τ which to each s ∈ S associates the smallest natural number n ∈ N such that there is no term of size smaller than or equal to s that computes n the state s: τ (s) inf{n ∈ N : ¬∃t.|t| ≤ s ∧ t s ↓ s n} .

We give more example of counter-intuitive properties (w.r.t. Lightstone-Robinson's usual construction) in Appendix A

This is the reason why, for instance, the premise of idealization needs to be restricted to the existence of a standard natural number x, instead of any natural number as is usually the case.

The authors of the paper welcome any suggestions in that direction.

The author acknowledges the support of FCT -Fundação para a Ciência e Tecnologia under the projects UIDB/04561/2020 and UIDP/04561/2020, and the research center Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Universidade de Lisboa. Étienne Miquey: The author was supported by the Paris Ile-de-France Region and the Inria research team Deducteam (LSV, ÉNS Paris-Saclay). to thank Alexandre Miquel for suggesting several ideas at the root of this work and Valentin Blot and Mikhail Katz, as well as the anonymous reviewers, for their accurate remarks and suggestions.

(∼ =)

Directly from Proposition 23. ◭ ◮ Remark 27. Let us explain why the (∀ 2 E)-rule is not adequate in general (the same argument applies to the (∃ 2 I)-rule). As emphasized at the beginning of this section, we interpret predicates by functions from N k to SAT, while the truth values of formulas may vary in the set of functions from (N S) k to SAT. Theorem 31 will make this more precise: internal formulas correspond to functions from N k to SAT while external formulas correspond to functions from (N S) k to SAT. Therefore, in general we cannot substitute a second-order variable by any formula. Indeed, in the second-order elimination rule (for universal quantifiers) variables can only be instantiated by internal formulas. Moreover, if the formula B we want to substitute is a proposition (i.e. if its arity k is equal to 0), then the substitution is valid since the interpretations of internal and external formulas coincide. This means that we could have chosen to work with impredicative encodings of the conjunction (or other connectives) as in the Russell-Prawitz translation [START_REF] Prawitz | Natural deduction. A proof-theoretical study[END_REF]. Indeed, such an encoding relies on the use of propositions, which are thus compatible with the elimination rule:

We show that rec realizes a formula that emulates its former typing rule by using quantifiers relativized with a value restriction.

Proof. Let X : N → SAT be a predicate, s ∈ S be a state, f ∈ N S be a natural number, u 0 and u S be terms and V be a value such that

and (V ; s) ∈ |Nat(f)| S . The latter implies that V = s n 0 where n = f (s). Besides, recall that by definition we have |X(f)| S X →X = X@(f) = {(t; s) ∈ X(f (s))} = X(n). Let us prove, by induction on n, that rec u 0 u S n ∈ X(n).

If n = 0, then we have that rec u 0 u S t s ↓ s rec u 0 u S 0 s ↓ s u 0 , the result follows by anti-reduction from the hypothesis on u 0 .

If n = S(m), then we have that rec u 0 u S (s m) s ↓ s u S m (rec u 0 u S m). By induction hypothesis, we have that (rec u 0 u S m; s) ∈ X(m). The result thus follows (by antireduction) from the hypothesis on u S . ◭ ◮ Remark 29. Regarding the necessity of restricting the relativization of quantifiers to values, the proof of Proposition 28 is enlightening. Indeed, if instead of a value V we were only given a term in |Nat(f)| s ρ , by definition this term may change the value of the state, say to some s ′ , before reducing to the value of f (s ′). This would break the proof since nothing is assumed on the realizers u 0 and u S in this new state s ′ .

Glueing

An important property of our interpretation (which also reflects a similar property in the Lightstone-Robinson construction) is that the interpretation of internal formulas can be decomposed as the product of its slices. In other words, internal formulas can only access information in the current state. In particular, and as expected, this means that it is impossible to express standardness by means of internal formulas. To state this formally, we first define the restriction of formulas and truth values with respect to a slice.