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I-INTRODUCTION

In 1742, in a letter to Leonhard Euler, Christian Goldbach conjectured [6] : Any even integer greater than 3 can be written as the sum of two prime numbers. De Polignac's conjecture, stated by Alphonse De Polignac in 1849 [7], is as follows : Any non-zero even number 2m is equal to the difference of two consecutive prime numbers in an infinite number of ways. Inspired by the function which I introduced in the article [START_REF] Sghiar | The Special Functions and the Proof of the Riemann's Hypothesis[END_REF], I introduce the function ˆ which, also like , allows to find the prime numbers . The study of the function S 2m (z) = ˆ 2 (z) + ˆ 2 (2m -z) will allow me to demonstrate the Goldbach conjecture. And the study of the function : S 2m (z) = ˆ 2 (z)+ ˆ 2 (2m+z) will allow me to demonstrate the De Polignac's conjecture. By y the same techniques I will prove the Legendre's conjecture [9], and Landau's conjecture [10] . Recall that the four conjectures studied in this article, Edmund Landau, has characterized them, at the 1912 International Congress of Mathematicians, as "unattackable at the present state of mathematics" and are now known as Landau's problems [10]. Finally I give answers on the Mersenne's conjecture [11] , and the Fermat number conjecture [12] In this article I assume known the functions zeta ζ, Gamma Γ : z → +∞ 0 t z-1 e -t dt and their properties (see [4] and [5]).

II-THE PROOF OF THE GOLDBACH CONJECTURE :

Theorem 1 : [The Goldbach conjecture ] Any even integer greater than 3 can be written as the sum of two prime numbers. Proposition 1. [START_REF] Sghiar | The Special Functions and the Proof of the Riemann's Hypothesis[END_REF] : 

Let (z) = ζ(-Γ(z)+1 z/2 ). If z ∈ N * then (z) = 0 ⇐⇒ z is

Proof of Proposition 3 :

Consider the restriction to R + * of the function : 

S(z) = sin 2 ( Γ(z) + 1 z π) + sin 2 ( Γ(2m -z) + 1 2m -z π) 1 step : If the function S(z) = sin 2 ( Γ(z)+1 z π) + sin 2 ( Γ(2m-z)+1 2m-z π)
dS dz (z) = 2πsin( Γ(z) + 1 z π)cos( Γ(z) + 1 z π) zΓ (z) -(Γ(z) + 1) z 2 + 2πsin( Γ(2m -z) + 1 2m -z π) cos( Γ(2m -z) + 1 2m -z π) -(2m -z)Γ (2m -z) + (Γ(2m -z) + 1) (2m -z) 2 But as -(2m-p)Γ (2m-p)+(Γ(2m-p)+1) (2m-p) 2 = 0 (Because -zΓ (z) + Γ(z) + 1) vanishes in z ∼ 2.5 / ∈ N) , then 2sin( Γ(2m-p)+1 2m-p π)cos( Γ(2m-p)+1 2m-p π) = 0
And since we cannot have cos(

Γ(2m-p)+1 2m-p π) = 0, because otherwise Γ(2m-p)+1 2m-p ∈ N + 1 2
,and therefore p ∈ 2N, which is not the case, then sin( Γ(2m-p)+1 2m-p π) = 0, and from proposition 2, we conclude that 2m -p is prime. 

2 step : Let us show the existence of local minimums z in ]1, m[ as soon as m ≥ 5, with S(z) = 0 , Γ(z)+1 z ∈ N and Γ(2m-z)+1 2m-z ∈ N : First S admits a local extremum at a point z ∈]1, m[ if m ≥ 5 : Indeed : S(z) = 1 -1 2 (cos(2 Γ(z)+1 z π) + cos(2 Γ(2m-z)+1 2m-z π)) If S does not admit a local extremum at a point z ∈]1, m[ , then T (z) = (cos(2 Γ(z)+1 z π) + cos(2 Γ(2m-z)+1 2m-z π)) does not admit a local extremum in z ∈ ]1, m[,
dT dz (z) = -2πsin(2 Γ(z) + 1 z π) zΓ (z) -(Γ(z) + 1) z 2 -2πsin(2 Γ(2m -z) + 1 2m -z π) -(2m -z)Γ (2m -z) + (Γ(2m -z) + 1) (2m -z) 2
By growth of the function zΓ (z)-(Γ(z)+1)

z 2
in ∈ [3, +∞[ we have :

(2m-z)Γ (2m-z)-(Γ(2m-z)+1) (2m-z) 2 zΓ (z)-(Γ(z)+1) z 2 > 1, ∀z ∈ [3, m[, so : sin(2 Γ(z) + 1 z π) ≥ sin(2 Γ(2m -z) + 1 2m -z π) (2m-z)Γ (2m-z)-(Γ(2m-z)+1) (2m-z) 2 zΓ (z)-(Γ(z)+1) z 2 ; ∀z ∈ [3, m[
And for z such that sin(2 

Γ(2m-z)+1 2m-z π) = 1 (z exists because the function L(x) = Γ(x+1)+1 x+1 -Γ(x)+1 x check L(x) ≥ 1, ∀x ≥ 3.2 ), we will have sin(2 Γ(z)+1 z π) > 1, which is absurd. And therefore S(z) = sin 2 ( Γ(z)+1 z π) + sin 2 ( Γ(2m-z)+1 2m-z π) M. SGHIAR.
. Let z be a minimum of S in ∈]1, m[. If S(z) = 0, then Γ(z)+1 z π = 0, mod(π) ou Γ(2m-z)+1 2m-z π = 0, mod(π)
By symmetry of the curve of S with respect to the line x = m, we can assume that Γ(2m-z)+1 2m-z π = 0, mod(π) and that sin 2 

( Γ(z)+1 z π) ≤ sin 2 ( Γ(2m-z)+1 2m-z π). If sin 2 ( Γ(z)+1 z π) < sin 2 ( Γ(2m-z)+1 2m-z π) : If z is too close to z with sin 2 ( Γ(2m-z )+1 2m-z π) < sin 2 ( Γ(2m-z)+1 2m-z π), then S(z ) < S(z) which contradicts the minimality. It fol- lows that sin 2 ( Γ(z)+1 z π) = sin 2 ( Γ(2m-z)+1 2m-z π) But from the equation : 0 = dS dz (z) = 2πsin( Γ(z) + 1 z π)cos( Γ(z) + 1 z π) zΓ (z) -(Γ(z) + 1) z 2 + 2πsin( Γ(2m -z) + 1 2m -z π) cos( Γ(2m -z) + 1 2m -z π) -(2m -z)Γ (2m -z) + (Γ(2m -z) + 1) (2m -z) 2
We deduce that : 0 = sin( Γ(z)+1 

Γ(2m-z)+1 2m-z ∈ N If z / ∈ N : -If z = n + r with r ≥ 2, r ∈ R + \ N and n ≥ 1 Let Γ(z)+1 z = k. we deduce : n i=1 (n -i + r)Γ(r) + 1 = kn + kr So Γ(r) = -1+kn+kr n i=1 (n-i+r)
As r ≥ 2, then Γ (r) > 0 , and therefore by deriving we will have :

k n i=1 (n -i + r) > (-1 + kn + kr) n j=1 n i =j;i=1 (n -i + r) So 1 r ≥ 1 -1 k +n+r > n i=1 1
n-i+r , which is not the case, and z ∈ N.

-If z = n + r with r < 2, r ∈ R + \ N and n ≥ 1 M. SGHIAR. Prime numbers, Goldbach's conjecture, De Polignac's conjecture, Legendre's conjecture, Landau's conjecture, Mersenne's conjecture, and the Fermat number conjecture By setting z = (n + 3) + (r -3) we can suppose that z = n + r with r < -1, r ∈ R -\ N and n ≥ 1 Let Γ(2m-z)+1 2m-z = l, we deduce :

2m-n-1 i=1 (2m -n -i -r)Γ(1 -r) + 1 = l(2m -n -1) + l(1 -r) So Γ(1 -r) = -1+l(2m-n-1)+l(1-r) 2m-n-1 i=1 (2m-n-i-r) But -Γ (1 -r)) < 0 if r < -1. So : -l 2m-n-1 i=1 (2m -n -i -r) < -(-1+l(2m-n-1)+l(1-r)) 2m-n-1 j=1 2m-n-1 i =j;i=1 (2m -n -i -r) Thus : 1 1-r ≥ 1 -1 l +2m-n-1+(1-r) > 2m-n-1 i=1 1 2m-n-i-
r , which is not the case, and z ∈ N.

Note : This result of step 3 can be noticed in the graphs of S 2m : If the curve of S 2m touches the segment ]1, 2m[ at a point p, then p is a prime number ! ! 4 step : Proof of proposition 3

The case where m ∈ {2, 3, 4} is easy to see, since the Goldbach conjecture holds in these cases. 

(z) = +∞ If M (z) = sin 2 (f (z)π) + sin 2 (g(z)π), then there exists z ∈ [N, +∞] such that M(z) is a minimum of M. Proof : Let : M (f (z)π, g(z)π) = sin 2 (f (z)π) + sin 2 (g(z)π)
Where Z = Z mod(2π) From hypotheses on f and g we deduce that Any non zero even number 2m is equal to the difference of two consecutive prime numbers in an infinite number of ways.

{(f (z)π, g(z)π), z ∈ [N, +∞]} = [0, 2π]×F where F is a part of [0, 2π]. If F is the closure of F, then [0, 2π]× F M. SGHIAR.
is a compact of [0, 2π] × [0, 2π] therefore (see [2]) M has minima in points (f (z)π, b) of [0, 2π] × F . But if z n is a sequence such that z n → z, then g(z n )π → b. But as g(z n )π → g(z)π, then b = g(z)π,

Proof :

It is demonstrated by the same technique used above to prove the Goldbach conjecture using the function S + instead of S :

S + (z) = sin 2 ( Γ(z) + 1 z π) + sin 2 ( Γ(2m + z) + 1 2m + z π)
-Using Lemma 1 above, we show the existence of an infinite number of minima z of S + . And by showing as in steps 2, 3, above :

-The existence of an infinite number of local minimums z of

S + in ]1, ∞[, with S(z) = 0 , Γ(z)+1 z ∈ N and Γ(2m+z)+1 2m+z
∈ N -The existence of an infinity of integer z roots of S + ( z ∈ N ). Then using proposition 2 -as in step 4 above -we deduce that z and 2m + z are prime with 2m = (2m + z) -z

Corollary : [The conjecture of twin prime numbers] [8]

There exists an infinity of prime numbers p such that p + 2 is also prime.

IV -The proof of Legendre's conjecture [9]

The Legendre conjecture, proposed by Adrien-Marie Legendre, is stated as follows : Theorem 3 : [Legendre's conjecture] : For all n ≥ 1, there is a prime number between n 2 et (n + 1) 2 Proof :

We consider the function defined on ]1, 2n] :

S le,n (z) = sin 2 ( Γ(z) + 1 z π) + sin 2 ( Γ(n 2 + z) + 1 n 2 + z π)
The result is true if n < 2. Theorem 4 [Landau's conjecture] : There exists an infinity of primes p such that p -1 is a perfect square. (or in other words : there is an infinity of prime numbers of the form n 2 + 1).
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Proof :

We consider the function defined on [1, +∞] :

S la (z) = sin 2 ( Γ(z) + 1 z π) + sin 2 (π √ z -1)
-Using Lemma 1 above, we show the existence of an infinity of minima z of S la -By the same techniques used above, we see that there exists an infinity of integer z roots of S la (z) ( z ∈ N ∩ [3, +∞] ) with z = n 2 + 1.Then by using proposition 2 -as in step 4 above-we deduce that z is a prime with z = n 2 + 1 Note : One may wonder why the proof of the Landau's conjecture does not work by replacing p-1 by p+1 the reason is as follows : First we must place ourselves in the interval ]3. x ≥ 1, ∀x ≥ 3.2 ). Then using the function as in Lemma 1 (passing to classes) :

M (f (z), g(z)) = sin 2 (f (z)π) + sin 2 (g(z)π) S la (z) = sin 2 ( Γ(z)+1 z π)+sin 2 (π √ z -1) admits root 5 in [4, 6], while S la (z) = sin 2 ( Γ(z)+1 z π) + sin 2 (π √ z + 1) admits no root in [4, 6].

VI -The proof of Mersenne's conjecture [11]

A Mersenne number is a number of the form 2 n -1 (where n is a non-zero natural number), a prime Mersenne number , is therefore a prime number of this form. Theorem 5 : There is an infinite number of Mersenne prime numbers. Proof : It suffices to apply the previous study to the function defined on ]0, +∞] : A Fermat number is a number that can be written as 2 

S

  a prime number Proof : It follows from Wilson's theorem[START_REF] Rashed | Entre arithmétique et algèbre : Recherches sur l'histoire des mathématiques arabes[END_REF] -which shows that p is prime if and only (p -1)! ≡ -1 mod p -and the fact that the trivial zeros ofζ are -2N * . Proposition 2 : Let ˆ (z) = sin( Γ(z)+1 z π). If z ∈ N * then ˆ = 0 ⇐⇒ z isa prime number Proof : Inspired by proposition 1 Proposition 3 : If m ∈ N * \ {1} , then the equation : M. SGHIAR. Prime numbers, Goldbach's conjecture, De Polignac's conjecture, Legendre's conjecture, Landau's conjecture, Mersenne's conjecture, and the Fermat number conjecture sin 2 ( Γ(z) + 1 z π) + sin 2 ( Γ(2m -z) + 1 2m -z π) = 0 admits at least one solution z in N with z and 2m -z are primes.

Figure 1 -

 1 Figure 1 -S(z) for m=8

  and in this case, by symmetry of the curve of S with respect to the line x = m, we have dT dz (z) ≤ 0, ∀z ∈]1, m[ or dT dz (z) ≤ 0, ∀z ∈]m, 2m -1[ . By symmetry suppose that dT dz (z) ≤ 0, ∀z ∈]1, m[ :

  z π)cos( Γ(z)+1 z π), and therefore 0 = sin( Γ(z)+1 z π) by minimality of S(z). Thus S(z) = 0 with Γ(z)+1 z ∈ N and Γ(2m-z)+1 2m-z ∈ N 3 step : Let us show the existence of the roots z ∈ N∩]1, m[ : The case where m ∈ {2, 3, 4} is easy to see, since the Goldbach conjecture holds in these cases. If m ≥ 5, from step 2, we have S(z) = 0 with : z ∈]1, m[, Γ(z)+1 z ∈ N and

  If m ≥ 5, in step 3 we have shown the existence of the roots z ∈ N∩]1, m[ such that Γ(z)+1 z ∈ N and Γ(2m-z)+1 2m-z ∈ N. And from proposition 2 we deduce that z and 2m -z are primes with 2m = z + (2m -z) Proof of Theorem 1 : It is deduced directly from proposition 3 III -The proof of Alphonse de Polignac's conjecture [7] Lemma 1 : Let f and g be two continuous functions from [N, +∞] over R + with lim z→+∞ f (z) = +∞ and lim z→+∞ g

2 :

 2 and M has minima in points (f (z)π, g(z)π). And therefore M has minima at points z. The Polignac conjecture is a conjecture about the theory of numbers. It was stated by Alphonse de Polignac in 1849 [7]. Theorem The conjecture of Alphonse de Polignac [7]

2 ,

 2 +∞[ to be able to use step 2( because in ]3.2, +∞[ we have L(x) = Γ(x+1)+1 x+1 -Γ(x)+1

  Prime numbers, Goldbach's conjecture, De Polignac's conjecture, Legendre's conjecture, Landau's conjecture, Mersenne's conjecture, and the Fermat number conjecture admits local extremum z 1 in ∈ [3, m[ If z 1 is not a local minimum, by taking the same reasoning by replacing 1 by z 1 , we deduce the existence of a local extremum z 2 in [3, z 1 [ or in ]z 1 , m[ and hence there is a local minimum z between z 1 et z 2
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  's conjecture, De Polignac's conjecture, Legendre's conjecture, Landau's conjecture, Mersenne's conjecture, and the Fermat number conjecture -By the same techniques used above, we see that there are integer z roots of S le,n (z) ( z ∈ N∩]1, 2n] if n ≥ 2). Then by using proposition 2 -as in step 4 above-we deduce that z and n 2 + z are primes with n 2 + z ∈ [n 2 , (n + 1) 2 ]

	V -The proof of the Landau's conjecture [10]

VII -The proof of the Fermat number conjecture [12]

  M. SGHIAR. Prime numbers, Goldbach's conjecture, De Polignac's conjecture, Legendre's conjecture, Landau's conjecture, Mersenne's conjecture, and the Fermat number conjecture

me (z) = sin 2 ( Γ(z) + 1 z π) + sin 2 ( Γ(2 z -1) + 1 2 z -1 π)

  2 n + 1 , with n natural integer. The n-th Fermat number, 2 2 n + 1, is denoted by F n . Theorem 6 : If n ≥ 5, then F n = 2 2 n + 1 is not a prime number. Proof : We consider the function :S f e (z) = sin 2 (zπ) + sin 2 ( Γ(2 2 z + 1) + 1 2 2 z + 1 π)If z ≥ 5 is a root integer of S f e , then as in the note above, S f e (z) = sin 2 (zπ)+sin 2 ( Γ(2 2 z +1)+1 2 2 z +1π) will have the root 5 in the interval [4, 6], which is not the case. Hence the result.