
HAL Id: hal-03002140
https://hal.science/hal-03002140

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Sets of Attacking Arguments for Inconsistent Datalog
Knowledge Bases

Bruno Yun, Srdjan Vesic, Madalina Croitoru

To cite this version:
Bruno Yun, Srdjan Vesic, Madalina Croitoru. Sets of Attacking Arguments for Inconsistent Data-
log Knowledge Bases. COMMA 2020 - 8th International Conference on Computational Models of
Argument, Sep 2020, Perugia / Virtual), Italy. pp.419-430, �10.3233/FAIA200526�. �hal-03002140�

https://hal.science/hal-03002140
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Sets of Attacking Arguments for
Inconsistent Datalog Knowledge Bases

Bruno YUN a,1, Srdjan VESIC b and Madalina CROITORU c

a University of Aberdeen, United Kingdom
b CRIL - CNRS & Univ. Artois, France

c University of Montpellier, France

Abstract. Logic-based argumentation is a well-known approach for reasoning with
inconsistent logic knowledge bases. Such frameworks have been shown to suffer
from a major practical drawback consisting of a large number of arguments and
attacks. To address this issue, we provide an argumentation framework that con-
siders sets of attacking arguments and provide a theoretical analysis of the new
framework with respect to its syntactic and semantic properties. We provide a tool
for generating such argumentation frameworks from a Datalog knowledge base and
study their characteristics.

Keywords. argumentation, datalog, SETAF

1. Introduction

In this paper, we place ourselves in the setting of logic-based argumentation instanti-
ated over Datalog. The use of this language ensures that the work of this paper studies
potentially real world argumentation graphs and unveils genuine structural behaviour.
Logic-based argumentation is a well known approach for reasoning with inconsistent
logic knowledge bases (KB). While its strength, in the instantiated case, might not lie
in its reasoning efficiency, particularly when compared to other inconsistent tolerant rea-
soning methods such as ASP [23] or dedicated tools [12]. Its added value is two fold.
First, its explanatory power benefits to increase the scrutability of the system by users
[3,8]. Second, the use of ranking semantics can induce a stratification of the inconsistent
KB [2] that might be of use for query answering techniques [27].

Starting from an inconsistent KB (composed of a set of factual knowledge and an
ontology stating positive and negative rules about the factual knowledge), one can at-
tempt to generate the arguments and the attacks corresponding to the KB using existing
logic-based AFs: Deductive argumentation [9], ASPIC+ [20], Assumption-Based Argu-
mentation (ABA) [24,11] or DeLP [17]. However, none of these argumentation frame-
works (AF) are straightforwardly applicable in the context of Datalog. Indeed, the afore-
mentioned frameworks are not usable without adding or removing any rules or facts in
the KB. Let us now illustrate this statement. In the case of ASPIC+, we cannot instanti-
ate it because the definition of the contrariness relation is not general enough to account

1Corresponding Author: University of Aberdeen, United Kingdom; E-mail: bruno.yun@ed.ac.uk

Computational Models of Argument
H. Prakken et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200526

419

for negative constraints. Let us show this on an example. Suppose we are given three
facts about the shape and taste of a biscuit: (f1) “the biscuit has a square shape”, (f2)

“the biscuit has a round shape” and (f3) “the biscuit is sweet”. Now, further suppose
that there are no rules and one negative constraint: the biscuit cannot have a square and
round shape at the same time. As the fact f3 is a free-fact (i.e. it is not involved in any
minimal conflict), there is no way to define its contrary intuitively without modifying
the set of rules of the KB. Namely, the third item of Definition 5.1 in the work of [20]
specifies that each formula of the language must have at least one contradictory, which
is not the case for the latter fact in our example. Of course, it is possible to declare that a
fact “the biscuit is not sweet” is the contradictory of f3. However, for each contradictory,
the corresponding negative constraint has to be added to the KB. In the case of ABA,
although it is abstract enough to function with a language that has neither implication nor
negation, it needs a contrariness function that returns a single contrary sentence for each
formula of the language. This is not enough in the case where a fact appears in multiple
conflicts and the language does not allow for the disjunction. In the case of DeLP, we
cannot instantiate it since the original work only consider ground rules.

Specifically crafted instantiations for Datalog, such as the instantiations of Croitoru
and Vesic [14], Yun et al. [28] and Arioua et al. [4], have been proven to respect the
argumentation rationality desiderata [1,13] and to output a set of extensions equivalent
to the set of repairs [19,10] of the KB (i.e. the maximum consistent sets of facts w.r.t. in-
clusion). Unfortunately, it was shown that these instantiations suffer from a major draw-
back: a large number of arguments and attacks [25]. This problem even occurs in the
case where there are no rules in the KB (for instance, a graph with 13 arguments and 30
attacks can be generated with a meagre KB with solely 4 facts, no positive rules and a
single negative rule). As a consequence, the argumentation graph for a “normally-sized”
KB cannot be held in main memory, requires dedicated large-graph visualisation tools,
and, despite their polynomial complexity regarding the number of arguments, still poses
combinatorial challenges for the computation of ranking techniques. The question that
arose is whether or not we can find more efficient AFs for Datalog. To this end, we pro-
vide an AF that considers sets of attacking arguments (n-ary attacks) [22,21,16] and pos-
sesses arguments that are built upon other arguments (à la ASPIC+) and n-ary attacks.
We show that this new framework retains desirable properties with fewer arguments and
attacks compared to the existing frameworks.

There are three main contributions in this paper. First, we introduce a logic-based AF
with n-ary attacks for an inconsistent KB expressed using Datalog. Second, we provide
a theoretical analysis of the new AF w.r.t. its syntactic and semantic properties. Last,
we provide a tool for generating this AF from a KB expressed in Datalog Plus (DLGP)
format and study its performance in terms of argumentation graph compression rate and
generation time.

The structure of the paper is as follows. In Section 2, we recall the necessary defi-
nitions of Datalog and the AF of [28] and [4]. In Section 3, we introduce a new AF and
study its theoretical properties. In Section 4, we empirically compare the two frameworks
w.r.t. the number of arguments and attacks on a set of KBs.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases420

2. Background

We start by introducing the Datalog language2. It is composed of formulae built with
the usual quantifier (∀) and only two connectors: implication (→) and conjunction (∧)
and is composed of facts, rules and negative constraints. A fact is a ground atom of the
form p(t1, . . . , tk) where p is a predicate of arity k and ti, with i ∈ [1, . . . ,k], constants. A
(positive) rule r is of the form ∀−→X ,

−→
Y Br[

−→
X ,
−→
Y]→ Hr[

−→
Y] where Br and Hr are closed

atoms or conjunctions of closed atoms, respectively called the body and the head of r,
and

−→
X ,
−→
Y their respective vectors of variables. For simplicity purposes, we will consider

that the rules only have one atom in the head. This is not a big assumption as it has been
proved that an arbitrary set of rules can be transformed into a set of rules with atomic
head; see the work of [7] for more details. However, note that the results of this paper
can be extended to the case where rule heads are not atomic.

Let X be a set of variables and T be a set of terms (constants or variables). A substi-
tution of X to T is a function from X to T . A homomorphism π from a set of atoms S to
a set of atoms S′ is a substitution of the variables of S with the terms of S′ s.t. π(S)⊆ S′.
A rule is applicable to a set of facts F iff there exists a homomorphism [5] from its
body to F . Applying a rule to a set of facts (also called chase) consists of adding the
set of atoms of its head to the facts according to the application homomorphism. A neg-
ative constraint is a rule r of the form ∀−→X Br[

−→
X]→ ⊥ where Br is a closed atom or

conjunctions of closed atoms,
−→
X the respective vector of variables and ⊥ is absurdum.

Definition 1 (Knowledge base). A KB K is a tuple K = (F ,R,N) where F is a
finite set of facts, R a set of positive rules and N a set of negative constraints.

Example 1. Suppose that one is indecisive about what to eat for an appetiser. He decides
that the dish should contain salted cucumbers, sugar, yogurt, not be a soup and be edible.
However, he finds out that combining together salted cucumbers, sugar and yogurt may
not be a good idea. Furthermore, combining salted cucumbers with yogurt is a dish
called “tzaziki” which is a famous greek soup. We model the situation with the KB K =
(F ,R,N), where:

• F = {contains(m,saltC),contains(m,sugar),contains(m,yogurt), notSoup(m),
edible(m)}

• R = {∀x(contains(x,saltC)∧ contains(x,yogurt)→ tzaziki(x))}
• N = {∀x(contains(x,saltC)∧ contains(x,sugar)∧ contains(x,yogurt)→⊥),
∀x(tzaziki(x)∧notSoup(x)→⊥)}

In the Ontology Based Data Access (OBDA) setting, rules and constraints are used
to “access” different data sources. These sources are prone to inconsistencies. We assume
that the rules of the KB are compatible with the negative constraints, i.e. the union of
those two sets is satisfiable [19]. Indeed, the ontology is believed to be reliable as it is the
result of a robust construction by domain experts. However, as data can be heterogeneous
due to merging and fusion, the data is assumed to be the source of inconsistency.

2For simplicity purposes we use the Datalog language but this work can be easily extended to the Datalog±
formalism if we restrict ourselves to the class of FES rules.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases 421

The saturation of a set of facts F by R is the set of all possible atoms and conjunc-
tions of atoms that are entailed, after using all rule applications from R over F until a
fixed point. The output of this process is called the closure and is denoted by SATR(F).
A set F is said to be R-consistent if no negative constraint hypothesis can be entailed,
i.e. SATR∪N (F) *|= ⊥. Otherwise, F is said to be R-inconsistent. We introduce the
notion of repair (maximal consistent subset) and free-fact.

Definition 2 (Repair). A repair of K = (F ,R,N) is X ⊆F s.t. X is R-consistent and
there exists no X ′ s.t. X ⊂ X ′ and X ′ is R-consistent. The set of all repairs of a KB K is
denoted by Repair(K).

Definition 3 (Free-fact). Let K be a KB, a fact f ∈F is a free-fact iff for every repair
R ∈ Repair(K), f ∈ R.

Example 2 (Cont’d Example 1). In our example, there are three repairs, each represent-
ing one alternative: yogurt with sugar (which is common), tzaziki or sugar with salter
cucumbers (sweet pickles). Namely, we have that Repair(K) = {R1,R2,R3}, where:

• R1 = {contains(m,saltC),contains(m,yogurt),edible(m)},
• R2 = {contains(m,sugar),contains(m,saltC),notSoup(m),edible(m)},
• R3 = {contains(m,sugar),contains(m,yogurt),notSoup(m),edible(m)}.

Here, edible(m) is a free-fact.

We now recall the AF provided by [28] and [4] and based on the original framework
of [14]. This AF has deductive arguments and an asymmetric attack relation based on
the notion of undermining. An argument a attacks an argument b if the conclusion of the
argument a is incompatible with one element of the hypothesis of the argument b.

Definition 4 (Argumentation framework AS′). Let K = (F ,R,N) be a KB. The cor-
responding AF, denoted by AS′K , is the pair (A ′,C ′) with C ′ ⊆A ′ ×A ′ such that:

• An argument a′ ∈ A ′ is a tuple (H,C) with H a non-empty R-consistent subset
of F and C a set of facts s.t. (1) C ⊆ SATR(H) and (2) there is no H ′ ⊂ H s.t.
C⊆ SATR(H ′). The support H of an argument a′ is denoted by Supp(a′) and the
conclusion C by Conc(a′).

• a′ attacks b′, denoted by (a′,b′) ∈ C ′, iff there exists ϕ ∈ Supp(b′) s.t. Conc(a′)∪
{ϕ} is R-inconsistent.

Example 3 (Cont’d Example 1). The AF AS′K has 33 arguments and 360 attacks.
Moreover, a′1 defined by ({contains(m,saltC), contains(m,yogurt)}, {tzaziki(m)}) at-
tacks argument a′2 defined by ({notSoup(m)}, {notSoup(m)}) but a′2 does not attack a′1
because {notSoup(m)} is not R-inconsistent with either the atom contains(m,saltC) or
contains(m,yogurt).

The AF AS′K generated from a KB K , has been proven to possess good properties
such as the equivalence between the set of repairs and the set of preferred (resp. stable)
extensions, the desirable postulates and the equivalence results for query answering in
the OBDA field [14].

However, one of the main drawbacks of this method is the huge number of argu-
ments. Indeed, [25] proved that the number of arguments is exponential w.r.t. the num-

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases422

ber of free-facts. Moreover, it was empirically shown that for a KB with eight facts,
six rules and two ternary negative constraints, we might generate 11,007 arguments and
23,855,104 attacks [28].

3. New Argumentation framework AS

In this section, we show a novel AF for generating arguments and attacks from an in-
consistent KB. We also show that this AF possesses all of the desirable properties of
AS′K .

Note that although the framework described in this section has some similarities
with the ASPIC+ framework, the ASPIC+ cannot be directly instantiated with Datalog
because the language does not have the negation and the contrariness function is not
general enough for this language. Moreover, when instantiating ASPIC+, one usually has
to add all the tautologies of the language in the set of rules to guarantee that the result will
be consistent, i.e. to satisfy the rationality postulates defined by [13]. To avoid adding
this huge number of rules and also with the goal of decreasing the number of arguments,
we propose not to add them. However, the cost of forgetting to add those rules (and the
arguments generated using them) would result in a violation of rationality postulates. We
propose to solve this problem in a more elegant way. Namely, we allow for the use of
sets of attacking arguments (i.e. n-ary attacks).

Definition 5 (Argumentation framework AS). Let us consider the KB K =(F ,R,N).
The corresponding AF, denoted by ASK , is the pair (A ,C) with C ⊆ (2A \{ /0})×A
such that:

• An argument a ∈ A is either (1) a fact f , where f ∈ F s.t. Conc(a) = f
and Prem(a) = { f} or (2) a1, . . . ,an → f ′ where a1, . . . ,an ∈ A s.t. there ex-
ists a tuple (r,π) where r ∈ R,π is a homomorphism from the body of r to
{Conc(a1), . . . ,Conc(an)} and f ′ is the resulting atom from the rule application.
Conc(a) = f ′ and Prem(a) = Prem(a1)∪ · · ·∪Prem(an). Note that in both cases,
Prem(a) must be R-consistent.

• An attack in C is a pair (X ,a) s.t. X is minimal for set inclusion s.t.
⋃

x∈X
Prem(x)

is R-consistent and there exists ϕ ∈ Prem(a) s.t. (
⋃

x∈X
Conc(x)) ∪ {ϕ} is R-

inconsistent.

With a slight abuse of notation, we also use the notation Conc(a) to refer to the
conclusion of an argument in AS. However, the conclusion is not a set anymore (see
Definition 4). The reason is that K can be processed w.l.o.g. to contain only rules with
atomic head [7].

Notation: Let K = (F ,R,N) be a KB, X ⊆ F be a set of facts and X ′ ⊆ A be a
set of arguments of ASK = (A ,C). We define the set of arguments generated by X as
Arg(X) = {a ∈A | Prem(a)⊆ X} and the base of a set of arguments X ′ as Base(X ′) =⋃

x′∈X ′
Prem(x′). We define Concs(X ′) =

⋃

x′∈X ′
Conc(x′).

In case of binary attacks [15], a set of arguments X is said to attack an argument
a iff there exists b ∈ X s.t. b attacks a. We need a similar notion here except that we

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases 423

already have a notion of attack from a set towards an argument. In order not to mix up the
two notions, we introduce the notation C ∗, which stands for the saturated set of attacks.
For example, if ({a,b},c) ∈ C then each set X ′ containing a and b (i.e. s.t. {a,b}⊆ X ′)
attacks c too (i.e. (X ′,c) ∈ C ∗).

Definition 6 (Saturated set of attacks). Let AS= (A ,C) be an AF. The saturated set of
attacks of AS is C ∗ = {(X ,a) | there exists (X ′,a) ∈ C with X ′ ⊆ X ⊆A }.

Example 4 (Cont’d Example 1). The argumentation graph ASK is composed of the six
following arguments and 11 attacks: a1 = contains(m,sugar), a2 = contains(m,saltC),
a3 = contains(m,yogurt), a4 = notSoup(m), a5 = edible(m) and a6 = a2,a3 →
tzaziki(m). An example attack of C is ({a1,a2},a3).

From K , one can build an AF ASK with sets of attacking arguments (see Defini-
tion 5). Please note that although the work of Yun et al. [26] seems similar, it is based on
building all arguments using Definition 4, filtering specific arguments and filling up the
loss of information induced by the missing arguments with sets of attacking arguments
to keep the rationality postulates. Let us illustrate the difference between the framework
of Yun et al. [26] and the new AF on a KB with 3 facts and a single negative constraint
on those three facts. In the framework of Yun et al., there will be six arguments and nine
attacks whereas there are three arguments and three attacks in the new AF.

3.1. Argumentation framework properties of ASK

The AF AS is an instantiation of the abstract SETAF framework proposed by Nielsen
and Parsons [21,22]. For the purpose of the paper being self-contained, we recall the
necessary definitions.

Definition 7 (Argumentation semantics). Let AS= (A ,C), C ∗ the corresponding sat-
urated set of attacks and S1,S2 ⊆A . We say that: S1 is conflict-free iff there is no argu-
ment a ∈ S1 s.t. (S1,a) ∈ C ∗. S1 attacks S2 iff there exists a ∈ S2 s.t. (S1,a) ∈ C ∗3. S1 de-
fends an argument a iff for every S2 ⊆A s.t. (S2,a) ∈ C , we have that (S1,S2) ∈ C ∗. S1
is said to be admissible if each argument in S1 is defended by S1. An admissible set S1 is
called a preferred extension if there is no admissible set S2 ⊆A , S1 ⊂ S2. A conflict-free
set S1 is a stable extension if S1 attacks all arguments in A \S1. An admissible set S1 is
called a grounded extension if S1 is minimum (w.r.t. ⊆) s.t. it contains every argument
defended by S1.

The set of all preferred (resp. stable and grounded) extensions of an AF AS is de-
noted by Extp(AS) (resp. Exts(AS) and Extg(AS)). The output of an AF for an argu-
mentation semantics is Out putx(ASK) =

⋂

E∈Extx(ASK)
Concs(E) where x ∈ {s, p,g}.

Example 5 (Cont’d Example 4). The preferred (resp. stable) extensions of Extp(ASK)
(resp. Exts(ASK)) are E1 = {a2,a3,a5,a6}, E2 = {a1,a2,a4,a5} and E3 = {a1,a3,a4,a5}.
The grounded extension is EGE = {a5}

3By abuse of notation, we will use the notation (S1,S2) ∈ C ∗ for the case when S1 attacks a set of arguments
S2.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases424

We now show that there is a correspondence between the set of preferred (resp.
stable) extensions and the set of repairs.

Proposition 1 (Preferred & Stable Characterisation). Let ASK be an AF and x∈ {s, p}.
Then, Extx(ASK) = {Arg(A′) | A′ ∈ Repair(K)}

Example 6 (Cont’d Example 5). As explained in Proposition 1, we have a correspon-
dence between repairs and preferred (resp. stable) extensions. Hence:

• E1 = Arg({contains(m,saltC),contains(m,yogurt),edible(m)}),
• E2 = Arg({contains(m,sugar),contains(m,saltC),notSoup(m),edible(m)})
• E3 = Arg({contains(m,sugar), contains(m,yogurt),notSoup(m),edible(m)}).

Next, we show the equivalence between the non-attacked arguments and the argu-
ments generated from free-facts.

Corollary 1 (Non-attacked characterisation). Let K be a KB, ASK = (A ,C) and
a ∈A . There exists no S s.t. (S,a) ∈ C iff Prem(a)⊆

⋂

R∈Repair(K)
R.

Note that although it is tempting to say that the non-attacked arguments do not con-
tribute to attacks because they are based on free-facts, this is not true in the general case.
In the next proposition, we show that the grounded extension is equal to the intersection
of the preferred extensions. Note that the grounded extension is always included in the
intersection of the preferred extensions in the general case.

Proposition 2 (Grounded & Preferred). Let ASK be an AF and Extg(ASK) = {EGE}.
Then EGE =

⋂

E∈Extp(ASK)
E

We show the equality between the grounded extension and arguments generated by
the intersection of all the repairs.

Proposition 3 (Grounded Characterisation). Let ASK be an AF and Extg(ASK) =
{EGE}. Then EGE = Arg(

⋂

R∈Repair(K)
R).

Example 7 (Cont’d Example 5). We have that the grounded extension EGE = E1∩E2∩
E3 = {a5} and that the grounded extension is EGE = {a5}= Arg({edible(m)}).

We now show that for any arbitrary KB K , the generated AF ASK does not contain
self-attacking arguments.

Proposition 4 (Self-attacking Arguments). Let ASK = (A ,C) be an AF. There is no
(S, t) ∈ C s.t. t ∈ S.

In Proposition 5 below, we show that an attacked argument is always defended by a
set of arguments.

Proposition 5 (Defense). Let ASK = (A ,C) be an AF. If there is (S, t) ∈ C then there
exists (S′,s) ∈ C s.t. s ∈ S.

We introduce the definition of cycle for our AF.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases 425

Definition 8 (Cycle). A cycle in AS= (A ,C) is a sequence of attacks in C of the form
((S1, t1), . . . ,(Sn, tn)) s.t. for every i ∈ {1, . . . ,n−1}, ti ∈ Si+1 and tn ∈ S1.

The following corollary follows directly from Proposition 5 and shows that if the
number of arguments is finite then there exists at least one cycle in the framework.

Corollary 2 (Cycle Existence). Let ASK = (A ,C) be an AF. If |A | is finite and non
empty and C *= /0 then there exists a cycle in ASK .

Example 8 (Cont’d Example 4). The sequence of attacks (({a2,a3},a1),({a1,a3},a2))
is a cycle in ASK .

Contrary to the AF described in Definition 4 where the number of arguments can
be exponential even in the case where the set of rules is empty, we show that in the
framework described in Definition 5, the set of arguments is at most equal to the number
of facts.

Observation 1 (Argument upper-bound). Let K = (F ,R,N) s.t. R = /0 and ASK =
(A ,C), then |A |≤ |F |.

In the next proposition, we show an upper bound to the number of attacks w.r.t. the
number of arguments.

Proposition 6 (Attack upper-bound). Let ASK = (A ,C). If |A | = n then |C | ≤ n×
(2n−1−1).

In the general case, this upper-bound on attacks is almost never reached because of
the minimality condition on attacks.

3.2. Rationality postulates

In this section, we prove that the framework we propose in this paper satisfies the ratio-
nality postulates for instantiated AFs. We first prove the indirect consistency postulate.

Proposition 7 (Indirect consistency). Let K = (F ,R,N) be a KB, ASK be the
corresponding AF and x ∈ {s, p,g}. Then, for every E ∈ Extx(ASK),Concs(E) is R-
consistent and Out putx(ASK) is R-consistent.

Proof. Let E be a stable or preferred extension of ASK . From Proposition 1, there exists
a repair A′ ∈ Repair(K) s.t. E = Arg(A′). By definition, Concs(E) = SATR∪N (A′).
Formally, SATR∪N (SATR∪N (A′)) = SATR∪N (Concs(E)). Since SATR∪N is idem-
potent, this means that we have SATR∪N (A′) = SATR∪N (Concs(E)). Since it holds
that SATR∪N (A′) *|=⊥ , then SATR∪N (Concs(E)) *|=⊥ and Concs(E) is R-consistent.

Let us consider the case of grounded semantics. Denote EGE the grounded ex-
tension of ASK . We just proved that for every E ∈ Extp(ASK), it holds that
SATR∪N (Concs(E)) *|=⊥. Since the grounded extension is a subset of the intersection
of all the preferred extensions, and since there is at least one preferred extension [22], say
E1, then EGE ⊆E1. Since SATR∪N (Concs(E1)) *|=⊥ then SATR∪N (Concs(EGE)) *|=⊥
and Concs(EGE) is R-consistent.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases426

Consider the case of stable or preferred semantics. We prove that Out putx(ASK) is
R-consistent. Recall that Out putx(ASK) =

⋂

E∈Extx(ASK)
Concs(E). Since every KB has

at least one repair then, there is at least one stable or preferred extension E. From the def-
inition of the output, Out putx(ASK)⊆Concs(E). Since Concs(E) is R-consistent then
Out putx(ASK) is R-consistent. Note that since there is only one grounded extension,
we get that SATR(Out putg(ASK)) = SATR(Concs(EGE)).

Since our instantiation satisfies indirect consistency then it satisfies direct consis-
tency. Indeed, if a set is R-consistent, then it is consistent. Thus, we obtain the following
corollary.

Corollary 3 (Direct consistency). Let K = (F ,R,N) be a KB, ASK the corre-
sponding AF and x ∈ {s, p,g}. Then, for every E ∈ Extx(ASK),Concs(E) *|= ⊥ and
Out putx(ASK) *|=⊥.

Proposition 8 shows that the AF satisfies Closure.

Proposition 8 (Closure). Let K = (F ,R,N) be a KB, ASK be the corresponding
AF and x ∈ {s, p,g}. Then, for every E ∈ Extx(ASK),Concs(E) = SATR(Concs(E))
and Out putx(ASK) = SATR(Out putx(ASK)).

Existing Framework AS′K New Framework ASK

K # Arg. # Att. Gen. Time # Arg. % Arg. ↓ # Att. % Att. ↓ Gen. Time % Time ↓
A1 22 128 160 5 77,27 6 93,75 276,00 -81,48
A2 25 283 133 7 72,00 8 92,93 342,00 -183,57
A3 85 1472 399,5 7 91,76 9 99,26 369,50 1,66

B 5967 11542272 533089 14 99.77 20.5 99.99 7814.5 98.08

Table 1. Comparison of the median number of arguments, attacks and generation time needed (in ms) between
the two frameworks ASK and AS′K on the sets of KBs A1,A2,A3 and B.

4. Empirical Analysis

We now compare our approach with the existing AF for Datalog w.r.t. the number of
arguments and the number of attacks. All experiments were conducted on a Debian com-
puter with an Intel Xeon E5-1620 processor and 64GBs of RAM. We chose to work with
the set of KBs extracted from the study of [28,26]. These inconsistent KBs are composed
of two main sets:

• A set A composed of 108 KBs. A is further split into three smaller sets of KBs:
A set A1 of 31 KBs without rules, two to seven facts, and one to three negative
constraints, a set A2 of 51 KBs generated by fixing the size of the set of facts and
adding negative constraints until saturation and a set A3 of 26 KBs with ternary
negative constraints, three to four facts and one to three rules.

• A set B of 26 KBs with eight facts, six rules and one or two negative constraints.
This set contains more free-facts than the KBs in set A.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases 427

For each of these two sets, we compare the number of arguments and attacks of
the new framework defined in Definition 5 with the one of Definition 4. We provided
a tool based on the Graph of Atom Dependency defined by [18] and the Graal Java
Toolkit [6] for generating the new AF from an inconsistent KB expressed in the DLGP
format. The tool is available online at: https://www.dropbox.com/sh/dlpmr07gqvpuc61/
AABDgwfHJRNVYcsqpDg7kMfEa?dl=0

4.1. Experimental results

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

Instance number

N
um

be
ro

fa
rg

um
en

ts

Yun et al.
Our framework

0 3 6 9 12 15 18 21 24 27
0

0.2

0.4

0.6

0.8

1

1.2
·104

Instance number

Yun et al.
Our framework

Figure 1. Comparison of the number of arguments between the two AFs on sets A (left) and B (right).

In Table 1, we show the number of arguments and attacks of the two frameworks
AS and AS′ for the two sets of KBs (A and B). We make the following observations:
First, contrary to the framework AS′, there is no exponential increase in the number of
arguments with the number of free-facts in AS as seen with the KBs in set B. Moreover,
for all the KBs considered in sets A and B, the number of arguments and attacks in AS
is less or equal to the number of arguments and attacks in AS′. We can notice that the
efficiency brought by this new framework is obvious in the case where the KBs contain
more free facts (see Figures 1). Second, when the set of facts and the set of rules are
fixed and only the set of negative constraint is modified, the number of arguments of AS
seems to be unchanged whereas in AS′, it is varying. AS′ is also much denser than AS.
Indeed, the median density4 of AS′ is 26.34% and 31,03% whereas the median density
of AS is 4,69% and 0.02% for the set A and B respectively. Third, the generation of AS
is slower than the one for AS′ when the number of arguments and attacks is relatively
low (see A1, A2 and Figure 2) but when the number of arguments and attacks increases,
we can notice that the generation of AS is much faster (see B and Figure 2).

4The density is equal to the number of attacks divided by the maximum number of possible attacks. In the
case of a directed graph, the maximum number of attacks is given by n(n−1) where n is the number of nodes.
In the case of AS, we use the formula in Proposition 6 to obtain the maximum number of attacks.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases428

0 20 40 60 80 100
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Instance number

Ti
m

e
in

m
ill

is
ec

on
ds

Yun et al.
Our framework

0 3 6 9 12 15 18 21 24 27
0

0.3

0.6

0.9

1.2

·106

Instance number

Yun et al.
Our framework

Figure 2. Generation time needed between the two AFs on sets A (left) and B (right).

5. Conclusion

We introduced a new logic-based AF with n-ary attacks that is built over an inconsistent
Datalog KB and analysed the syntactic and semantic properties of this AF. We showed
that it has all of the desirable properties of the existing AF for Datalog. Namely: (1)
the rationality postulates for instantiated AFs defined by [13] are satisfied, (2) there is
a bijection between the stable (resp. preferred) extensions and the sets of arguments
generated from the repairs, (3) the grounded extension is equal to both the intersection
of the preferred extensions and the set of arguments generated from free-facts, (4) the
non-attacked arguments are generated from the free-facts and for each attacked argument
there exists a set of arguments that defends it. (5) there are no self-attacking arguments
and there is at least one cycle if the set of arguments is finite, (6) we give an upper-bound
on the number of arguments and the number of attacks.

Second, we provided a tool for generating this n-ary AF from a knowledge base
expressed in DLGP format and used it to conduct en empirical comparison between this
n-ary framework and the existing AF [28,4] w.r.t. the number of arguments, attacks and
time needed for the generation. We highlighted that this n-ary framework possesses fewer
arguments and attacks than the existing framework mainly because it avoids the problem
of the exponential increase of arguments when free-facts are added. Moreover, although
the generation of the new framework is slower than the existing framework when the
number of arguments and attacks is low, as soon as the number of arguments and attacks
increases, the generation of n-ary framework is faster than for the existing framework.

References

[1] L. Amgoud. Postulates for logic-based argumentation systems. Int. J. Approx. Reasoning, 55(9):2028–
2048, 2014.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases 429

[2] L. Amgoud and J. Ben-Naim. Argumentation-based Ranking Logics. In AAMAS 2015, pages 1511–
1519, 2015.

[3] A. Arioua, M. Croitoru, and P. Buche. DALEK: A Tool for Dialectical Explanations in Inconsistent
Knowledge Bases. In COMMA 2016, pages 461–462, 2016.

[4] A. Arioua, M. Croitoru, and S. Vesic. Logic-based argumentation with existential rules. Int. J. Approx.
Reasoning, 90:76–106, 2017.

[5] J.-F. Baget, S. Benferhat, Z. Bouraoui, M. Croitoru, M.-L. Mugnier, O. Papini, S. Rocher, and K. Tabia.
Inconsistency-Tolerant Query Answering: Rationality Properties and Computational Complexity Anal-
ysis. In JELIA 2016, pages 64–80, 2016.

[6] J.-F. Baget, M. Leclère, M.-L. Mugnier, S. Rocher, and C. Sipieter. Graal: A Toolkit for Query Answer-
ing with Existential Rules. In RuleML 2015, pages 328–344, 2015.

[7] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential variables: Walking the
decidability line. Artif. Intell., 175(9-10):1620–1654, 2011.

[8] P. Besnard, A. J. Garcı́a, A. Hunter, S. Modgil, H. Prakken, G. R. Simari, and F. Toni. Introduction to
structured argumentation. Argument & Computation, 5(1):1–4, 2014.

[9] P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artif. Intell., 128(1-2):203–235,
2001.

[10] M. Bienvenu. On the Complexity of Consistent Query Answering in the Presence of Simple Ontologies.
In AAAI 2012, 2012.

[11] A. Bondarenko, F. Toni, and R. A. Kowalski. An Assumption-Based Framework for Non-Monotonic
Reasoning. In LPNMR, pages 171–189, 1993.

[12] C. Bourgaux. Inconsistency Handling in Ontology-Mediated Query Answering. PhD thesis, Université
Paris-Saclay, Paris, Sept. 2016.

[13] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artif. Intell., 171(5-
6):286–310, 2007.

[14] M. Croitoru and S. Vesic. What Can Argumentation Do for Inconsistent Ontology Query Answering?
In SUM 2013, pages 15–29, 2013.

[15] P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games. Artif. Intell., 77(2):321–358, 1995.

[16] G. Flouris and A. Bikakis. A comprehensive study of argumentation frameworks with sets of attacking
arguments. IJAR, 109:55–86, June 2019.

[17] A. J. Garcı́a and G. R. Simari. Defeasible Logic Programming: An Argumentative Approach. TPLP,
4(1-2):95–138, 2004.

[18] A. Hecham, P. Bisquert, and M. Croitoru. On the Chase for All Provenance Paths with Existential Rules.
In RuleML+RR 2017, pages 135–150, 2017.

[19] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-Tolerant Semantics for
Description Logics. In RR 2010, pages 103–117, 2010.

[20] S. Modgil and H. Prakken. The ASPIC+ framework for structured argumentation: a tutorial. Argument
& Computation, 5(1):31–62, 2014.

[21] S. H. Nielsen and S. Parsons. Computing Preferred Extensions for Argumentation Systems with Sets of
Attacking Arguments. In COMMA 2006, pages 97–108, 2006.

[22] S. H. Nielsen and S. Parsons. A Generalization of Dung’s Abstract Framework for Argumentation: Ar-
guing with Sets of Attacking Arguments. In N. Maudet, S. Parsons, and I. Rahwan, editors, Argumenta-
tion in Multi-Agent Systems, pages 54–73. Springer Berlin Heidelberg, 2007.

[23] M. Ostrowski and T. Schaub. ASP modulo CSP: The clingcon system. TPLP, 12(4-5):485–503, 2012.
[24] F. Toni. A tutorial on assumption-based argumentation. Argument & Computation, 5(1):89–117, 2014.
[25] B. Yun, M. Croitoru, P. Bisquert, and S. Vesic. Graph Theoretical Properties of Logic Based Argumen-

tation Frameworks. In AAMAS 2018, pages 2148–2149, 2018.
[26] B. Yun, S. Vesic, and M. Croitoru. Toward a More Efficient Generation of Structured Argumentation

Graphs. In COMMA 2018, 2018.
[27] B. Yun, S. Vesic, M. Croitoru, and P. Bisquert. Inconsistency Measures for Repair Semantics in OBDA.

In IJCAI 2018, pages 1977–1983, 2018.
[28] B. Yun, S. Vesic, M. Croitoru, P. Bisquert, and R. Thomopoulos. A Structural Benchmark for Logical

Argumentation Frameworks. In IDA 2017, pages 334–346, 2017.

B. Yun et al. / Sets of Attacking Arguments for Inconsistent Datalog Knowledge Bases430

