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Mathematical and numerical study of a dusty
knudsen gas mixture : extension to non-spherical

dust particles
Frédérique Charles

Abstract
In this work, we consider the model introduced in [7] describing the

movement of dust particles in a very rarefied atmosphere. The gas is
treated as a Knudsen gas, whereas the interaction between dust parti-
cles and gas molecules is modeled by considering a moving domain free
transport equation (including the boundary with the particles and the
boundary of the domain). We here precise the proof of existence of so-
lutions to the initial-boundary value problem annonced in [7]. Moreover,
we introduce a new numerical strategy, based on a splitting between the
transport of the gas molecules and the movement of the boundary. This
strategy allow to perform 2d-numerical simulations with elliptical-shaped
particles.

1 Introduction
We considere here a mixture of a rarefied gas and macroscopic particles (such as
dust particles). A typical example of such a situation is the study of the dynam-
ics of gases inside a microelectromechanical system (MEMS). More precisely, we
place ourselves in the physical situation described by the order of magnitude of
the physical constant in Table 1. Under these assumptions, the mean free path

Temperature of the gas Tg 293 K
Mach number Ma 0.1
Gas Pressure P 5 Pa

Size of the Container L 2 · 10−4 m
Radius of particles r 10−5 m

Table 1: Order of magnitude of physical quantities in the situation under study

of the gas is equal to λg = 2 · 10−3 m, and the Knudsen number of the gas (that
is, the ratio between the mean free path and the charateristic length of the do-
main) inside the container is Kn = 10. In this context, a kinetic description of
the gas is more suitable that a description with fluid models. Moreover, one of
the advantages of kinetic models is that they depend much less on phenomeno-
logic laws than most models of continuum mechanics. We therefore consider
a mesoscopic scale and describe the gas thanks to a density function defined
in the phase space (no distinction is made here between the different types of

1



molecules constituting the gas). Without any particules, a rarefied gas inside
a vessel could typically be described by the Boltzman equation (see [4]) with
suitable boundary conditions. A kinetic description of a gas-particle mixture
was introduced in [5], where the flow of particles is described thanks to another
density function, and interactions between particules and molecules are modeled
by integral collisions operators. We can also mention [11], where the movement
of spherical particles is described through equations on their momentum and
velocity, and where the gas is described by a Boltzmann equation with an inte-
gral operator describing gas-particles interactions. In [13], the motion of a rigid
body immersed in a gas is governed by the Newton-Euler equations, where the
force and the torque on this body are computed from the momentum transfer of
the gas molecules colliding with the body ; the gas is described by a Boltzmann
equation without any effect of the body on the gas.

The point of view adopted in [7] is rather different. The interaction between
the gas and the particles (in finite number) is modeled by considering the evolu-
tion of the gas in a moving domain, where the boundary of the domain include
the surface of the particules. This approach has already been introduced in [9]
and [12]. However, in the later works, authors use an eulerian numerical method
(Finite-Difference and Semi-Lagrangien method respectively) which makes the
treatment of boundary conditions rather complicated; the numerical study is
therefore only carried out in dimension 1.

Moreover, for large Knudsen number (typically larger to 10), it is generally
admitted [10] that the gas can be considered as a Knudsen gas (or molecular
flow), and we therefore neglect here collisions between molecules. Theorical
studies of the convergence to equilibrium of a particle in a Knudsen gas have
been carried out in [2] and [3], but no numerical simulation has been performed.
The study of a Knudsen system in a moving domain, both at the theoretical
and at the numerical level, has been the subject of [8], but in the context of a
gas in a vessel with absorbing boundary conditions.

The paper is organised as follows. We first recall the model introduced in [7]
for spherical particles, that we extend to any shape of particle. We then precise
the proof of the existence of solutions announced in [7]. Finally we present
a new numerical strategy, which allow to perform numerical simulations with
non-spherical particles, and some scenarios of numerical simulations.

2 Description of the model
We briefly recall the model introduced in [7] and generalize it to non-spherical
particles. We consider a free transport equation in a open bounded spatial
domain D ⊂ Rd, d ∈ N∗, which describe the evolution of the molecules density
f := f(t, x, v), with (t, x, v) ∈ R+×D×Rd. The motion of particles is supposed
to be known, and we denote Bi(t) the closed set corresponding to the region
occupied by the particle indexed by i at time t. We introduce the time T1 which
guarantee the non-overlapping of particles

T1 = sup{t ≥ 0 : ∀s ∈ [0, t[, Bj(s) ∩Bi(s) = ∅ for all j, i = 1, . . . , Nd, j 6= i}
(1)

and the time T2 which guarantee the non-exit of particles out of the domain

T2 = sup{t ≥ 0 : ∀s ∈ [0, t[, Bi(s) ∩ ∂D = ∅ for all i = 1, . . . , Nd}. (2)
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Figure 1: Graphical description of the problem

We do not consider here collisions of a particle with another particle or with
the boundary of the domain, and therefore consider the problem for t ∈ [0, T ),
with T ≤ min(T1, T2). For t ∈ [0, T ) we denote Ωt the domain occuped by the
gas at time t

Ωt := D \
Nd⋃
i=1

Bi(t),

and ∂Ωt = ∂D ∪ Γt its boundary, with

Γt =
Nd⋃
i=1

∂Bi(t)

(see Figure 1). The motion of the domain is described through the velocity
law of each point of the boundary at a given time t. We define a field c :
R+ × Rd → Rd which gives the local velocity of each point x ∈ ∂Ωt, for any
t ∈ [0, T [. We note that for any x ∈ ∂D, we have c(t, x) = 0. We assume
that the interaction between molecules and particles is described by a diffuse
reflection on the surface of the particle, and that all particles have the same
temperature Tp > 0, uniform on the surface. Following this assumption, the
boundary condition on the surface of particles, that is for x ∈ Γt, writes

f(t, x, v) =


ˆ
{(w−c(t,x))·nx≥0}

kd,Tp(x, v − c(t, x), w − c(t, x))f(t, x, w)dw

for x ∈ Γt, (v − c(t, x)) · nx < 0
0 for x ∈ Γt, (v − c(t, x)) · nx ≥ 0

(3)
where nx ∈ Sd−1 the outward normal originated in x, and kd,Tp

a kernel mod-
elling a diffuse reflexion at temperature Tp, defined by (see [14])

kd,Tp
(x, v, w) =

√
2π
Tp
MTp

(v)(w · nx), (4)

whereMTp
is the centered Maxwellienne at temperature Tp :

MTp(v) = 1
(2πTp)d/2

e
− |v|

2
2Tp .
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This kernel verifies the following propertyˆ
{w·nx≥0}

kd,Tp
(x, v, w)MTp

(w)dw = MTp
(v). (5)

For x ∈ ∂D, that is on the boundary of the external domain, which is
assumed to be still (c(t, x) = 0 for x ∈ ∂D), the boundary condition writes

f(t, x, v) =


ˆ
{w·nx≥0}

k(x, v, w)f(t, x, w)dw for x ∈ ∂D, v · nx < 0

0 for x ∈ ∂D, v · nx ≥ 0
(6)

where k is a kernel modeling an accommodation reflexion on ∂D at temperature
Tp

k(x, v, w) = γks(x, v, w) + (1− γ)kd,Tp
(x, v, w)

where γ ∈ [0, 1] is the accommodation coefficient, and ks a kernel modeling a
specular reflexion

ks(x, v, w) = δ(w − v + 2(v · nx)nx).

The kernel ks verifies, for all function ϕ defined on R+ :ˆ
{w·nx≥0}

ks(x, v, w)ϕ(|w|)dw = ϕ(|v|)1{v·nx≤0}. (7)

One can summarize the boundary conditions by

f(t, x, v) =
ˆ
R3
K(t, x, v, w)f(t, x, w)dw 1{(v−c(t,x))·nx<0} for x ∈ ∂Ωt, (8)

with

K(t, x, v, w) =
{
kd,Tp

(x, v − c(t, x), w − c(t, x))1{w−c(t,x)·nx≥0} if x ∈ Γt(
γks(x, v, w) + (1− γ)kd,Tp

(x, v, w)
)
1{w·nx≥0} if x ∈ ∂D.

(9)
We end-up with the following model

∂f

∂t
+ v · ∇xf = 0 (t, x, v) ∈ R+ × Ωt × Rd, (10)

with the initial condition

f(0, x, v) = f in(x, v)1{Ω0×Rd}(x, v) (11)

and the boundary conditions (8) -(9).

3 Existence of solutions
We slightly modify and precise the Theorem 3.3 in [7].

Theorem 3.1. Let T ∈ (0,min(T1, T2)), where T1 and T2 are defined by (1) and
(2). We assume that c ∈ Ł∞((0, T )×D). Let f in ∈ L∞(Ω0×Rd, e|v|2/Tpdv dx )
f in ≥ 0 for a.e. (x, v) ∈ Ω0 × Rd. Then there exists at least one non-negative
weak solution f ∈ L∞((0, T );L∞(Ω̄t,Rd)) of the initial-boundary value problem

(10) -(11) -(8) -(9). Moreover (t, x, v) 7→ f(t, x, v)e
|v−c(t,x)|2

2Tp ∈ L∞((0, T );L∞(Ω̄t,Rd)).
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Proof. We follow and adapt the proof for a fixed domain made in [1]. We first
consider the auxiliary problem for the function g : R+ × Ωt × Rd → R

∂g

∂t
+ v · ∇xg = 0, (t, x, v) ∈ R+ × Ωt × Rd, (12)

with initial data
g(0, x, v) = f in(x, v)1{Ω0×Rd}(x, v) (13)

and boundary conditions

g(t, x, v) = Φ(t, x, v)1{(v−c(t,x))·nx<0} (14)

for a.e. (x, v) ∈ ∂Ωt×Rd, where Φ ∈ L∞((0, T )×∂Ωt×Rd) is a given function.
The problem (12)-(13) - (14) has a unique weak solution, given by the method
of characteristics

g(t, x, v) = f in(x− vt, v)1{τΩt (x,v)>t} + Φ(t, x− τΩt(x, v)v, v)1{τΩt (x,v)<t},

where

τΩt(x, v) =
{

+∞ if {θ > 0 : x− θv ∈ Γt−θ ∪ ∂D} = ∅
inf{θ > 0 : x− θv ∈ Γt−θ ∪ ∂D} otherwise.

τΩt(x, v) correspond to the arrival time on the boundary when we follow back-
ward the charateristic starting from x ∈ Ωt at velocity v ∈ Rd. We deduce
that

‖g‖L∞((0,T )×Ωt×Rd) ≤ max{‖f in‖L∞(Ω0×Rd) , ‖Φ‖L∞((0,T )×∂Ωt×Rd}. (15)

We now consider the sequence (fn)n∈N of functions, such that

f0(t, x, v) = 0 for a.e. (t, x, v) ∈ [0, T )× Ω̄t × Rd

and, for all n ∈ N, n ≥ 1, fn is the solution of the following initial-boundary
value problems:

∂fn
∂t

+ v · ∇xfn = 0, (t, x, v) ∈ R+ × Ωt × Rd, (16)

with initial data
fn(0, x, v) = f in(x, v)1{Ω0×Rd}(x, v) (17)

and boundary conditions

fn(t, x, v) =
ˆ
R3
K(t, x, v, w)fn−1(t, x, w)dw1{(v−c(t,x))·nx<0} (18)

for (x, v) ∈ ∂Ωt × Rd, where K is defined in (9). Thanks to properties (5) and
(7), the boundary condition (18) lead to the estimate on the boundary∥∥∥∥ fn
MTp

(v − c(t, x))

∥∥∥∥
L∞((0,T )×∂Ωt×Rd)

≤
∥∥∥∥ fn−1

MTp
(v − c(t, x))

∥∥∥∥
L∞((0,T )×∂Ωt×Rd)

(19)
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Then the estimate (15) allow to prove by induction that∥∥∥∥ fn
MTp

(v − c(t, x))

∥∥∥∥
L∞((0,T )×Ω̄t×Rd)

≤
∥∥∥∥ f in

MTp
(v − c(t, x))

∥∥∥∥
L∞((0,T )×Ω0×Rd)

(20)
Moreover, an immediate induction argument prove that fn ≥ 0 for all n ≥ 0.
We obtain

0 ≤ fn(t, x, v) ≤ fn(t, x, v)e
|v−c(t,x)|2

2Tp ≤
∥∥∥∥f ine

|v|2
Tp

∥∥∥∥
L∞(Ω0×Rd)

e
‖c‖2∞

Tp (21)

for a.e. (t, x, v) ∈ [0, T )× Ω̄t×Rd. We then can proove that the sequence is non
decreasing. Consider the sequence hn := fn+1 − fn, for all n ≥ 0. By linearity,
for all n ≥ 0, hn satisfy the free transport equation (12) with initial condition

∀(x, v) ∈ Ω0 × Rd,

{
h0(0, x, v) = f in(x, v)1{Ω0×Rd}(x, v)
hn(0, x, v) = 0 for n ≥ 1;

and boundary condition

hn(t, x, v) =
ˆ
R3
K(t, x, v, w)hn−1(t, x, w)dw1{(v−c(t,x))·nx<0} (22)

for (x, v) ∈ ∂Ωt × Rd. We deduce that hn(t, x, v) ≥ 0 for a.e. (t, x, v) ∈
[0, T ) × Ω̄t × Rd. We have hence built a monotone non-decreasing sequence
(fn)n∈N composed by non-negative and uniformly bounded functions a.e. in
the domain of definition of the problem. By consequence, the sequence (fn)n∈N
pointwise converges to a limit f , which is by construction a non-negative solution
of the initial-boundary value problem (10)-(11)-(8), and we can pass to the limit
in estimate (21).

4 Numerical simulations
4.1 Numerical method
We describe here a new strategy for the numerical study of the model (10)-(11)-
(8), which is a modification of the particle method proposed in [7]. The initial
density f in of the gas is discretized by mean of a collection of weighted smooth
shape functions centered on the particle positions, that is

f in
ε,Nm

(x, v) =
Nm∑
k=1

ωk ϕε(x− x0
k)ϕε(v − v0

k), (23)

where Nm represents the number of numerical particles, ωk is the weight of
the k-th numerical particle (which represent ωk molecules). In (23), the shape
function ϕε(x) = ϕ(ε−1x)/εd is a smooth function with compact support. The
term “numerical particles" is here used for avoiding any confusion with the (real)
number of dust particles. Once the number Nm of numerical particles has been
chosen, the initial positions (x0

k)1≤k≤Nm
and velocities (v0

k)1≤k≤Nm
are sampled

according to the initial density f in (either in a deterministic way, either thanks
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to a Monte-Carlo procedure). Then, the positions and velocities of the numerical
particles evolve in time by taking into account the different phenomena listed
below:

(i) the free flow of the numerical particles in the absence of any interaction,
mathematically represented by the transport operator v · ∇;

(ii) the boundary condition on ∂D ; we can considere here specular reflexion
or accommodation reflexion, but also a periodic condition in order to hide
the effects of the boundary.

(iii) the diffuse reflexion between gas molecules and dust particles;

(iv) the time evolution of the set of dust particles.

We introduce a time discretization of step ∆t and we set tn = n∆t. The density
of gaseous molecules at time tn – i.e. f(tn, ·, ·) where f is the solution of (10)-
(11)-(8) is then approached by

fnε,Nm
(x, v) =

Nm∑
k=1

ωk ϕε(x− xnk )ϕε(v − vnk ), (24)

where (xnk )1≤k≤N and (vnk )1≤k≤N are the positions and the velocities of the
numerical particles at time tn.

In [7], our strategy was to compute simultaneously the steps (i), (iii), (iv)
previously described. For that purpose, we compute for each numerical particle
the position of the possible intersection of its trajectory with the dust particle
during the time ∆t. To do that, we computed if the condition

min
1≤i≤Np

min
t∈[tn,tn+∆t]

‖ξi(t)− xnk (t)‖ ≤ r,

is verified or not, where ξi(t) is the position of the center of the spherical particle,
r its radius, and xnk (t) = xnk + (t− tn)vnk the trajectory of the numerical particle
between time tn and tn+1. However, this strategy is hardy adaptable to non-
spherical particles.

We consider here a splitting between the advection stage of the dust particles
(iv) and the evolution of gas molecules, corresponding to stages (i)-(ii)-(iii). In
other word, we first transport dust particles independently of molecules during
the time ∆t, and we then transport numerical particles and perform the treat-
ment of the boundary conditions. We thus come back to dealing with conditions
at the boundaries of a fixed domain instead of a mobile domain. We first test on
every numerical particle if xn+1 ∈ Ωt, and otherwise we compute the boundary
condition. To do so, we only need a cartesian equation of the surface of dust
particles, in order to calculate the intersection of this surface with a straight
line as well as the normal vector at each point of the surface.

The latter strategy, which gives graphically similar results to the first one
for spherical particles, allows to consider easily some ellipse-shaped particles.
For such particles, our objective is in particular to observe the effect of the
rotational velocity of the particle on the gas. This effect was not visible for
spherical particles because the gas has no viscosity.
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4.2 Numerical results
We describe here a series of numerical experiments in dimension d = 2. We
suppose that the initial density is uniform in space and that it is described by
a Maxwellian function in velocity, that is

f in(x, v) = f in(v) = n0m

2πkBT in e
−m|v−ug|2

2kB T in , (25)

where m is the mass of a gas molecule, uin and T in are respectively the initial
macroscopic velocity and the temperature of the gas (in K), and n0 correspond
to ‖f in‖L1(Ω0×R3)/|Ω0|. In this case, each component (v0

k)i, for 1 ≤ k ≤ Np
of the initial velocities of the gas particles is sampled according a gaussian law
of mean (uin)i and variance kBT in/m (see [6] for details). The weights of the
particles are identical, and are tuned in order to reproduce the mass of the initial
condition:

ωk =
‖f in‖L1(Ω0×R3)

Np
= n0|Ω0|

Np
, for all 1 ≤ k ≤ Np.

The initial positions of the numerical particles have been fixed on a regular grid,
except inside the dust particles. In some scenarios, the gas has a macroscopic
velocity along the first axis equal uin = VsMa, where Ma is the Mach number
and Vs is the sound velocity in air at temperature T in. We take here Ma = 0.1
and T in = 293 K; then uin = 34.41 m/s. The temperature of the surface of
particles is 500 K. The value n0 has been normalized to 1. Indeed, the values of
n0 have no impact, neither on the transport of molecules and of dust particles
(since these ones are no influenced by the surrounding gas) nor on the collisions
between molecules and dust particles (the number of collisions is not computed
as in DSMC methods). The domain D is the square [−1, 1] × [−1, 1] (in 10−5

m), with specular reflexion at the top and bottom boundary. We use a periodic
boundary condition at the left and at the right sides of ∂D, in order to mimic
an infinite domain in the x direction. We use B3-splines (see [6]) as shape
functions ϕ, with a shape size ε = h0.5, where h is the initial distance between
two numerical gas particles in each direction (and which is obviously linked to
Nm).

Scenarios 1 and 2 The first simulations presents the rotation of a particle
with no translational velocity. The particle is an ellipse, with axes equal to
a = 2.5 · 10−5 and b = 1 · 10−5. In the first scenario, the macroscopic velocity
of the gas is ug = (0, 0), whereas in the second one the macroscopic velocity
of the gas is ug = (−uin, 0). The rotational velocity of the particle is equal to
Ω = 2π · 106 rad/s in both scenarios. Figures 2 and 3 show the time evolution
of the number density ρ(t, x) =

ˆ
R3
f(t, x, v)dv of scenario 1 and 2 respectively.

In particular, we can observe the effect of the macroscopic velocity of the gas,
which acts as a side wind. Figure 4 show the comparison at a given time between
the kinetic temperature of the gas

T (t, x) = m

2kBρ(t, x)

(ˆ
R3
f(t, x, v)v2dv −

∣∣∣∣ 1
ρ(t, x)

ˆ
R3
f(t, x, v)vdv

∣∣∣∣2
)
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in scenarios 1 and 2. Here the macroscopic speed of the gas (which is much
smaller than the kinetic velocity of molecules) does not have much influence on
the temperature.

Figure 2: Time history of the gas density in Scenario 1, from left to right and
from top to bottom, at times 8·10−8 s, 2.4·10−7 s, 4·10−7 s, 5.6·10−7 s, 7.2·10−7

s, 8 · 10−7 s. The axis are scaled according to the length scale L◦ = 10−4 m.

Scenarios 3 and 4 In scenarios 3 and 4, two particles are crossing each other
with opposite velocities : u1

p = (0, 2uin), and u2
p = (0,−2uin). The gas has a

macroscopic velocity equal to (−uin, 0). In scenario 3 the dust particles have no

9



Figure 3: Time history of the gas density in Scenario 2, from left to right and
from top to bottom, at times 8·10−8 s, 2.4·10−7 s, 4·10−7 s, 5.6·10−7 s, 7.2·10−7

s, 8 · 10−7 s. The axis are scaled according to the length scale L◦ = 10−4 m.

rotational velocity, whereas in scenario 4 they have rotational velocities equal to
Ω1 = 2π ·106 rad/s and Ω2 = −π ·106 rad/s. Figures 5 and 6 show the evolution
of the number density ρ(t, x) =

ˆ
R3
f(t, x, v)dv of scenario 3 and 4 respectively,

and Figure 7 shows the time evolution of the kinetic temperature of the gas in
scenario 4.
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Figure 4: Temperature (in K) at times 8 · 10−7 s for scenario 1 (left) and for
scenario 2 (right). The axis are scaled according to the length scale L◦ = 10−4

m.
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to right and from top to bottom, at times 8 · 10−8 s, 1.6 · 10−7 s, 3.6 · 10−7 s,
5.6 ·10−7 s, 7.2 ·10−7 s, 1.32 ·10−6 s. The axis are scaled according to the length
scale L◦ = 10−4 m.
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