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We investigate in this paper many problems related to the decision-making process in the
Cognitive Radio (CR), where a Secondary User (SU) tries to maximize its opportunities by
finding the most vacant channel. Recently, Multi-Armed Bandit (MAB) problems attracted
the attention to help a single SU, in the context of CR, makes an optimal decision using
the well-known MAB algorithms, such as: Thompson Sampling, Upper Confidence Bound,
ε-greedy, etc. However, the big challenge for multiple SUs remains to learn collectively or
separately the vacancy of channels and decrease the number of collisions among users. To
solve the latter issue for multiple users, the All-Powerful Learning (APL) policy is proposed;
this new policy considers the priority access and the dynamic multi-user access, where the
number of SUs may change over time. Based on our APL policy, we consider as well as
the Quality of Service (QoS), where SUs should estimate and then access best channels in
terms of both quality and availability. The experimental results show the superiority of APL
compared to existing algorithms, and it has also been shown that the SUs are able to learn
channels qualities and availabilities and further enhance the QoS.

1 Introduction

Game theory represents a decision-making mathematical tool
that attracts much attention, when it comes to networks for re-
source sharing, congestion control, transmission-rate adapta-
tion, etc. This theory was originally and exclusively proposed
for economics before being applied to many other topics, such
as: financial, regulation, military, political science and also
biology. The main objective for using the game theory is to
study and analyze cooperative or competitive situations for
rational players in order to find an equilibrium among them.
When, players reach the equilibrium point, then none of them
can gain more by changing its action.

Game theory is widely applied in Cognitive Radio (CR)
in order to enhance the spectrum efficiency of the licensed
frequency bands. Indeed, according to many recent studies,
the frequency bands are not well used. On the one hand, the
demands on high data rate applications and wireless devices
have experienced unprecedented advancement since 1990s

which makes the frequency bands more and more crowded.
On the other hand, several simulations have been conducted
in the United States and showed that 60 % of the frequency
bands are not used [1]. Several solutions have been recom-
mended by the Federal Communications Commission (FCC)
in order to enhance the usage of the spectrum. Opportunistic
Spectrum Access (OSA) in CR, represents one of the pro-
posed solutions, where users are categorized into two groups
namely: Licensed users (Primary Users: PUs) who have the
right to access the frequency bands at any time, and unli-
censed users (Secondary Users: SUs) that can access the fre-
quency bands in an opportunistic manner. Usually, SUs can
coexist with PUs in the same frequency bands as far as they
dont cause any harmful interference to these latter. Indeed,
SUs are able to access the frequency bands currently unused
by PUs. SUs in OSA have many challenges in order to reduce
the interference with PUs:

• Spectrum Sensing: A SU should sense the frequency
bands and identify the available spectrum holes before
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making any decision. The main challenge is to gather an
accurate information about the status of the spectrum
(free or busy) in order to access only the unused chan-
nels without causing any harmful interference to PUs.
Due to hardware constraints, delay and high energy
consummation, a SU may be able to sense a portion
of the frequency bands (e.g. one channel at each time
slot) and decides whether the selected channel is free to
transmit.

• Spectrum Decision: At each time slot, a SU should de-
cide which channel to access based on past success or
failure decisions. As a result, a SU can gather some in-
formation about the availability and quality of channels
and build a database of the spectrum access environ-
ment. This database is used in order to make a good
decision and enhance the future actions of the SU.

• Spectrum Sharing: In order to share the available spec-
trum among SUs, two main models exist: Cooperative
or competitive access. In the cooperative behaviors, the
users need to exchange information with each other in
order to maximize their opportunities and thus decrease
the interference among themselves. Despite the lat-
ter benefits of the cooperative access, each user should
be informed about others decisions before making any
action which may increase the complexity of the sec-
ondary network. While, in the competitive access, each
SU makes an action based on its local observation. How-
ever, this lack of information exchange can increase the
number of collisions among users. To solve this issue, a
specific policy is required to learn the vacancy probabil-
ities of available channels and decrease the number of
collisions among users.

Table 1: List of acronyms

APL All-Powerful Learning
CR Cognitive Radio

DMC Dynamic Musical Chairs
EXP3 Exponential weights for Exploration and Exp-

loitation
FCC Federal Communications Commission
MAB Multi-Armed Bandit

MEGA Multi-user ε-greedy collision Avoiding
OSA Opportunistic Spectrum Access
PU Primary User
QoS Quality of Service
SU Secondary User

SLK Selective Learning of the kth largest expected
rewards

TS Thompson Sampling
UCB Upper Confidence Bound

• Finally, in the Spectrum Mobility, a SU should evacu-

ate the selected channel when a PU reappears. More-
over, a SU may badly identify its dedicated channel
and then access a channel that does not correspond to
its prior rank1. Therefore, the user should evacuate its
current channel when he identifies its targeted channel.

This paper is an extension of our original work presented
in [2] with a novel policy called All-Powerful Learning (APL)
is proposed in order to maximize the opportunities of SUs,
share the available spectrum among them, and limit the inter-
ference among PUs and SUs. Instead of only considering the
availability, this paper takes into account a quality informa-
tion metric, where the priority users should access only best
channels with the highest availability and quality.
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Figure 1: Cognitive cycle as introduced in [3].

2 Multi-Armed Bandit Problem

Multi-Armed Bandit (MAB) model represents one of the fa-
mous models, in game theory, that is adopted to enhance the
efficiency of the licensed frequency bands. Moreover, MAB
problem represents a simple case of the Reinforcement Learn-
ing (RL).
In the RL, the agent should enhance his behavior from the
feedback (e.g. reward). Indeed, the RL may allow an agent to
adapt to his environment by finding a suitable action to reach
the best reward. The agent can maximize his reward without
any prior information about his environment. However, by
memorizing the states of an environment or the actions he
took, the agent can make a better decision in the future. The
reward feedback, also called reinforcement signal, has an im-
portant role to help an agent to learn from its environment.
The RL is widely used in several domains: Robotics, Aircraft
control, self- driving cars, Business strategy planning, etc. It
was first developed for a single agent who should find an opti-
mal policy that maximizes his expected reward knowing that
the optimal policy depends on the environment. Unlike the
case of a single agent, for multiple agents, the optimal policy

1Based on our APL policy, each user has a prior rank and should access the channel corresponding to its rank.
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depends not only on the environment but also on the policies
selected by other agents. Moreover, when multiple agents
apply the same policy their approaches in such systems often
fail because each agent tries individually to reach a desired re-
sult. In other words, it is impossible for all agents in a certain
system to maximize simultaneously their personal reward,
although find an equilibrium for the system representing a
point of interest. Subsequently, it is important to find a pol-
icy for each agent in order to guarantee the convergence to
an equilibrium state in which no agent can gain more when
modifying its own action. In RL, Exploitation-Exploration
dilemma represents an attractive problem. In order to maxi-
mize his performance (exploitation), the agent should gather
some information about his environment (exploration). This
is known as the Exploration-Exploitation dilemma in the re-
inforcement learning. If the agent spends a lot of time on
the exploration phase, then he cannot maximize his reward.
Similarly, when the agent focuses on the exploitation phase by
exploiting his current information, then he may miss the best
action that leads to the highest reward. Thus, the agent needs
to balance the tradeoff between Exploration and Exploitation
in order to obtain an appropriate result.

Due to its generic nature, the MAB model is widely
adopted in many fields, such as: wireless channel access,
jamming communication or object tracking. In such model,
an agent can play a single arm at each time trying to maximize
its long-term reward. To reach its goal, the agent needs to find
the best arm in terms of expected reward. At each time slot,
the agent can choose the current best arm (exploitation) or
play other arms trying to obtain a robust estimation of their
reward (exploration). Generally, an optimal policy, used by
the agent, should balance between the exploitation and the
exploration phases while pulling the arms.

 

50% 30% 60% 70% 

Which arm to 

pick next ? 

Arm 1 Arm 2 Arm 3

 
 Machine 1 

Arm 4 

Figure 2: Several Arms with different expected reward. After a finite period
of time the agent has a perception about the reward obtained from each arm.

Like most RL frameworks, the agent starts the game with-
out any priori knowledge about the expected reward of the
arms. The main goal of the agent is to find the arm with the
highest expected reward. Here, we should define two classes
of arms:

Optimal arm: This arm has the highest expected reward
and is represented by the arm 2 in Fig. 2. The agent tries to
reach this arm in order to maximize his expected reward.

Suboptimal arms: Include all other arms considered as

non-optimal. Efficient MAB algorithms should be able to
limit playing with suboptimal arms.

To solve the MAB problem, several algorithms have been
proposed, such as: Thompson Sampling [4], Upper Confi-
dence Bound (UCB) [5], ε-greedy [6], Exponential weights
for Exploration and Exploitation (EXP3) [7], etc. The perfor-
mance of a given MAB algorithm is usually measured by a
regret that represents the gap between the reward obtained in
the ideal scenario, where the user know the expected reward
of each arm and often pulls the best one, and that obtained
using a given MAB algorithm.

It is worth mentioning that these algorithms have been
suggested for a single SU in the context of OSA where the SU
is considered as an agent and the channels become equivalent
to the different arms. Then, it is assumed that each channel is
associated with a distinct availability probability and the SU
should estimate this latter after a finite number of time slots.
In this work, we first start to formulate the classical OSA as
a MAB problem, in which, we consider a single Secondary
User (SU) that needs to access opportunistically the frequency
band. Later on, we will consider more realistic conditions that
deal with the OSA (e.g. multiple users, Quality of Service,
collision among users, dynamic access).

2.1 Thompson Sampling

Thompson Sampling (TS), a randomized algorithm with a
bayesian spirit, represents one of the earliest algorithms pro-
posed to tackle the MAB problem. In TS, each arm has as-
signed an index Bi(t, Ti(t)) that contains information based
on the past success and failure observations. After a finite
number of time slots, the index Bi(t, Ti(t)) will be very close
to the mean reward of each arm. By selecting the arm with the
highest index at each time slot, the agent often selects the best
arm with the highest reward. This index achieves a trade-off
between the exploration and the exploitation phases and can
be defined as follows:

Bi(t, Ti(t)) =
Wi(t, Ti(t)) + a

Wi(t, Ti(t)) + Zi(t, Ti(t)) + a + b
(1)

where Wi(t, Ti(t)) and Zi(t, Ti(t)) represent respectively
the success and failure access; a and b are constant numbers.

Despite its excellent performance that can exceed the state-
of-the-art MAB algorithms [8, 9, 10], TS is widely ignored
in the literature. This ignorance is due to the fact that this
algorithm is proposed with a lack of proof and a slight math-
ematical background unlike other MAB algorithms, such as:
UCB or ε-greedy. Recently, TS has attracted more attention
and is being used in several fields [11, 12, 13]. Recent studies
have found a theoretical upper bound for its convergence to
the best choice [14, 15, 16].

2.2 Upper Confidence Bound

Upper Confidence Bound (UCB) represents one of the fa-
mous MAB algorithms firstly proposed in [5]. Like TS, the
index Bi(t, Ti(t)) of UCB contains two phases, the exploration
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and the exploitation phases, in order to estimate the vacancy
probabilities of channels and then access the best one. In the
literature, several variants of UCB have been proposed to
enhance the performance of the classical UCB, such as: UCB1,
UCB2, UCB-tuned, Bayes-UCB, KL-UCB [8, 17, 18, 19]. UCB1
[17] represents the simplest version that balances between the
complexity and the optimality.

Algorithm 1: Thompson Sampling Algorithm
Input: C, n,

1 C: number of channels,
2 n: total number of slots,
3 Parameters: Si(t), Ti(t), Wi(t, Ti(t)), Zi(t, Ti(t)),
4 Si(t): the state of the selected channel, equals one if the

channel is free and 0 otherwise,
5 Ti(t): number of times the ith channel is sensed by SU,
6 Wi(t, Ti(t)): the success access of the ith channel,
7 Zi(t, Ti(t)): the failure access of the ith channel,

Output: Bi(t, Ti(t)),
8 Bi(t, Ti(t)): the index assigned for the ith channel,
9 foreach t = 1 to n do

10 at = arg maxi Bi(t, Ti(t)),
11 Observe the State Si(t),
12 Wi(t, Ti(t)) = ∑n

t=0 Si(t)1at=i,
13 % 1at=i: equal 1 if the user selects the ith channel and

0 otherwise,
14 Zi(t, Ti(t)) = Ti(t)−Wi(t, Ti(t)),

15 Bi(t, Ti(t)) =
Wi(t,Ti(t))+a

Wi(t,Ti(t))+Zi(t,Ti(t))+a+b

Algorithm 2: UCB1 Algorithm
Input: α, C, n,

1 α: exploration-exploitation factor,
2 C: number of channels,
3 n: total number of slots,
4 Parameters: Ti(t), Xi(Ti(t)), Ai(t, Ti(t)),
5 Ti(t): number of times the ith channel is sensed up to t,
6 Xi(Ti(t)): the exploitation contribution of ith channel,
7 Ai(t, Ti(t)): the exploration contribution of ith channel,

Output: Bi(t, Ti(t)),
8 Bi(t, Ti(t)): the index assigned for ith channel,
9 foreach t = 1 to C do

10 SU senses each channel once,
11 SU updates its index Bi(t, Ti(t)),

12 foreach t = C + 1 to n do
13 at = arg maxi Bi(t− 1, T(t− 1)),
14 Ti(t) + +,
15 Xi(Ti(t)) = 1

Ti(t)
∑t

τ=1 Si(τ),

16 % Si(τ) is the observed state from channel i at τ,
17 % Si(τ) = 1 if the channel i is vacant and 0

otherwise,
18 Ai(t, Ti(t)) =

√
α ln(t)
Ti(t)

,

19 Bi(t, Ti(t)) = Xi(Ti(t)) + Ai(t, Ti(t)),

For this reason, UCB1 is the widely adopted version

scheme in the context of CR to help a SU make an optimal
decision [20, 21, 22, 23, 24, 25]. In UCB1, the index Bi(t, Ti(t))
essentially comprises two important factors: Xi(Ti(t)) and
Ai(t, Ti(t))) that represent respectively the exploitation (or
the expected reward) and the exploration phases:

Bi(t, Ti(t)) = Xi(Ti(t)) + Ai(t, Ti(t)) (2)

where the exploitation and the exploration factors can be
expressed as:

Xi(Ti(t)) =
1

Ti(t)

t

∑
j=1

ri(j) (3)

Ai(t, Ti(t)) =

√
α ln(t)
Ti(t)

(4)

The factor Ai(t, Ti(t)) has an important role in learning
the availability probabilities of channels by pushing the al-
gorithm to examine the state of all available channels. Thus,
after a finite time t, Xi(Ti(t)) of the ith channel will approxi-
mately equal to its availability probability µi.

In [17], the authors found an upper bound of the sum of
regret (i.e. the loss of reward by selecting the worst channels)
for a single agent and C arms. It has shown that the upper
bound of the regret achieves a logarithmic asymptotic behav-
ior, which means that after a finite number of time slots, the
agent will be able to identify the best arm and always select
it.

2.3 ε-greedy

One of the simplest MAB algorithms to tackle the MAB prob-
lem is referred to ε-greedy that was firstly proposed in [6]. A
recent version of this algorithm is proposed in [17] in order
to achieve a better performance compared to several previ-
ous versions (see algorithm 1). Like several MAB algorithms,
ε-greedy contains two phases completely separated: explo-
ration and exploitation. During the exploration phase, the
user chooses a random channel in order to learn the vacancy
probability of channels.
While in the exploitation phase, the user usually selects the
channel with the highest expected reward Xi(Ti(t)). The au-
thors of [17] have also investigated the analytical convergence
of the ε-greedy and proved that the regret (i.e. the loss of re-
ward by selection the worst channel) achieves a logarithmic
asymptotic behavior.

3 Problem Formulation

In the previous section, we introduced the well-known MAB
algorithms that help a MAB agent makes a good decision.
In this section, we present the classical OSA for a single SU
in order to formulate it as a MAB problem. However, MAB
algorithms can represent an optimal solution for the classical
OSA, as it can be seen in section 5. On the other hand, we
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consider more developed scenarios compared to the classical
OSA such as multiple SUs, decreasing the collisions among
users and also estimating the quality of the available channels.
We first present the OSA for multiple SUs in the next section
and, hereinafter, we propose the new APL policy to manage
a secondary network.

Algorithm 3: ε-greedy Algorithm
Input: C, H, n,

1 C: number of channels,
2 H: exploration constant,
3 n: total number of slots,
4 Parameters: Ti(t),
5 Ti(t): number of times the channel is sensed up to time

t,
6 χ: a uniform random variable in [0,1],

Output: Xi(Ti(t)),
7 Xi(Ti(t)): the expected reward that depends on Ti(t),
8 foreach t = 1 to n do
9 if χ < min{1, H

t } then
10 SU makes a random action at,
11 else
12 at = maxi Xi(Ti(t)),
13 Ti(t) + +,
14 Xi(Ti(t)) = 1

Ti(t)
∑t

τ=1 Si(τ),

15 % Si(τ) is the observed state from channel i at τ,
16 % Si(τ) = 1 if the ith channel is vacant and 0

otherwise,

3.1 Single User Case

Let us consider a SU accesses C channels, each of which asso-
ciated with a vacancy probability µi ∈ [0, 1]. Let the vacancy
probabilities be ordered by their availability probabilities,
µ1 > µ2 > ... > µC, which are initially unknown for the
secondary user. A most important objective of the SU is to
estimate the vacancy probabilities of channels after a finite
time in order to access the best channel that has µ1 as vacancy
probability. At each time slot, the user can select one channel
and transmit its data if available; otherwise, it should wait
the next slot to sense another channel. Let the state of the
ith channel at slot t be referred to Si(t): Si(t) equals 1 if the
ith channel is free and 0 otherwise. Hereinafter, we consider
that the obtained reward from the ith channel ri(t), at slot
t is equal to its state: ri(t) = Si(t). Let Ti(t) represent the
number of times to access the ith channel up to the slot t. The
user should be rational by adopting a given policy in order to
quickly identify the best channel. A policy selected by the SU
may not be considered as optimal in term of the accuracy of
the channels’ vacancy estimation or the convergence speed
towards the best channel. Finally, let us introduce the regret
that rerepsents the gap between the reward obtained in an
ideal scenario and that can be obtained using a given policy
as follows:

R(n, β) = nµ1 − E
[ n

∑
t=1

µ
β
i (t)

]
(5)

where n represents the total number of time slots and µ
β
i (t)

stands for the vacancy probability of the selected channel at
slot t under the policy β, and E(.) is the mathematical expec-
tation.

3.2 Multi-User Case

In this section, we consider U SUs trying to learn the vacancy
probabilities of the C channels and then access only the U best
ones (C > U). When several SUs existing in the spectrum,
their main challenge is to learn collectively or separately the
vacant probability of channels as much as possible in order
to access the best ones. Therefore, a policy selected by users
should estimate the vacancy of channels as much as possible,
and should also be able to decrease the collisions number
among users. Therefore, let us define the regret for multiple
users that takes into account both the convergence speed to
the U best channels and the collision number among users as
follows:

R(n, U, β) = n
U

∑
k=1

µk −
n

∑
t=1

E
[
Sβ(t)

]
(6)

where µk stands for the vacancy probability of the kth best
channel; Sβ(t) represents the global reward obtained by all
users at time t using the policy β and is defined as follows:

Sβ(t) =
U

∑
j=1

C

∑
i=1

Si(t)Ii,j(t) (7)

where Si(t) represents the state of the ith channel at time t:
Si(t) = 1 if the ith channel is available and 0 otherwise; Ii,j(t)
indicates that no collisions have appeared in the ith channel
by the jth user at slot t: Ii,j(t) = 1 if the jth user is the sole
occupant of the channel i and 0 otherwise. Finally, the regret
that takes into consideration the channels’ occupancy and the
collisions number among users can be expressed by:

R(n, U, β) = n
U

∑
k=1

µk −
U

∑
j=1

C

∑
i=1

Pi,j(n)µi (8)

where Pi,j(n) = ∑n
t=1 E

[
Ii,j(t)

]
represents the expectation of

times that the jth user is the only occupant of the ith channel
up to n, and the mean of reward can be given by:

µi ≈
1
n

n

∑
t=1

Si(t)

4 Multi-Priority Access

In the existing models of OSA where several SUs exist in the
network, the main challenge is to learn collectively (via a coop-
erative learning) or separately (via a competitive learning) the
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available channels while decreasing the number of collisions
with each other. In our work, we focus on the competitive
priority access, where the kth user should selfishly estimate
the vacancy probabilities of channels in order to access the
kth best one. Our proposed policy for the priority access takes
into account the dynamic access where the priority users can
enter/leave the network at any time. To the best of our knowl-
edge, only the priority or the random access are considered
without the dynamic access in several proposed MAB policies
[24, 25, 26, 27] (a simple example for the priority dynamic
access is shown in Fig. 3).

To formulate the OSA as a MAB problem, recent works
extend the simple case of MAB (i.e. the case of a single agent)
to consider several agents [20, 25, 26, 28, 29]. In our work,
we are interested in the OSA for multiple priority access in
which SUs should access the spectrum according to their
ranks. Moreover, decreasing the number of collisions among
SUs represents a point of interest to enhance the global per-
formance of the secondary network. In general, when two
SUs access the same channel to transmit, their data cannot be
correctly received because of the interference between them.
When a collision occurs among users, several proposals can
be found in the literature in order to enhance their behavior
in the next slots. We present below two well-known collision
models in the literature that are widely used in OSA:

• ALOHA-like model: If a collision occurs between two
or more users, then none of them receives a reward,
despite the selected channels is free. This model may
ensure the fairness among users, and no collision avoid-
ance mechanism is used.

• Reward sharing model: If two or more users select the
same channel at the same time, the colliding users share
the obtained reward from the selected channel (each of
them receives the same reward).

The above models can affect the methodologies used to
collect the reward from the target channel while the learn-
ing phase is not affected. In our work, we consider the most
widely used, ALOHA-like.

Based on the ALOHA-like, the works of [2, 20, 21, 25,
26, 27, 28, 30] proposed semi-distributed and distributed
algorithms in which users cannot exchange information with
each other. Liu and Zhao in [28], proposed Time-Division
Fair Share (TDFS) policy and showed that the proposed algo-
rithm may achieve an asymptotic logarithmic behavior. In
such algorithm, the users access the channels with different
offsets. TDFS also ensures the fairness among users; while
in our work we are interested in the priority access where
users access the channels based on their prior rank. In [28],
TDFS policy was been used to extend UCB1 algorithm to
consider multiple users. Beside TDFS, the authors of [20] pro-
posed Random Rank policy, based on UCB1, to manage the
secondary network. Random Rank represents a distributed
policy (i.e. no-information exchange among users) in which
the user achieves a different throughput.

The authors of [24] proposed the Selective Learning of the
kth largest expected rewards (SLK) policy, based on UCB1,
that represents an efficient policy for the priority access.
However, SLK allows only a fixed number of users to access
the available channels. So that, the dynamic access under
SLK cannot be considered since this latter restricts the access.
Similarly to SLK, the authors of [25] proposed the kth−MAB
for the priority access which is based on UCB1 and ε-greedy.
In kth − MAB, the time is slotted and each slot is divided
into multi sub-slots depending on the users priority ranks.
For instance, the slot of SUU is divided into U sub-slots in
order to find the Uth best channel and transmit data via this
channel. Therefore, the main limitation of this policy remains
in the dissatisfaction of transmission time of high ranked
users.
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by their vacancy

Figure 3: Priority access after a user left its dedicated channel

For the random access, several learning policies can be
found in the literature, where the SU selects randomly its
channel. The authors of [26] proposed the Musical Chairs
policy as well the Dynamic Musical Chairs (DMC) policy for
a dynamic access. In both policies, the SU selects a random
channel up to time T0 in order to estimate the vacancy of chan-
nels and the number of users, U, in the network. After T0, the
SU chooses a random channel between {1, ..., U}. The main
drawback of the Musical Chairs and DMC is that the users
should known the total number of transmission time slots as
well as the number of available channels. Moreover, in DMC
a restrict access is considered, where the users cannot leave
the network during the time T0. To find the U-best channels,
the authors of [27] proposed the Multi-user ε-greedy collision
Avoiding (MEGA) algorithm based on the ε-greedy algorithm
proposed in [17]. However, their algorithm suffers the same
drawbacks of the Musical Chairs and the Dynamic Musical
Chairs and it does not consider the priority access. In order to
solve all these limitations, we propose in section (4.1) a novel
policy called APL for the priority dynamic access.

4.1 APL for the Priority Access

In this section, we propose a new policy for the priority ac-
cess. This policy enables a secondary user to learn the vacant
probabilities of channels and ensures the convergence to his
dedicated channel. Moreover, it can be used with all learning
MAB algorithms such as: Thompson Sampling (TS), Upper
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Confidence Bound (UCB), AUCB, e-UCB, e-greedy, etc. We
should highlight that our proposed policy does not require
prior knowledge about the channels as in the case for other
policies, such as: Musical Chair [26], SLK [24], k-th MAB [25],
MEGA [27], etc. Indeed, existing policies to manage a sec-
ondary network suffer from one or more of the following
disadvantages:

1. The number of users should be fixed and known to all
users.

2. SUs should have a prior information about the number
of channels.

3. Expected transmission time should be known.

4. The dynamic access is not suggested. To recall, in a
dynamic access, the users can at any given time enter
or leave the network.

5. Some algorithms consider a restricted dynamic access,
where a SU can’t leave the network during the learning
or the exploration phases.

6. The vacant probabilities of channels should be static;
otherwise, users cannot adapt to their environment.

7. The priority access is seldomly suggested in the litera-
ture, while the random access represents the most used
model.

Unlike SLK and k-th MAB, our proposed policy for the pri-
ority access, called All-Powerful Learning algorithm (APL),
doesn’t suffer from the above mentioned drawbacks. As a
matter of fact, SLK and k-th MAB policies suffer from the 1st,
2nd and 4th mentioned drawbacks.

In a classical priority access, each channel has assigned
an index Bi(t) and the highest priority user SU1 should sense
and access the channel with the highest index Bi(t) at each
time slot. Indeed, the best channel, after a finite number of
time slots, will have the highest index Bi(t).

As the second priority user SU2 should avoid the first best
channel and try to access the second best one. To reach his
goal, SU2 should sense the first and second best channels at
each time slot in order to estimate their vacant probabilities
and then access the second best channel if available. In this
case, the complexity of the hardware is increased, and we con-
clude that a classical priority access represents a costly and
impractical method to settle down each user to his dedicated
channel. In the case of APL, at each time slot, the user senses
a channel and transmits his data if the channel is available
(see algorithm 4). In our policy, each SUk has a prior rank,
k ∈ {1, ..., U}, and his target is to access the k-th best channel.
The major problem of the competitive priority access is that
each user should selfishly estimate the vacant probabilities of
the available channels. Our policy can intelligently solve this
issue by making each user generate a rank around his prior
rank to get information about the channels availability. For
instance, if the rank generated by the k-th user equals 3 (con-
sidering that k > 3), then he should access the channel that

has the third index, i.e. B3(t). In this case, SUk can examinate
the states of the k best channels and his target is the k-th best
one.

Algorithm 4: APL for the priority dynamic access

Input: k, ξk(t), ri(t),
1 k: indicates the k− th user or k− th best channel,
2 ξk(t): indicates a presence of collision for the k− th user

at instant t,
3 ri(t): indicates the state of the i− th channel at instant t,

ri(t) = 1 if the channel is free and 0 otherwise,
4 Initialization
5 k = 1,
6 for t = 1 to C do
7 SUk senses each channel once,
8 SUk updates his index Bi(t),
9 SUk generates a rank of the set {1, ..., k},

10 k + 1,

11 for t = K+1 to n do
12 SUk senses a channel in his index Bi(t) according to

his rank,
13 if ri(t)=1 then
14 SUk transmits his data,
15 if ξk(t)=1 then
16 SUk regenerates his rank of the set {1, ..., k},
17 else
18 SUk keeps his previous rank,

19 else
20 SUk refrains from transmitting at instant t,

21 SUk updates his index Bi(t)

However, if the rank created by SUk is different than k,
then he selects a channel with one the following probabilities:
{µ1, µ2, ..., µk−1} and he may collide with a priority user, i.e.
SU1, SU2, ..., SUk−1. Therefore, SUk should avoid regenerat-
ing his rank at each time slot; otherwise, a large number of
collisions may occur among users and transmitted data can
be lost. So, after each collision, SUk should regenerate his
rank from the set {1, ..., k}. Thus, after a finite number of slots,
each user settles down to his dedicated channel. It remains
to investigate the analytical convergence of APL to verify its
performance in a real radio environment.

4.2 Quality of Service

As mentioned before, UCB represents one of the popular MAB
algorithms that is widely suggested in the literature, where
several variants have been proposed. In [23], we proposed
a new variant of UCB called the Quality of Service UCB1
(QoS-UCB1) for a single SU, where this latter is able to learn
channels’ vacancy and quality. To consider multiple SUs, this
version of UCB is extended using the Random Rank policy
proposed in [20] to manage a secondary network. It has been
shown that the Random Rank policy with the QoS-UCB1 rep-
resents an optimal solution to allow users to learn separately
channels’ vacancy and quality. However, in this paper, we
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evaluate the performance of our APL policy with QoS-UCB1
for the priority access.
Supposing that each channel has a binary quality represented
by qi(t) at slot t: qi(t) = 1 if the channel has a good quality
and 0 otherwise. Then, the expected quality collected from
the channel i up to time n is given by:

Gi(Ti(n)) =
1

Ti(n)

Ti(n)

∑
τ=1

qi(τ) (9)

The global mean reward, that takes into account channels’
vacancy and quality, can be expressed as follows [23]:

µQ
i = Gi(Ti(n)).µi (10)

The index assigned to the ith channel that considers both va-
cancy and quality BQ

i (t, Ti(t)) can be defined by:

BQ
i (t, Ti(t)) = Xi(Ti(t))−Qi(t, Ti(t)) + Ai(t, Ti(t))) (11)

According to [23], the term Qi(t, Ti(t)) of the quality factor is
given by the following equation:

Qi(t, Ti(t)) =
γMi(t, Ti(t)) ln(t)

Ti(t)

where the parameter γ stands for the weight of the quality
factor; Mi(t, Ti(t)) = Gmax(t) − Gi(Ti(t)) being the differ-
ence between the maximum expected quality over channels
at time t, i.e. Gmax(t), and the one collected from channel i up
to time slot t, i.e. Gi(Ti(t)). However, when the ith channel
has a good quality Gi(Ti(t)) as well as a good availability
Xi(Ti(t)) at time t. The quality factor Qi(t, Ti(t)) decreases
while Xi(Ti(t)) increases. Subsequently, by selecting the max-
imum of its index BQ

i (t, Ti(t)), the user has a large chance to
access the ith channel with a high quality and availability.

Figure 4: Evaluate the performance of TS, UCB1 and ε-greedy in OSA

5 Simulations and Results

In our simulations, we consider three main scenarios: In the
first one, a SU tries to learn the vacancy of channels using the
MAB algorithms: TS, UCB1 and ε-greedy in order to access

the best one with the highest vacancy probability. We also
compare the performance of these MAB algorithms to show
which one can offer more opportunities for the SU. In a sec-
ond scenario, we considered 4 SUs trying to learn the vacancy
of channels with a low number of collisions. In this scenario,
we show that, based on our policy APL, users reach their
dedicated channel faster than several existing policies. In the
last scenario, using APL with the QoS-UCB1, users should
learn both vacancy and quality of channels and then converge
towards channels that have a good vacancy and quality.

In our algorithm, two factors can affect the convergence: α
or H while the convergence of UCB1 and ε-greedy are affected
by α and H respectively. We consider the value of α and H
for which UCB1 and ε-greedy achieve their best performance.
According to [17], the best value of H = c×K

d2 (i.e. c = 0.1 is a
constant number, K = 9 and d = mini(µ1 − µi) = 0.1) and α
are 90 and 2 respectively in order to ensure a balance between
the exploration and exploitation phases.

Let us initially consider a SU trying to access 9 channels
associated with the following vacancy probabilities:

Γ = [0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1]

Fig. 4 compares the regret of the SU using the three MAB
algorithms: TS, UCB1 and ε-greedy over 1000 Monte Carlo
runs. The simulation outcomes are presented with a shaded
region enveloping the average regret. As we can see, the
regrets of the 3 MAB algorithms have a logarithmic asymp-
totic behavior with respect to the number of slots, while TS
produces a lower regret for all simulations. That means that
the SU can quickly reaches the best channel that offers more
opportunities for the user compared to other channels. In
the second scenario of our simulation, we evaluate the per-
formance of APL and its ability to make each user selects
his dedicated channel after a finite number of time slots. We
evaluate the performance of APL compared to the existing
learning policies such as Musical Chair and SLK.

Figure 5: TS, UCB1 with APL compared to SLK and Musical Chairs

To make this comparison, we use two main performance
indexes: the regret related to the access of worst channels
and the percentage of times to access best channels by each
user. A collision may occur when two or more users try to
access the same channel. We adopt in our simulations the
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ALOHA model, widely used one in OSA, in which none of
the collided users receives a reward. After each collision, and
based on our policy APL, the collided users should regenerate
their rank. First, we consider a static setting of users, then we
investigate the dynamic access in which the priority users can
enter or leave the network.
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Figure 6: The percentage of times where each SUk selects its optimal channel
using the proposed approach

In Fig. 5, we compare the regret of APL to SLK and Musi-
cal Chair. APL and SLK take into consideration the priority
access while Musical Chair is proposed for the random access.
Despite the regret of APL and SLK has a logarithmic asymp-
totic behavior, the regret of Musical Chair has two parts:

• A linear part at the beginning, during the learning pe-
riod, due to the large number of collisions resulting
from the random selection.

• A constant part in which the users exploit the U best
channels.

As we can see from Fig. 5, APL using TS outperforms
Musical Chair and SLK by achieving the lower regret.

Fig. 6 shows the percentage of times that the k-th user
accesses his ded- icated channel based on our policy APL up
to n, Pk(n). This latter is given by:

Pk(n) =
1
n

n

∑
t=1

1(if βl
APL(t)=k) (12)

where βl
APL(t) represents the channel selected at time t under

APL using the learning algorithm l, such as: TS, UCB1 or ε-
greedy. As we can see, based on our policy APL, the users are
able to converge to their targeted channels: SU1 converges
to the best channel µ1, followed by SU2 , SU3 and SU4 to
the channels µ2 , µ3 and µ4 respectively. In addition, we can
observe a fast converges of APL using TS compared to TS.

This figure clearly shows that, based on APL, the users
converge to their dedicated channels: the first priority user
SU1 converges towards the best channel µ1 = 0.9, followed
by SU2, SU3 and SU4 towards channels µ2 = 0.8, µ3 = 0.7
and µ4 = 0.6 respectively. In addition, we can see that the
users quickly reach their dedicated channels using TS and a
slow one under UCB1 and ε-greedy.

Fig. 7 compares the regret of APL and DMC for the dy-
namic access where the dotted line indicates the entering and
leaving of users on the network. Figures (6a) and (6b) repre-
sent respectively the cumulative and average regrets of APL,
where at each entering or leaving of users, a significant in-
crease in the regret is observed. It is worth mentioning that, in
the dynamic scenario and based on APL, the user can change
its current channel for two reasons:

1. When a collision occurs, SUk should generate a random
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Figure 7: APL and DMC for dynamic access
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rank from the set {1, ..., k}.

2. When a PU reappears in the network and accesses the
current channel used by SUk, the index of this chan-
nel decreases, and it may be overwhelmed by another
channel that has a low index.

To the best of our knowledge, two policies exist in the litera-
ture that consider the dynamic access but without considering
priority access: DMC [26] and MEGA [27]. The authors of [26]
show that the DMC achieves better performance compared
to MEGA policy. In Figures (6c) and (6d), we can see that
the performance of APL outperforms the one of DMC and
achieves a lower regret. However, after the dynamic access
interval, our algorithm achieves a logarithmic regret although
the regret of DMC keeps growing with time. Thus, the access
under DMC algorithm is realized in epochs, where each one
is composed of a learning phase with enough rounds of ran-
dom exploration to learn the U best channels and the number
of users under the dynamic access. The length of an epoch
and the learning phase are T1 and T0 respectively. These two
parameters depend on the number of channels C and the total
number of slots n.
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Figure 8: Access channels by priority users using APL

Let us start with the last scenario in which users are able
to learn both channels’ vacancy and quality using our APL
policy where the empirical mean of the quality collected from
channels as follows: G = [0.7 0.9 0.2 0.8 0.8 0.7 0.7 0.8 0.8].
Thus, the global mean reward that takes into con-
sideration both quality and vacancy µQ is given by:
µQ = [0.63 0.72 0.14 0.48 0.4 0.28 0.21 0.16 0.08].After estimat-
ing the channels’ availability and quality (i.e. µQ) and based
on our APL policy with QoS-UCB1, the first priority user SU1
should converge towards the channel that has the highest
global mean, i.e. channel 2, while the target of SU2, SU3 and
SU4 should be respectively channels 1, 4 and 5. On the other
hand, in the case of APL with UCB1, the target of the prior-
ity users SU1, SU2, SU3, and SU4 should be respectively the
channels 1, 2, 3 and 4. This result can be confirmed in Fig. 8,
where the priority users access their dedicated channels using
APL with QoS-UCB1 or UCB1. Fig. 9 displays the achievable
regret of APL with QoS-UCB1 and UCB1 in the multi-user
case. Despite the fact that the two curves have a logarithmic
asymptotic behavior, we notice an improvement regret of
APL with QoS-UCB1 compared to UCB1.
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Figure 9: The regret of APL with QoS-UCB1 and UCB1

6 Conclusion

This paper deals with the Opportunistic Spectrum Access
(OSA) problem in the context of Cognitive Radio (CR) for a
single or multiple Secondary Users (SUs). Recently, several
Multi-Armed Bandit (MAB) algorithms have been suggested
to help a single SU make a good decision. To tackle the prob-
lem of OSA with several SUs, we proposed a novel policy for
the priority access called All-Powerful Learning (APL) that
allows several SUs to learn separately the channels’ vacancy
without any cooperation or a prior knowledge about the avail-
able channels. Moreover, APL considers the priority dynamic
access while only the priority or the dynamic access are sepa-
rately considered in several recent works, such as Selective
Learning of the kth largest expected rewards (SLK), Musical
Chairs, Multi-user ε-greedy collision Avoiding (MEGA) and
kth−MAB. In our work, the Quality of Service (QoS) have
been also investigated where SU is able to learn both qual-
ity and availability of channels and then make an optimal
decision with respect to its prior rank. Like most important
works in OSA, this work focuses on the Independent Identical
Distributed (IID) model in which the state of each channel is
supposed to be drawn from an IID process. In future work,
we will consider the Markov process as a dynamic memory
model to describe the state of available channels, although it
is a more complex process compared to IID.
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