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ABSTRACT

Cloud Radio Access Networks (C-RAN) is an evolution in the base

station architecture, mainly composed of two elements: The Base

Band Unit (BBU) and the Remote Radio Head (RRH). The BBU is

a centralized pool of computational resources to provide the sig-

nal processing and coordination functionality required by all cells,

while the RRHs are light radio units that User Equipment (UE)

connects to via the RAN. Many advantages are derived from this

architecture, such as dynamic BBU-RRH associations and statistical

multiplexing gains. In particular, the BBU-RRH association problem

is crucial for reducing power consumption. In this paper, we focus

on decentralized BBU-RRH association, which has not received

attention in the literature. Therefore, the aim of this work is to

propose a hybrid two-stage approach that includes a game theo-

retic framework for the BBU-RRH association, and a centralized

scheme to set the adequate number of available BBUs. The game

among RRHs is solved by two different algorithms. The first relies

on the best response algorithm, namely H-BR-IACA. The second is

based on a reinforcement learning method (the replicator dynam-

ics), namely H-DR-IACA. We compare our devised solution to a

centralized approach proposed in a previous work. The results of

our proposition show close performance to the centralized method.

CCS CONCEPTS

• Networks→Mobile networks;Wireless access points, base sta-

tions and infrastructure;
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1 INTRODUCTION

Wireless communications have seen a tremendous growth in traffic

demand and a rapid evolution of technology. Hence, there is an

increasing challenge in the operation of the upcoming 5G networks:

huge amounts of data are becoming an overwhelming part of the

traffic, while the associated income is shrinking. Similarly, both the

energy consumed and interference levels are growing rapidly due

to aggressive spectrum allocation in such dense networks. Finally,

such densification leads to an imbalance in resource consumption

due to the disparity of the mobile traffic across the network. To meet

these challenges, a promising approach toward such 5G networks

is to introduce cloud-based radio access networks (C-RAN). Unlike

conventional RANs, a C-RAN decouples the baseband processing

unit (BBU) from the remote radio head (RRH), allowing for cen-

tralized operation of BBUs and scalable deployment of lightweight

RRHs. Unlike in conventional architecture, many RRHs are clus-

tered to a single BBU when traffic load is low, resulting in power

consumption reduction and increased energy efficiency. In addition,

when RRHs are clustered together, they logically form a single cell

and act as a distributed antenna system. Thus, the intra-cluster

interference is canceled and the spectral efficiency is enhanced.

However, the challenge is to design a suitable logical mapping

between each RRH and one or multiple managing BBUs, called

BBU-RRH association. This design should be performed carefully

so as to optimize the resource allocation, taking into account the
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load balancing factor of served cells and the intra-cluster interfer-

ence cancellation among RRHs associated to the same BBU. In this

paper, we put forward a hybrid approach where a central controller

decides the number of available BBUs, while the RRHs choose in a

distributed fashion to join a given BBU in a way to minimize their

own cost.

2 RELATED WORK

There are several papers addressing the BBU-RRH association prob-

lem (also known as RRH clustering problem), with a common pur-

pose of power consumption reduction. In [7], authors formulate

the clustering problem as a coalition game, where RRHs organize

themselves into clusters in order to increase a suitable utility func-

tion. In [9] and [2], authors propose a bin packing formulation for

the RRH clustering problem. Authors in [3] propose a centralized

approach for the BBU-RRH association problem. They suggest to

switch the RRHs of a crowded BBU to a less loaded neighboring

BBU.

While all those papers show significant improvement in terms of

power saving, they ignore the inter-cluster interference. Unlike the

previous references, the work in [1] shows that interference-aware

decisions lead to optimized clusters of RRHs and enhance the power

saving metric. The authors of the paper propose a Set Partitioning

Problem formulation (SPP) and prove that the chosen subsets of

RRHs are energy efficient, reducing the level of interference in the

network. However, the work in [1] is a centralized formulation

that requires significant signaling information concerning network

load conditions and interference levels. This would lead to a huge

burden in terms of signaling load over the fronthaul between BBUs

and RRHs. The aim of this paper is to introduce a load balancing

and interference-aware hybrid clustering scheme that operates in

two stages. The main objective is to minimize the network power

consumption (i.e,minimize the number of active BBUs), while guar-

anteeing minimum throughput requirements for UEs. Moreover,

our solution provides close performances to the centralized propo-

sition of [1], with significant reduced signaling load. To the best of

our knowledge, this is the first paper to propose a game theoretic

framework for the BBU-RRH association problem that is solved

into two different algorithms: The first relies on the best response

algorithm [8]. The second is based on a reinforcement learning

algorithm, namely the replicator dynamics [6].

The rest of the paper is organized as follows: Section 3 describes

the system model. Section 4 puts forward our hybrid load balancing

and interference-aware clustering problem. Performance evalua-

tions are displayed in section 5. Section 6 concludes the paper.

3 SYSTEM MODEL

3.1 Network Topology

Our topology consists in a cellular network composed of R RRHs.

Let R be the set of RRHs. It is defined as R =
{

1, ..., r , ...R
}

. We

define the set of clusters (i.e., subsets of R) as C =
{

1, ..., s, ...S
}

.

We also define a partition P ⊂ C of R such as s ∩ s ′ = ∅ ∀s, s ′ ∈

P, s , s ′ and
⋃

s ∈P
s = R.

3.1.1 Area Decomposition. Clustering decisions are based on long-

term measurements. It is costly to consider decisions based on

time granularity of seconds or even milliseconds, because BBU-

RRH association decisions require reconfigurations of the optical

fronthaul connections. In addition, the traffic pattern changes at

a scale of minutes. Thus, we consider input parameters based on

average metrics, such as average radio conditions and average

number of UEs. Precisely, the covered area is meshed into several

discrete zones. Each zone is assimilated to a single test point, where

a cumulative rate is generated from all UEs located in the same

zone. We consider a quadratic meshing of the area and we calculate

the average distance (Davr ) between any zone of index z and a

RRH of index r . The calculation of Davr and the UE association

scheme are detailed in [1].

3.2 Cluster Rate Model

We assume that a Transmission Point Selection Technique (TPS) is

applied in each BBU (i.e, cluster). Consequently, the corresponding

data is transmitted from a single RRH at a time and the interfering

signals result in from the inter-cluster interferences. The SINRz,r ,s
ratio of zone z, served by RRH r , associated to cluster s would be

expressed as:

SINRz,r ,s =
Pr .Gz,r

N0 +
∑

r ′,r
r ′∈s ′,s

Pr ′ .Gz,r ′
, (1)

where Pr and Pr ′ denote the power emitted by RRHs r and r ′

respectively. Gz,r and Gz,r ′ are the channel gain between zone z

and r , r ′ respectively. N0 represents the thermal noise power and

finally s and s ′ the clusters that RRHs r and r ′ belong to respectively.

The peak throughput of a UE located in zone z, served by RRH r

that is associated to cluster s is expressed as χz,r ,s = BW · loд2
(

1+

SINRz,r ,s
)

, where BW is the total bandwidth within a BBU.

Assuming a fair resource sharing model between ns UEs, shar-

ing the resources of cluster s , and a full buffer traffic model, the

throughput perceived by a UE belonging to zone z of RRH r , associ-

ated to cluster s is 1

ns
.χz,r ,s . Consequently, if nz,r UEs (among ns )

are located in zone z, the cumulative throughput within such zone

is expressed as T
(

z, r , s
)

=
nz ,r ·χz ,r ,s

ns
. The cumulative through-

put derived in RRH r that is associated to cluster s is expressed

as T
(

r , s
)

=

∑Z
z=1T

(

z, r , s
)

, where Z is the total number of zones

belonging to RRH r .

The cumulative throughput in cluster s (i.e., BBU s) is expressed

as T
(

s
)

=

∑R
r=1 yr ,s ·T

(

r , s
)

, where R is the total number of RRHs

in the network, and yr ,s denotes a binary variable defined as:

{

yr ,s = 1, if r is associated to s

yr ,s = 0, otherwise
(2)

3.3 BBU Power Consumption Model

We assume a linear power consumption for the BBU, as a function

of the cumulative rate of cluster s [10]. It is expressed as P
(

s
)

=

A + B.T
(

s
)

, where P
(

s
)

denotes the power consumed by an active

BBU, A is the minimum power consumption of an active BBU at

zero load and B is the coefficient variation of P
(

s
)

as a function of

T
(

s
)

which is the cumulative throughput in cluster s as previously

defined.



4 HYBRID CLUSTERING BASED ON GAME

THEORY

Our hybrid proposition operates in two stages described in para-

graphs 4.1 and 4.2. Initially, a central controller sets the number of

BBUs made available to the RRHs. In the first stage, the distributed

BBU-RRH association is portrayed as a potential game among com-

peting RRHs to choose a suitable BBU. When the Nash Equilibrium

[5] is attained, the second stage is reached, where the number of

available BBUs can be modified. The two stages are iteratively

executed until the right number of active BBUs is decided.

4.1 Non-Cooperative Game for BBU-RRH

Association

Non-cooperative game theory models the interactions between

players competing for a common resource. Hence, it is well adapted

to RRH clustering. We define a multi-player game G between the R

RRHs.

We present the general framework of game G = (R,S,C) that

can be described as follows: The set R of RRHs is the set of players.

The set P of available BBUs. An action of a RRH is selecting one of

the available BBUs. The strategy of RRH r is denoted by the vector

yr whose components are yr ,s defined in (2). Hence, y = (yr )r ∈R ∈

S is a pure strategy profile, and S = S1 × S2 × ... × SR is the space

of all profiles. The set of cost functions C = {C1,C2, ...,CR } that

quantify the players’ preferences over the possible outcomes of the

game. Outcomes are determined by the particular action chosen by

RRH r and the particular actions chosen by all other players.

4.1.1 Cost function. Each RRH seeks to minimize its own load

balancing and interference-aware cost function by choosing an

adequate strategy (i.e, BBU s). The cost function of RRH r is given

by what follows:

Cr
(

yr ,y−r
)

=

∑

s ∈P

yr ,s ·
[

α · α ′ ·
∑

r ′,r

yr ′,s

︸    ︷︷    ︸

Term 1

+ β · β ′ ·
( ∑

r ′,r

Gr ′,r · (1 − yr ′,s ) + N0

︸                               ︷︷                               ︸

Term 2

) ]

,

(3)

whereGr ,r ′ is the channel gain between RRHs r and r ′, and yr ,s is

the binary variable defined as in (2).

The cost sustained by a given RRH r in any selected BBU depends

upon the congestion impact inflected by other RRHs r ′ ∈ S sharing

the same radio resources of the common BBU s . The latter is de-

picted by Term 1 in (3) and acts as a load balancing function among

active BBUs. Furthermore, the cost function should encompass the

interference impact. Accordingly, Term 2 reflects the inter-cluster

interference which is cancelled between RRH r and other RRHs

that have chosen the same strategy (equivalently BBU) s . α and β

are the weighting factors. We note that α + β = 1 and α ′, β ′ are the

normalization factors.

4.1.2 Attaining Pure Nash Equilibriums. In a non-cooperative game,

a solution is obtained when all players adhere to a Nash Equilibrium

(NE). A NE is a profile of strategies in which no player will profit

from deviating its strategy unilaterally. Hence, it is a strategy profile

where each player’s strategy is an optimal response to the other

players’ strategies.

Our game G is a finite game and in general such games are not

guaranteed to have Pure NEs (PNEs). However, for our game an

exact potential function [4] exists, which means that the unilateral

change of one RRH strategy yr to y′r results in a change of its cost

function that is equal to the change of a so-called potential function

ϕ : SR → R.

An example of such a potential function is given by the following:

ϕ
(

y
)

=

∑

s ∈P

∑

r ∈R

yr ,s
( 1

2
·
∑

r ′,r

yr ′,s + yr ,s +
1

2
·
∑

r ′,r

(

2 − yr ′,s
)

Gr ′,r

+ N0

)

,

(4)

Furthermore, such games have the appealing property of converg-

ing to PNE. In our work, we apply two different algorithms to solve

the game. The first is the best response, which guarantees the con-

vergence to PNE. The second is based on a reinforcement learning

algorithm, namely replicator dynamics, that converges to PNE for

exact potential games:

• Best response algorithm: At each round of the best response

algorithm, a RRH chooses the BBU that provides it the lowest

cost (3). Convergence is attained when all RRHs choose the

same strategies as in the previous round.

• Replicator dynamics algorithm: We denote bypr ∈R (t) the vec-

tor of mixed strategies whose components are psr (t), defining

the probability that RRH r chooses BBU s at iteration t . At

each t , a RRH selects a BBU according to the distribution

probability pr ∈R (t) and receives a cost. The vector pr ∈R (t)

is updated accordingly and the process is repeated until the

PNE is learned.

4.2 Centralized BBU Activation/Deactivation

The second stage of the algorithm decides whether to activate or

to deactivate a BBU. Precisely, this stage consists in examining

the lowest throughput per UE among all clusters and verifies if

constraints (5) are respected or not:

T
(

s
)

≥ ns · Dmin,∀s ∈ P (5)

Constraints (5) state that the throughput per UE should stay greater

than a minimal threshold, denoted by Dmin . If not, the algorithm

increases by one the number of available BBUs, and re-launches the

BBU-RRH association game of the first stage. However, to reduce

power consumption, when the lowest throughput per UE respects

(5), the algorithm decreases the number of active BBUs and falls

back to the first stage. When the algorithm decides to deactivate a

BBU and reactivate it again, it stops running and outputs a solution.

More precisely, when the algorithm deactivates a BBU and realizes

that constraints (5) are not respected, it falls back to the previous

number of active BBUs (before the deactivation) and sets back the

previous BBU-RRH associations. In this work, the central controller

starts from a random number of active BBUs.



5 PERFORMANCE EVALUATION

In this section, we provide a comparative study between our hybrid

schemes (H-BR-IACA and H-DR-IACA), the No Clustering scheme,

where a BBU is entirely dedicated to a single RRH, and finally a

centralized scheme proposed in a previous work [1] deemed C-

IACA.

5.1 Simulation Results

We use Matlab for simulations, and we consider a network com-

posed from seven cells. As previously mentioned, the area is meshed

into several quadratic zones. We consider a uniform UEs distribu-

tion in each cell. In other terms, the number of UEs per cell is the

same in each zone associated to the cell. We set the weights α and

β of the cost function to 0.75 and 0.25 respectively (cf. equation (7)).

The simulation parameters are shown in table 1.

Table 1: Simulation parameters

Parameter Value

Propagation Model Cost Hata 231

Shadowing Standard Deviation 10 dB

Transmit Power of RRH 40 dBm

Thermal Noise Power −174 dBm/Hz

BW 10MHz

Cell Radius 500 m

A 50 W

B 0.6

Dmin 2Mb/s

5.1.1 The C-IACA vs. H-BR-IACA vs. H-DR-IACA vs. No Clustering

scheme. We start by providing the first performance metric given in

Figure 1. It represents the number of active BBUs as a function of the

number of UEs per cell. For 1 to 4 UEs per cell, the C-IACA and the

hybrid schemes activate only one BBU. When the number of UEs

per cell reaches 5, more BBUs are activated. All of the C-IACA, H-

BR-IACA and H-DR-IACA provide the same number of active BBUs

except for 9 and 10 UEs per cell, where the H-BR-IACA scheme

activates an additional BBU in comparison with the centralized

scheme for 9 UEs per cell, and the H-DR-IACA scheme activates a

slightly higher number of BBUs for 10 UEs per cell in comparison to

the C-IACA and H-BR-IACA schemes. The No Clustering scheme

activates all available BBUs whatever the number of UEs per cell is.

Figure 2 displays the power saving metric as a function of the

number of UEs per cell. Between 1 and 4 UEs per cell, we notice

the highest power savings for the C-IACA and the hybrid schemes.

Almost same power economies are realized in all schemes, except

for 9 and 10 UEs per cell, where additional BBUs are activated by the

hybrid schemes in comparison to the C-IACA as shown in Figure 1.

Further, no power economy is achieved when the number of UEs

per cell exceeds 11, as all BBUs are activated.

Figure 3 shows the mean throughput per UE as a function of

the number of UEs per cell, given as the total realized throughput

within the system over the total number of UEs. The highest values

are attained through the No Clustering scheme owing to the full

buffer traffic model. However, we notice that all of the centralized
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Figure 1: Number of active BBUs: C-IACA vs. H-BR-IACA vs.

H-DR-IACA vs. No Clustering
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IACA

and hybrid schemes realize much more power economy at the cost

of lower mean throughput per UE. In addition, the C-IACA and the

hybrid schemes guarantee the targeted QoS for UEs, and do not

offer throughputs less than Dmin = 2 Mb/s. For high number of

UEs per cell, the mean throughput per UE is reduced for all schemes

due to scarcity in radio resources.
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Figure 3:Mean throughput per user: C-IACA vs. H-BR-IACA

vs. H-DR-IACA vs. No Clustering

Figure 4 represents the execution time of all the clustering schemes

as a function of the number of UEs per cell. We note that the algo-

rithms are executed over a hardware of 64-bit, Intel 7 core, 2.5 Ghz.

We notice that the H-BR-IACA scheme consumes less computa-

tional time for all load conditions in comparison to other schemes.

The H-DR-IACA scheme consumes less computational time than



the C-IACA scheme for a number of UEs per cell that varies between

1 and 7. When the number of UEs per cell is greater than 7, the

computational time of the H-DR-IACA scheme is greater than all

other schemes. In fact, when a higher number of choices (i.e., num-

ber of BBUs) is attributed to the reinforcement learning algorithm

(H-DR-LIACA), the time to convergence would be greater. However,

reinforcement learning algorithms require much less amount of

signaling load information.
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Figure 4: Execution time: C-IACA vs. H-BR-IACA vs. H-DR-
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6 CONCLUSION

In this paper, we formulate a hybrid proposition for the RRH cluster-

ing problem comprising a centralized scheme and a non-cooperative

game. The non-cooperative game is solved in two different man-

ners. The first relies on the best response dynamics, whereas the

second is a reinforcement based learning algorithm. We compare

our devised schemes to an existing centralized approach based on

SPP. The results show that our hybrid scheme realizes close per-

formance to the centralized solution. In future work, we intend on

submitting our schemes to the stringency of a real case topology

with twenty cells.

APPENDIX

We prove hereafter that the game at hand is an exact potential game.

We simply need to show that if y and y′ are two profiles which

only differ in the strategy of one RRH r , then:

Cr
(

yr ,y−r
)

−Cr
(

y′r ,y−r
)

= ϕ
(

yr ,y−r
)

− ϕ
(

y′r ,y−r
)

(6)

We begin by computing Cr
(

yr ,y−r
)

−Cr
(

y′r ,y−r
)

=

∑

s ∈S

yr ,s ·
[

αα ′ ·
( ∑

r ′,r

yr ′,s + yr ,s
)

+ ββ ′ ·
( ∑

r ′,r

Gr ′,r (1 − yr ′,s ) + N0

) ]

−
∑

s ∈S

y′r ,s ·
[

αα ′ ·
( ∑

r ′,r

yr ′,s + y
′
r ,s

)

+ ββ ′ ·
( ∑

r ′,r

Gr ′,r (1 − yr ′,s ) + N0

) ]

=

∑

s

(

yr ,s − y′r ,s
)

·
[

αα ′ ·
( ∑

r ′,r

yr ′,s + yr ,s + y
′
r ,s

)

+ ββ ′ ·
( ∑

r ′,r

Gr ′,r

(

1 − yr ′,s
)

+ N0

) ]

(7)

Then, we compute ϕ
(

yr ,y−r
)

− ϕ
(

y′r ,y−r
)

=

∑

r ′,r

∑

s

yr ′,s
(

αα ′ · (
1

2
·
∑

r ′,r

yr ′,s + yr ,s )+ββ
′ · (

1

2
·

∑

r ′,r

(

2 − yr ′,s
)

Gr ′,r + N0)
)

−
∑

r ′,r

∑

s

y′r ′,s
(

αα ′ · (
1

2
·
∑

r ′,r

y′r ′,s + y
′
r ,s ) + ββ

′ · (
1

2
·

∑

r ′,r

(

2 − y′r ′,s
)

·Gr ′,r + N0)
)

+

∑

s

(

yr ,s − y′r ,s
)

·
[

αα ′ ·
( 1

2
·
∑

j,r

yj ,s + (yr ,s + y
′
r ,s )

)

+

ββ ′ ·
( 1

2
·
∑

j,r

(

2 − yj ,s
)

G j ,r + N0

) ]

=

∑

s

(

yr ,s − y′r ,s
)

·
(

αα ′ ·
1

2
·
∑

r ′,r

yr ′,s −
1

2
· ββ ′·

∑

s

(

yr ,s − y′r ,s
)

·
( ∑

r ′,r

yr ′,s ·Gr ,r ′
) )

+

∑

s

(

yr ,s − y′r ,s
)

·
[

αα ′ ·
( 1

2
·
∑

r ′,r

yr ′,s + (yr ,s + y
′
r ,s )

)

+

ββ ′ ·
( 1

2
·
∑

r ′,r

Gr ′,r

(

2 − yr ′,s
)

+ N0

) ]

=

∑

s

(

yr ,s − y′r ,s
)

·
[

αα ′ ·
( ∑

r ′,r

yr ′,s + (yr ,s + y
′
r ,s )

)

+

ββ ′ ·
( ∑

r ′,r

Gr ′,r

(

1 − yr ′,s
)

+ N0

) ]

(8)

AsGr ,r ′ = Gr ′,r (impact of RRH r on RRH r ′ is the same as impact

of RRH r ′ on r ), we have indeed:

Cr
(

yr ,y−r
)

−Cr
(

y′r ,y−r
)

= ϕ
(

yr ,y−r
)

− ϕ
(

y′r ,y−r
)

.
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