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Abstract VARCLUST algorithm is proposed for
clustering variables under the assumption that
variables in a given cluster are linear combinations
of a small number of hidden latent variables, cor-
rupted by the random noise. The entire clustering
task is viewed as the problem of selection of the
statistical model, which is defined by the number of
clusters, the partition of variables into these clus-
ters and the ’cluster dimensions’, i.e. the vector
of dimensions of linear subspaces spanning each
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of the clusters. The “optimal” model is selected
using the approximate Bayesian criterion based
on the Laplace approximations and using a non-
informative uniform prior on the number of clus-
ters. To solve the problem of the search over a huge
space of possible models we propose an extension
of the ClustOfVar algorithm of [29,7] which was
dedicated to subspaces of dimension only 1, and
which is similar in structure to the K-centroid al-
gorithm. We provide a complete methodology with
theoretical guarantees, extensive numerical experi-
mentations, complete data analyses and implemen-
tation. Our algorithm assigns variables to appro-
priate clusterse based on the consistent Bayesian
Information Criterion (BIC), and estimates the
dimensionality of each cluster by the PEnalized
SEmi-integrated Likelihood Criterion (PESEL) of
[24], whose consistency we prove. Additionally, we
prove that each iteration of our algorithm leads
to an increase of the Laplace approximation to
the model posterior probability and provide the
criterion for the estimation of the number of clus-
ters. Numerical comparisons with other algorithms
show that VARCLUST may outperform some pop-
ular machine learning tools for sparse subspace
clustering. We also report the results of real data
analysis including TCGA breast cancer data and
meteorological data, which show that the algo-
rithm can lead to meaningful clustering. The pro-
posed method is implemented in the publicly avail-
able R package varclust.

Keywords variable clustering · Bayesian ap-
proach · k-means · dimensionality reduction ·
subspace clustering
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1 Introduction

Due to the rapid development of measurement and
computer technologies, large data bases are nowa-
days stored and explored in many fields of industry
and science. This in turn triggered development of
new statistical methodology for acquiring informa-
tion from such large data.

In large data matrices it usually occurs that
many of the variables are strongly correlated and
in fact convey a similar message. Principal Com-
ponents Analysis (PCA) [20,14,15,17] is one of the
most popular and powerful methods for data com-
pression. This dimensionality reduction method re-
covers the low dimensional structures spanning the
data. The mathematical hypothesis which is as-
sumed for this procedure is based upon the belief
that the denoised data matrix is of a low rank, i.e.
that the data matrix Xn×p can be represented as

X = M + µ+ E, (1.1)

where M is deterministic, rank(M) � min(n, p),
the mean matrix µ is rank one and the matrix E
represents a centered normal noise.

Thus, PCA model assumes that all points from
the data come from the same low dimensional
space, which is often unrealistic. A natural exten-
sion of this model is the model of subspace cluster-
ing (see [27] and references therein), which assumes
that columns of the matrix M can be clustered in
groups of low dimensions. From the statistical per-
spective, in subspace clustering the model (1.1) is
applied separately for each cluster and the statisti-
cal model for the whole data base is determined by
the partition of variables into different clusters and
the vector of dimensions (ranks of the correspond-
ing M matrices) for each of the clusters, called
here ’cluster dimensions’. From a practical (but
also statistical) point of view, the aim of these ex-
tensions of PCA-type algorithms is to get a better
low dimensional representation of the whole data
set, which in turns should provide some better su-
pervised classification algorithms based on these
data.

In this paper, we propose in Section 2, VAR-
CLUST as an approximate Bayesian approach to
the sparse subspace clustering. Our approach de-
scribed in Section 3 is based on a novelK-centroids
algorithm, made of two steps based on the Laplace
approximation. In the first step, given a partition
of the variables, we use PESEL [24], a BIC-type es-
timator, to estimate the dimensions of each clus-
ter. In the second step we perform the partition
where the similarity between a given variable and
a cluster of variables represented by its linear sub-
space is measured by the Bayesian Information

Criterion in the multiple regression model relating
this variable to the set of the subspace’s princi-
pal components. From a theoretical point of view,
we prove in Section 4 the consistency of PESEL,
i.e. the convergence of the estimator of the cluster
dimension towards its true dimension (see Theo-
rem 1). For the VARCLUST itself, we show that
our algorithm leads to an increase of the Laplace
approximation to the model posterior probabil-
ity(see Corollary 2). From a numerical point of
view, our paper investigates numerous issues in
Section 5. The convergence of VARCLUST is em-
pirically checked and some comparisons with other
algorithms are provided showing that the VAR-
CLUST algorithm seems to have the ability to
retrieve the true model with an higher probabil-
ity than other popular sparse subspace clustering
procedures. Finally, in Section 6, we consider two
important applications to breast cancer and mete-
orological data. Once again, in this part, the aim
is twofold: reduction of dimension but also identi-
fication of groups of genes/indicators which seem
to take action together. In Section 7, the R pack-
age varclust which uses parallel computing for
computational efficiency is presented and its main
functionalities are detailed.

2 VARCLUST model

2.1 A low rank model in each cluster

Let Xn×p be the data matrix with p columns x•j ∈
Rn, j ∈ {1, . . . , p}. The clustering of p variables
x•j ∈ Rn into K clusters consists in considering a
column-permuted matrix X ′ and decomposing

X ′ =
[
X1|X2| . . . |XK

]
(2.1)

such that each bloc Xi has dimension n× pi, with∑K
i=1 pi = p. In this paper we apply to each cluster

Xi the model (1.1):

Xi = M i + µi + Ei, (2.2)

where M i is deterministic, rank(M i) = ki �
min(n, pi), the mean matrix µi is rank one and
the matrix Ei represents the centered normal noise
N(0, σ2

i Id).
As explained in [24], the form of the rank one

matrix µi depends on the relation between n and
pi. When n > pi, the n rows of the matrix µi are

identical, i.e. µi =


ri

...

ri

 where ri = (µi1, . . . , µ
i
pi).
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If n ≤ pi, the pi columns of the matrix µi are iden-

tical, i.e. µi =

(
ci . . . ci

)
with ci = (µi1, . . . , µ

i
n)>.

We point out that our modeling allows some clus-
ters to have pi ≥ n, whereas in other clusters pi
maybe smaller than n. This flexibility is one of im-
portant advantages of the VARCLUST model.

Next we decompose each matrix M i, for i =

1, . . . ,K, as a product

M i = F in×kiC
i
ki×pi (2.3)

The columns of Fn×ki are supposed to be inde-
pendent and will be called factors (by analogy to
PCA).

This model extends the classical model (1.1)
for PCA, which assumes that all variables in the
data set can be well approximated by a linear
combination of just a few hidden ”factors”, or, in
other words, the data belong to a low dimensional
linear space. Here we assume that the data comes
from a union of such low dimensional subspaces.
This means that the variables (columns of the
data matrix X) can be divided into clusters Xi,
each of which corresponds to variables from one
of the subspaces. Thus, we assume that every
variable in a single cluster can be expressed as
a linear combination of small number of factors
(common for every variable in this cluster) plus
some noise. This leads to formulas (2.2) and (2.3).
Such a representation is clearly not unique. The
goal of our analysis is clustering columns in X

and inM , such that all coefficients in the matrices
C1, . . . , CK are different from zero and

∑K
i=1 ki is

minimized.

Let us summarize the model that we study.
An element of M is defined by four parameters
(K,Π,k,Pθ) where:

– K is the number of clusters and K ≤ Kmax for
a fixed Kmax � p,

– Π is a K-partition of {1, . . . , p} encoding a
segmentation of variables (columns of the data
matrix Xn×p) into clusters Xi

n×pi =: XΠi ,
– k = (k1, . . . , kK) ∈ {1, . . . , d}⊗K , where d is

the maximal dimension of (number of factors
in) a cluster. We choose d� n and d� p.

– Pθ is the probability law of the data specified
by the vectors of parameters θ = (θ1, . . . , θK),
with θi containing the factor matrix F i, the co-
efficient matrix Ci, the rank one mean matrix
µi and the error variance σ2

i ,

Pθ(X) =

K∏
i=1

P (XΠi |θi)

and P (XΠi |θi) is defined as follows: let xi•j be
the j-th variable in the i-th cluster and let µi•j
be the j-th column of the matrix µi. The vec-
tors xi•j , j = 1, . . . , pi, are independent condi-
tionally on θi and it holds

xi•j |θi = xi•j |(F i, Ci, µi, σ2
i ) ∼ N(F ici•j+µ

i
•j , σ

2
i In) .

(2.4)

Note that according to the model (2.4), the vec-
tors xi•j |θi, j = 1, . . . , ki, in the same cluster Xi

have the same covariance matrices σ2
i In.

2.2 Bayesian approach to subspace clustering

To select a model (number of clusters, variables in
a cluster and dimensionality of each cluster), we
consider a Bayesian framework. We assume that
for any modelM the prior π(θ) is given by

π(θ) =

K∏
i=1

π(θi) .

Thus, the log-likelihood of the data X given the
modelM is given by

ln (P(X|M)) = ln

(∫
Θ

P(X|θ)π(θ)dθ

)
= ln

K∏
i=1

(∫
Θi

P(Xi|θi)π(θi)dθi

)

=

K∑
i=1

ln

(∫
Θi

P(Xi|θi)π(θi)dθi

)

=

K∑
i=1

ln
(
P(Xi|Mi)

)
, (2.5)

whereMi is the model for the i-th clusterXi spec-
ified by (2.3) and (2.4).

In our approach we propose an informative
prior distribution on M. The reason is that in
our case we have, for given K, roughly Kp dif-
ferent segmentations, where p is the number of
variables. Moreover, given a maximal cluster di-
mension d = dmax, there are dK different selec-
tions of cluster dimensions. Thus, given K, there
are approximately KpdK different models to com-
pare. This number quickly increases with K and
assuming that all models are equally likely we
would in fact use a prior on the number of clus-
ters K, which would strongly prefer large values of
K. Similar problems were already observed when
using BIC to select the multiple regression model
based on a data base with many potential predic-
tors. In [5] this problem was solved by using the
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modified version of the Bayes Information Crite-
rion (mBIC) with the informative sparsity induc-
ing prior onM. Here we apply the same idea and
use an approximately uniform prior on K from the
set K ∈ {1, . . . ,Kmax}, which, for every modelM
with the number of clusters K, takes the form:

π(M) =
C

KpdK

ln(π(M)) = −p ln(K)−K ln(d) + C , (2.6)

where C is a proportionality constant, that does
not depend on the model under consideration. Us-
ing the above formulas and the Bayes formula,
we obtain the following Bayesian criterion for the
model selection: pick the model (partition Π and
cluster dimensions k) such that

ln(P(M|X)) = ln(P(X|M)) + ln(π(M))− ln(P(X))

=

K∑
i=1

lnP(Xi|Mi)− p ln(K) (2.7)

−K ln(d) + C − lnP(X) .

obtains a maximal value. Since P(X) is the same
for all considered models this amounts to selecting
the model, which optimizes the following criterion

C(M|X) =

K∑
i=1

lnP(Xi|Mi)− p ln(K)−K ln(d) .

(2.8)

The only quantity left to calculate in the above
equation is P(Xi|Mi).

3 VARCLUST method

3.1 Selecting the rank in each cluster with the
PESEL method

Before presenting the VARCLUST method, let us
present shortly the PESEL method, introduced in
[24] designed to estimate the number of principal
components in PCA. It will be used in the first
step of the VARCLUST.

As explained in Section 2 (cf. (2.4)), our model
for one cluster can be described by its set of pa-
rameters (for simplicity we omit the index of the
cluster) θ : F ∈ Rn×k, c1, . . . , cp, where ci ∈
Rk×1 (vectors of coefficients), σ2 and µ. In order
to choose the best model we have to consider mod-
els with different dimensions, i.e. different values of
k. The penalized semi-integrated likelihood (PE-
SEL, [24]) criterion is based on the Laplace ap-
proximation to the semi-integrated likelihood and
in this way it shares some similarities with BIC.

The general formulation of PESEL allows for us-
ing different prior distributions on F (when n > p)
or C (when p > n). The basic version of PESEL
uses the standard gaussian prior for the elements
of F or C and has the following formulation, de-
pending on the relation between n and p.

We denote by (λj)j=1,...,p the non-increasing
sequence of eigenvalues of the sample covariance
matrix Sn. When n ≤ p we use the following form
of the PESEL

ln(P(Xi|Mi)) ≈ PESEL(p, k, n) =

−
p

2

 k∑
j=1

ln(λj) + (n− k) ln

 1

n− k

n∑
j=k+1

λj

+ n ln(2π) + n


− ln(p)

nk − k(k+1)

2
+ k + n+ 1

2
(3.1)

and when n > p we use the form

ln(P(Xi|Mi)) ≈ PESEL(n, k, p) =

−
n

2

 k∑
j=1

ln(λj) + (p− k) ln

 1

p− k

p∑
j=k+1

λj

+ p ln(2π) + p


− ln(n)

pk − k(k+1)

2
+ k + p+ 1

2
. (3.2)

The function of the eigenvalues λj of Sn appearing
in (3.1),(3.2) and approximating the log-likelihood
P(Xi|Mi) is called a PESEL function. The crite-
rion consists in choosing the value of k maximizing
the PESEL function.

When n > p, the above form of PESEL co-
incides with BIC in Probabilistic PCA (see [19])
or the spiked covariance structure model. These
models assume that the rows of the X matrix are
i.i.d. random vectors. Consistency results for PE-
SEL under these probabilistic assumptions can be
found in [2].

In Section 4.1 we will prove consistency of PE-
SEL under a much more general fixed effects model
(4.1), which does not assume the equality of laws
of rows in X.

3.2 Membership of a variable in a cluster with the
BIC criterion

To measure the similarity between lth variable and
a subspace corresponding to ith cluster we use the
Bayesian Information Criterion. Since the model
(2.4) assumes that all elements of the error matrix
Ei have the same variance, we can estimate σ2

i by
MLE

σ̂2
i =

∑
`∈Πi ‖x•` − Pi(x•`)‖

2

npi
,

where Pi(x•`) denotes the orthogonal projection of
the column x•` on the linear space corresponding
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to the ith cluster and next use BIC of the form

BIC(l, i) =
1

2

(
−‖x•` − Pi(x•`)‖

2

σ̂2
i

− lnnki

)
.

(3.3)

As an alternative, one can consider a standard
multiple regression BIC, which allows for different
variances in different columns of Ei:

BIC(l, i) = −n ln

(
RSSli
n

)
− ki ln(n), (3.4)

where RSSli is the residual sum of squares from
regression of x•` on the basis vectors spanning ith

cluster.

3.3 VARCLUST algorithm

Initialization and the first step of VARCLUST
Choose randomly aK-partition of p = p01+. . .+p0K
and group randomly p01, . . . , p

0
K columns of X to

form Π0.
Then, VARCLUST proceeds as follows:

Π0 → (Π0, k0) → (Π1, k0) , (3.5)

where k0 is computed by using PESEL K times,
separately to each matrix Xi

0, i = 1, . . . ,K. Next,
for each matrix Xi

0, PCA is applied to estimate
k0i principal factors F 1

i , which represent the ba-
sis spanning the subspace supporting ith cluster
and the center of the clusters. The next partition
Π1 is obtained by using BIC(l, i) as a measure of
similarity between lth variable and ith cluster to
allocate each variable to its closest cluster. After
the first step of VARCLUST, we get the couple:
the partition and the vector of cluster dimensions
(Π1, k0).

Other schemes of initialization can be consider
such as a one-dimensional initialization. Choose
randomly K variables which will play the role of
one dimensional centers of K clusters . Distribute,
by minimizing BIC, the p columns of X to form
the first partition Π1. In this way, after the first
step of VARCLUST we again get (Π1, k0), where
k0 is the K dimensional all ones vector.

Step m+ 1 of VARCLUST In the sequel we con-
tinue by first using PESEL to calculate a new vec-
tor of dimensions and next PCA and BIC to obtain
the next partition:

(Πm, km−1) → (Πm, km) → (Πm+1, km).

4 Theoritical guarentees

In this Section we prove the consistency of PE-
SEL and show that each iteration of VARCLUST
asymptotically leads to an increase of the objective
function (2.8).

4.1 Consistency of PESEL

In this section we prove that PESEL consistently
estimates the rank of the denoised data matrix.
The consistency holds when n or p diverges to in-
finity, while the other dimension remains constant.
This result can be applied separately to each clus-
ter Xi, i ∈ {1, . . . ,K}, of the full data matrix.

First, we prove the consistency of PESEL (Sec-
tion 3.1) when p is fixed as n→∞.

Assumption 1. Assume that the data matrix X
is generated according to the following probabilis-
tic model :

Xn×p = Mn×p + µn×p + En×p, (4.1)

where

– for each n ∈ N, matrices Mn×p and µn×p are
deterministic

– µn×p is a rank-one matrix in which all rows
are identical, i.e. it represents average variable
effect.

– the matrix Mn×p is centered:
∑n
i=1Mij = 0

and rank(Mn×p) = k0 for all n ≥ k0
– the elements of matrix Mn×p are bounded:

supn,i∈(1,...,n),j∈(1,...,p) |Mij | <∞
– there exists the limit: limn→∞

1
nM

T
n×pMn×p =

L and, for all n∣∣∣∣∣ 1nMT
n×pMn×p − L

∣∣∣∣∣ < C

√
2 ln lnn√

n
, (4.2)

where C is some positive constant and L =

UDp×pU
T with

Dp×p =

diag[γi]
k0
i=1 0

0 diag[0]


with non-increasing γi > 0 and UTU = Idp×p.

– the noise matrix En×p consists of i.i.d. terms
eij ∼ N (0, σ2).

Theorem 1 (Consistency of PESEL)
Assume that the data matrix Xn×p satisfies the

Assumption 1. Let k̂0(n) be the PESEL(p, k, n) es-
timator of the rank of M .

Then, for p fixed, it holds

P(∃n0 ∀n > n0 k̂0(n) = k0) = 1.
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Scheme of the Proof.
Let us consider the sample covariance matrix

Sn =
(X − X̄)T (X − X̄)

n
.

and the population covariance matrix Σn =

E (Sn). The idea of the proof is the following.
Let us denote by F (n, k) the PESEL function

in the case when n > p. By (3.2), we have

F (n, k) =

− n

2

[ k∑
j=1

ln(λj) + (p− k) ln

 1

p− k

p∑
j=k+1

λj


+ p ln(2π) + p

]
− ln(n)

pk − k(k+1)
2 + k + p+ 1

2

The proof comprises two steps. First, we quan-
tify the difference between eigenvalues of matrices
Sn, Σn and L. We prove it to be bounded by the
matrix norm of their difference, which goes to 0
at the pace

√
ln lnn√
n

as n grows to infinity, because
of the law of iterated logarith (LIL). We use the
most general form of LIL from [21]. Secondly, we
use the results from the first step to prove that for
sufficiently large n the PESEL function F (n, k) is
increasing for k < k0 and decreasing for k > k0. To
do this, the crucial Lemma 1 is proven and used.
The detailed proof is given in Appendix 8.

Since the version of PESEL for p >> n,
PESEL(n, k, p), is obtained simply by applying
PESEL(p,k,n) to the transposition of X, Theorem
1 implies the consistency of PESEL also in the situ-
ation when n is fixed, p→∞ and the transposition
of X satisfies the Assumption 1.

Corollary 1 Assume that the transposition of the
data matrix Xn×p satisfies the Assumption 1. Let
k̂0(n) be the PESEL(n, k, p) estimator of the rank
of M .

Then, for n fixed, it holds

P(∃p0 ∀p > p0 k̂0(p) = k0) = 1.

Remark. The above results assume that p or n
is fixed. We believe that they hold also in the situa-
tion when n

p →∞ or vice versa. The mathematical
proof of this conjecture is an interesting topic for
a further research. These theoretical results jus-
tify the application of PESEL when n >> p or
p >> n. Moreover, simulation results reported in
[24] illustrate good properties of PESEL also when
p ∼ n. The theoretical analysis of the properties of
PESEL when p/n→ C 6= 0 remains an interesting
topic for further research.

4.2 Convergence of VARCLUST

As noted above in (2.8), the main goal of VAR-
CLUST is identifying the model M which maxi-
mizes, for a given dataset X,

ln(P(M|X)) =

K∑
i=1

lnP(Xi|ki) + ln(π(M)) ,

where ln(π(M)) depends only on the number of
clusters K and the maximal allowable dimension
of each cluster d.

Since, given the number of clusters K, the
VARCLUST model is specified by the vector of
cluster dimensions k = (k1, . . . , kK) and a parti-
tion Π = (Π1, . . . ,ΠK) of p variables into these K
clusters, our task reduces to identifying the model
for which the following objective function

ϕ(Π, k) :=

K∑
i=1

lnP(Xi|ki) , (4.3)

obtains a maximum.
Below we will discuss consecutive steps of the

VARCLUST Algorithm with respect to the opti-
mization of (4.3). Recall that the m + 1 step of
VARCLUST is

(Πm, km−1) → (Πm, km) → (Πm+1, km),

where we first use PESEL to estimate the dimen-
sion and next PCA to compute the factors and
BIC to allocate variables to a cluster.

1. PESEL step: choice of cluster dimen-
sions, for a fixed partition of X.
First, observe that the dimension of ith cluster
in the next (m + 1)th step of VARCLUST is
obtained as

kmi = arg max
ki∈{1,...,d}

PESEL(Xi|ki) .

Thus, denoting by PESEL the PESEL func-
tion from (3.1) and (3.2),

K∑
i=1

PESEL(Xi
m|kmi ) ≥

K∑
i=1

PESEL(Xi
m|km−1i ) .

Now, observe that under the standard regular-
ity conditions for the Laplace approximation
(see e.g. [4])

lnP(Xi|ki) = PESEL(Xi|ki) +On(1)

when n→∞ and pi is fixed and

lnP(Xi|ki) = PESEL(Xi|ki) +Opi(1)
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when pi →∞ and n is fixed (see [24]). Thus,

ϕ(Π, k) =

K∑
i=1

PESEL(Xi|ki) +R ,

where the ratio of R over
∑K
i=1 PESEL(Xi|ki)

converges to zero in probability, under our
asymptotic assumptions.
Therefore, the first step of VARCLUST leads
to an increase of ϕ(Π, k) up to Laplace approx-
imation, i.e. with a large probability when for
all i ∈ {1, . . . ,K}, n >> pi or pi >> n.

2. PCA and Partition step: choice of a par-
tition, with cluster dimensions kmi fixed.
In the second step of the m + 1-st iteration
of VARCLUST, the cluster dimensions kmi are
fixed, PCA is used to compute the cluster cen-
ters F i and the columns of X are partitioned
to different clusters by minimizing the BIC dis-
tance from F i.
Below we assume that the priors πC(dC) and
π(dσ) satisfy classical regularity conditions for
Laplace approximation ([4]). Now, let us define
the kmi –dimensional linear space through the
set of respective directions F i = (F i1, . . . , F

i
ki

)

with, as a natural prior, the uniform distri-
bution πF on the compact Grassman mani-
fold F of free ki-systems of Rn. Moreover, we
assume that the respective columns of coeffi-
cients Ci = (Ci1, . . . , C

i
ki

) are independent with
a prior distribution πC on Rp.
It holds

logP(Xi|ki) = log

∫
F×σ

∫
C

P(Xi|F i, Ci, σi)

π(dCi)π(dσi)πF (dF i)

= log

∫
F×σ

∏
`∈Πi

∫
P(X•`|F i, C•`)

πC(dC•`)π(dσi)πF (dF i).

When n � ki, a Laplace-approximation argu-
ment leads to∫

P(X•`|F i, C•`)πC(dC•`) ≈ eBIC`|Fi,σi

where

BIC`|Fi, σi =
1

2

(
−‖x•` − Pi(x•`)‖

2

σ2
i

− kilnn
)
.

Thus, thanks to the Laplace approximation
above,

logP(Xi|ki)

≈ log

∫
F i×σi

e
∑
`∈Πi BIC`|Fi,σiπ(dσi)πF (dF i)

(4.4)

and
K∑
i=1

logP(Xi|ki)

≈ log

∫
F×σ

e
∑K
i=1

∑
`∈Πi BIC`|Fi,σiπ(dσ)πF (dF ) .

(4.5)

Now, by Laplace approximation, when pi >>

ki, the right-hand side of (4.5) can be approx-
imated by

ψ(Π|k)−
K∑
i=1

dimFi + 1

2
lnn, (4.6)

where we denote

ψ(Π|k) = max(F,σ)ξ(Π,F, σ|k), (4.7)

ξ(Π,F, σ|k) =

K∑
i=1

∑
`∈Πi

(
−‖x•` − Pi(x•`)‖

2

σ2
i

− lnnki

)
.

(4.8)

Now, the term lnn
∑K
i=1

dimFi+1
2 in (4.6) is the

same for each Π, so increasing (4.5) is equiva-
lent to increasing ψ(Π|k).
Now, due to the well known Eckhart-Young
theorem, for each i ∈ {1, . . . ,K}, the first ki
principal components of Xi form the basis for
the linear space ”closest” to Xi, i.e. the PCA
part of VARCLUST allows to obtain Fm and
σm, such that

(Fm, σm|Πm, km) = argmaxF,σξ(Π
m, F, σ|km) .

Thus ψ(Πm|km) = ξ(Πm, Fm, σm|km).
Finally, in the Partition (BIC) step of the algo-
rithm the partition Πm+1 is selected such that

Πm+1|Em, σm, km = argmaxΠξ(Π,E
m, σm|km) .

In the result it holds that

ψ(Πm+1|km) ≥ ψ(Πm|km)

and consequently,

ϕ(Πm+1, km) ≥ ϕ(Πm, km) ,

with a large probability if only ki <<

min(n, pi) for all i ∈ {1, . . . ,K}.

The combination of results for both steps of the
algorithm implies

Corollary 2 In the VARCLUST algorithm, the
objective function ϕ(Πm+1, km) increases with m
with a large probability if for all i ∈ {1, . . . ,K},
ki << min(n, pi) and one of the following two con-
ditions holds: n >> pi or pi >> n .
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Remark 1 The above reasoning illustrates that
both steps of VARCLUST asymptotically lead to
an increase of the same objective function. The for-
mula (4.8) suggests that this function is bounded,
which implies that VARCLUST converges with a
large probability. In Figure 7 we illustrate the con-
vergence of VARCLUST based on the more gen-
eral version of BIC (3.4) and a rather systematic
increase of the mBIC approximation to the model
posterior probability

mBIC(K,Π, k)

=

K∑
i=1

PESEL(Xi
m|kmi )− p lnK −K ln d

in consecutive iterations of the algorithm.

5 Simulation study

In this section, we present the results of simula-
tion study, in which we compare VARCLUST with
other methods of variable clustering. To assess the
performance of the procedures we measure their ef-
fectiveness and execution time. We also use VAR-
CLUST to estimate the number of clusters in the
data set. In all simulations we use VARCLUST
based on the more general version of BIC (3.4).

5.1 Clustering methods

In our simulation study we compare the following
methods:

1. Sparse Subspace Clustering (SSC, [11])
2. Low Rank Subspace Clustering (LRSC, [28])
3. VARCLUST with multiple random initializa-

tions. In the final step, the initialization with
the highest mBIC is chosen.

4. VARCLUST with initialization by the result of
SSC (VARCLUSTaSSC)

5. ClustOfVar (COV, [29], [8])

The first two methods are based on spectral
clustering and detailed description can be found
in the given references. For the third considered
procedure we use the one-dimensional random
initialization. This means that we sample with-
out replacement K variables which are used as
one dimensional centers of K clusters. The fourth
method takes advantage of the possibility to pro-
vide the initial segmentation before the start of the
VARCLUST procedure. It accelerates the method,
because then there is no need to run it many times
with different initializations. We build the centers
by using the second step of VARCLUST (PESEL
and PCA) for a given segmentation. In this case

we use the assignment of the variables returned by
SSC. Finally, we compare mentioned procedures
with COV, which VARCLUST is an extended ver-
sion of. COV also exploits k-means method. Ini-
tial clusters’ centers are chosen uniformly at ran-
dom from the data. Unlike in VARCLUST the cen-
ter of a cluster is always one variable. The simi-
larity measure is squared Pearson correlation co-
efficient. After assignment of variables, for every
cluster PCA is performed to find the first princi-
pal component and make it a new cluster center.
VARCLUST aims at overcoming the weaknesses of
COV. Rarely in applications the subspace is gen-
erated by only one factor and by estimating the di-
mensionality of each cluster VARCLUST can bet-
ter reflect the true underlying structure.

5.2 Synthetic data generation

To generate synthetic data to compare the meth-
ods from the previous section we use two gener-
ation procedures detailed in algorithms 1 and 2.
Later we refer to them as modes. Factors spanning
the subspaces in the first mode are shared between
clusters, whereas in the second mode subspaces are
independent. As an input to both procedures we
use: n - number of individuals, SNR - signal to
noise ratio, K - number of clusters, p - number
of variables, d - maximal dimension of a subspace.
SNR is the ratio of the power of signal to the power
of noise, i.e., SNR = σ2

σ2
e
the ratio of variance of

the signal to the variance of noise.

Algorithm 1 Data generation with shared factors
Require: n, SNR, K, p, d

Number of factors m← K d
2

Factors F = (f1, . . . , fm) are generated indepen-
dently from the multivariate standard normal distri-
bution and then F is scaled to have columns with
mean 0 and standard deviation 1
Draw subspaces dimension d1, . . . dK uniformly from
{1, . . . , d}
for i = 1, . . . ,K do

Draw i-th subspace basis as sample of size di uni-
formly from columns of F as F i
Draw matrix of coefficients Ci from U(0.1, 1) ·
sgn(U(−1, 1))
Variables in the i-th subspace are Xi ← F iCi

end for
Scale matrixX = (X1, . . . , XK) to have columns with
unit variance
return X + Z where Z ∼ N (0, 1

SNR
In)
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Algorithm 2 Data generation with independent
subspaces
Require: n, SNR, K, p, d
Draw subspaces’ dimension d1, . . . dK uniformly from
{1, . . . , d}
for i = 1, . . . ,K do

Draw i-th subspace basis F i as sample of size di
from multivariate standard normal distribution
Draw matrix of coefficients Ci from U(0.1, 1) ·
sgn(U(−1, 1))
Variables in i-th subspace are Xi ← F iCi

end for
Scale matrixX = (X1, . . . , XK) to have columns with
unit variance
return X + Z where Z ∼ N (0, 1

SNR
In)

5.3 Measures of effectiveness

To compare clustering produced by our methods
we use three measures of effectiveness.

1. Adjusted Rand Index - one of the most popu-
lar measures. Let A,B be the partitions that
we compare (one of them should be true parti-
tion). Let a, b, c, d denote respectively the num-
ber of pairs of points from data set that are in
the same cluster both in A and B, that are in
the same cluster in A but in different clusters
in B, that are in the same cluster in B but in
different clusters in A and that are in the dif-
ferent clusters both in A and B. Note that the
total number of pairs is

(
p
2

)
. Then

ARI =(
p
2

)
(a+ d)− [(a+ b)(a+ c) + (b+ d)(c+ d)](
p
2

)2 − [(a+ b)(a+ c) + (b+ d)(c+ d)]

The maximum value of ARI is 1 and when we
assume that every clustering is equally prob-
able its expected value is 0. For details check
[16].
The next two measures are taken from [26]. Let
X = (x1, . . . xp) be the data set, A be a par-
tition into clusters A1, . . . An (true partition)
and B be a partition into clusters B1, . . . , Bm.

2. Integration - for the cluster Aj it is given by
formula

Int(Aj) =

maxk=1,...,m#{i ∈ {1, . . . p} : Xi ∈ Aj ∧Xi ∈ Bk}
#Aj

Cluster Bk for which the maximum is reached
is called integrating cluster of Aj . Integration
can be interpreted as the percentage of data
points from given cluster of true partition that

are in the same cluster in partition B. For the
whole clustering

Int(A,B) =
1

n

n∑
j=1

Int(Aj)

3. Acontamination - for cluster Aj it is given by
formula

Acont(Aj) =
#{i ∈ {1, . . . p} : Xi ∈ Aj ∧Xi ∈ Bk}

#Bk

where Bk is integrating cluster for Aj . Idea of
acontamination is complementary to integra-
tion. It can be interpreted as the percentage of
the data in the integrating cluster Bk are from
Aj . For the whole clustering

Acont(A,B) =
1

n

n∑
j=1

Acont(Aj)

Note that the bigger ARI, integration and
acontamination are, the better is the clustering.
For all three indices the maximal value is 1.

5.4 Simulation study results

In this section we present the outcome of the
simulation study. We generate the synthetic data
100 times. We plot multiple boxplots to compare
clusterings of different methods. By default the
number of runs (random initializations) is set to
ninit = 30 and the maximal number of iterations
within the k-means loop is set to niter = 30. Other
parameters used in given simulation are written
above the plots. They include parameters from
data generation algorithms (1, 2) as well as mode
indicating which of them was used.

5.4.1 Generation method

In this section we compare the methods with re-
spect to the parametermode, which takes the value
shared (data generated using 1), if the subspaces
may share the factors, and the value not_shared
(data generated using 2) otherwise (Figure 1).
When the factors are not shared, SSC and VAR-
CLUST provide almost perfect clustering. We can
see that in case of shared factors the task is more
complex. All the methods give worse results in that
case. However, VARCLUST and VARCLUSTaSSC
outperform all the other procedures and supply ac-
ceptable clustering in contrast to SSC, LRSC and
COV. The reason for that is the mathematical for-
mulation of SSC and LRSC - they assume that the
subspaces are independent and do not have com-
mon factors in their bases.



10 P. Sobczyk, S. Wilczyński, M. Bogdan et al.

Fig. 1: Comparison with respect to the data generation method.
Simulation parameters: n = 100, p = 800, K = 5, d =
3, SNR = 1.

(a) factors not shared

(b) shared factors

5.4.2 Number of variables

In this section we compare the methods with re-
spect to the number of variables (Figure 2). When
the number of features increases, VARCLUST
tends to produce better clustering. For our method
this is an expected effect because when the number
of clusters and subspace dimension stay the same
we provide more information about the cluster’s
structure with every additional predictor. More-
over, PESEL from (3.1) gives a better approxima-

tion of the cluster’s dimensionality and the task
of finding the real model becomes easier. However,
for COV, LRSC, SSC this does not hold as the
results are nearly identical.

5.4.3 Maximal dimension of subspace

We also check what happens when the number
of parameters in the model of VARCLUST in-
creases. In Figure 3, in the first column, we com-
pare the methods with respect to the maximal
dimension of a subspace (d = 3, 5, 7). However,
in real-world clustering problems it is common
that it is not known. Therefore, in the second col-
umn, we check the performance of VARCLUST
and VARCLUSTaSSC when the given maximal di-
mension as a parameter is twice as large as maxi-
mal dimension used to generate the data.

Looking at the first column, we can see that the
effectiveness of VARCLUST grows slightly when
the maximal dimension increases. However, this ef-
fect is not as noticeable as for SSC. It may seem un-
expected for VARCLUST but variables from sub-
spaces of higher dimensions are easier to distin-
guish because their bases have more independent
factors. In the second column, the effectiveness of
the methods is very similar to the first column ex-
cept for d = 3, where the difference is not negligi-
ble. Nonetheless, these results indicate that thanks
to PESEL, VARCLUST performs well in terms of
estimating the dimensions of the subspaces.

5.4.4 Number of clusters

The number of the parameters in the model for
VARCLUST grows significantly with the number
of clusters in the data set. In Figure 4 we can see
that for VARCLUST the effectiveness of the clus-
tering diminishes when the number of clusters in-
creases. The reason is the larger number of param-
eters in our model to estimate. The opposite effect
holds for LRSC, SSC and COV, although it is not
very apparent.

5.4.5 Signal to noise ratio

One of the most important characteristics of the
data set is signal to noise ratio (SNR). Of course,
the problem of clustering is much more difficult
when SNR is small because the corruption caused
by noise dominates the data. However, it is not un-
common in practice to find data for which SNR <

1.
In Figure 5 we compare our methods with re-

spect to SNR. For SNR = 0.5, VARCLUST sup-
plies a decent clustering. In contrary, SSC and
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Fig. 2: Comparison with respect to the number of variables. Simulation parameters: n = 100, K = 5, d = 3, SNR = 1, mode :
shared.

(a) p = 300 (b) p = 600

(c) p = 800 (d) p = 1500

LRSC perform poorly. All methods give better re-
sults when SNR increases, however for SSC this
effect is the most noticeable. For SNR ≥ 1, SSC
produces perfect or almost perfect clustering while
VARCLUST performs slightly worse.

5.4.6 Estimation of the number of clusters

Thanks to mBIC, VARCLUST can be used for au-
tomatic setection of the number of clusters. We
generate the data set with given parameters 100

times and check how often each number of clusters

from range
[
K − K

2 ,K + K
2

]
is chosen (Figure 6).

We see that for K = 5 the correct number of clus-
ters was chosen most times. However, when the
number of clusters increases, the clustering task
becomes more difficult, the number of parameters
in the model grows and VARCLUST tends to un-
derestimate the number of clusters.

5.4.7 Number of iterations

In this section we investigate convergence of mBIC
within k-means loop for four different initializa-
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Fig. 3: Comparison with respect to the number of variables. Simulation parameters: n = 100, p = 600, K = 5, SNR = 1, mode :
shared. In the left column the maximal dimension passed to VARCLUST was equal to d, in the right we passed 2d.

(a) d = 3 (b) d = 3

(c) d = 5 (d) d = 5

(e) d = 7 (f) d = 7
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Fig. 4: Comparison with respect to the number of clusters. Simulation parameters: n = 100, p = 600, d = 3, SNR = 1, mode :
not shared.

(a) K = 5 (b) K = 10

(c) K = 15 (d) K = 20

tions (Figure 7). We can see that it is quite fast:
in most cases it needed no more than 20 iterations
of the k-means loop. We can also notice that the
size of the data set (in this case the number of
variables) has only small impact on the number of
iterations needed till convergence. However, the re-
sults in Figure 7 show that multiple random initial-
izations in our algorithm are required to get satis-
fying results - the value of mBIC criterion varies a
lot between different initializations.

5.4.8 Execution time

In this section we compare the execution times of
compared methods. They were obtained on the
machine with Intel(R) Core(TM) i7-4790 CPU
3.60GHz, 8 GB RAM. The results are in Fig-
ure 8. For the left plot K = 5 and for the right
one p = 600. On the plots for both VARCLUST
and COV we used only one random initialization.
Therefore, we note that for ninit = 30 the execu-
tion time of VARCLUST will be larger. However,
not by exact factor of ninit thanks to parallel im-
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Fig. 5: Comparison with respect to the signal to noise ratio. Simulation parameters: n = 100, p = 600, K = 5, d = 3, mode :
not shared.

(a) SNR = 0.5 (b) SNR = 0.75

(c) SNR = 1 (d) SNR = 2

plementation in [25]. Nonetheless, VARCLUST is
the most computationally complex of these meth-
ods. We can see that COV and SSC do not take
longer for bigger number of clusters when the op-
posite holds for VARCLUST and LRSC. What is
more, when the number of variables increases, the
execution time of SSC grows much more rapidly
than time of one run of VARCLUST. Therefore, for
bigger data sets it is possible to test more random
initializations of VARCLUST in the same time as
computation of SSC. Furthermore, running VAR-

CLUST with segmentation returned by SSC (en-
hancing the clustering) is not much more time con-
suming than SSC itself.

5.4.9 Discussion of the results

The simulation results prove that VARCLUST is
an appropriate method for variable clustering. As
one of the very few approaches, it is adapted to
the data dominated by noise. One of its biggest
advantages is a possibility to recognize subspaces
which share factors. It is also quite robust to in-
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Fig. 6: Estimation of the number of clusters. Simulation parameters: n = 100, p = 600, d = 3, SNR = 1 mode : not shared.

(a) K = 5 (b) K = 10

(c) K = 15 (d) K = 20

crease in the maximal dimension of a subspace.
Furthermore, it can be used to detect the num-
ber of clusters in the data set. Last but not least,
in every setting of the parameters used in our
simulation, VARCLUST outperformed LRSC and
COV and did better or as well as SSC. The main
disadvantage of VARCLUST is its computational
complexity. Therefore, to reduce the execution
time one can provide custom initialization as in
VARCLUSTaSSC . This method in all cases pro-
vided better results than SSC, so our algorithm
can also be used to enhance the clustering results
of the other methods. The other disadvantage of
VARCLUST is a problem with the choice of the pa-

rameters ninit or niter. Unfortunately, when data
size increases, in order to get acceptable clustering
we have to increase at least one of these two val-
ues. However, it is worth mentioning that in case
of parameters used in out tests ninit = 30 and
the maximal number of iterations equal to 30 on a
machine with 8 cores the execution time of VAR-
CLUST is comparable with execution time of SSC.

6 Applications to real data analysis

In this section we apply VARCLUST to two dif-
ferent data sets and show that our algorithm can
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Fig. 7: mBIC with respect to the number of iterations for 4 different initializations. Simulation parameters: n = 100, K = 5, d =
3, SNR = 1 mode : shared.

(a) p = 750 (b) p = 1500

(c) p = 3000

produce meaningful, interpretable clustering and
dimensionality reduction.

6.1 Meteorological data

First, we will analyze air pollution data from
Kraków, Poland [1]. This example will also serve
as a short introduction to the varclust R package.

6.1.1 About the data

Krakow is one of the most polluted cities in Poland
and even in the world. This issue has gained

enough recognition to inspire several grass-root ini-
tiatives that aim to monitor air quality and inform
citizens about health risks. Airly project created
a huge network of air quality sensors which were
deployed across the city. Information gathered by
the network is accessible via the map.airly.eu
website. Each of 56 sensors measures temperature,
pressure, humidity and levels of particulate mat-
ters PM1, PM2.5 and PM10 (number corresponds
to the mean diameter). This way, air quality is de-
scribed by 336 variables. Measurements are done
on an hourly basis.

map.airly.eu
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Fig. 8: Comparison of the execution time of the methods with
respect to p and K. Simulation parameters:n = 100, d =
3, SNR = 1 mode : shared.

(a) With respect to the number of variables

(b) With respect to the number of clusters

Here, we used data from one month. We
chose March, because in this month the num-
ber of missing values is the smallest. First, we
removed non-numerical variables from the data
set. We remove columns with a high percent-
age (over 50%) of missing values and impute the
other by the mean. We used two versions of the
data set: march_less data frame containing hourly
measurements (in this case number of observa-
tions is greater than number of variables) and
march_daily containing averaged daily measure-
ments (which satisfies the p� n assumption). Re-
sults for both versions are consistent. The dimen-

sions of the data are 577×263 and 25×263, respec-
tively. Both data sets along with R code and results
are available on https://github.com/mstaniak/
varclust_example

6.1.2 Clustering based on random initialization

When the number of clusters is not known, we can
use the mlcc.bic function which finds a clustering
of variables with an estimated number of clusters
and also returns factors that span each cluster. A
minimal call to mlcc.bic function requires just the
name of a data frame in which the data are stored.

varclust_minimal <−
mlcc . b i c ( march_less , greedy = F)

The returned object is a list containing the re-
sulting segmentation of variables (segmentation
element), a list with matrices of factors for each
cluster, mBIC for the chosen model, list describing
dimensionality of each cluster and models fitted
in other iterations of the algorithm (non-optimal
models). By default, at most 30 iterations of the
greedy algorithm are used to pick a model. Also by
default it is assumed that the number of clusters
is between 1 and 10, and the maximum dimension
of a single cluster is 4. These parameters can be
tweaked. Based on comparison of mBIC values for
clustering results with different maximum dimen-
sions, we selected 6 as the maximum dimension.

v a r c l u s t_c l u s t e r s =
mlcc . b i c ( march_less , greedy = TRUE,
f l a t . p r i o r = TRUE, max . dim = 6)

To minimize the impact of random initializa-
tion, we can run the algorithm many times and
select best clustering based on the value of mBIC
criterion. We present results for one of clusterings
obtained this way.

We can see that variables describing tempera-
ture, humidity and pressure were grouped in four
clusters (with pressure divided into two clusters
and homogenous clusters for humidity and tem-
perature related variables), while variables that
describe levels of particulate matters are spread
among different clusters that do not describe sim-
ply one size of particulate matter (1, 2.5 or 10),
which may imply that measurements are in a sense
non-homogenous. In Figure 9 we show how these
clusters are related to geographical locations.

6.1.3 Clustering based on SSC algorithm

The mlcc.bic function performs clustering based
on a random initial segmentation. When the num-
ber of clusters is known or can be safely assumed,

https://github.com/mstaniak/varclust_example
https://github.com/mstaniak/varclust_example
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we can use the mlcc.reps function, which can
start from given initial segmentations or a random
segmentation. We will show how to initialize the
clustering algorithm with a fixed grouping. For il-
lustration, we will use results of Sparse Subspace
Clustering (SSC) algorithm. SSC is implemented
in a Matlab package maintained by Ehsan Elham-
ifar [11]. As of now, no R implementation of SSC
is available. We store resulting segmentations for
numbers of clusters from 1 to 20 in vectors called
clx, where x is the number of clusters. Now the
calls to mlcc.reps function should look like the
following example.
vc lu s t10 <− mlcc . reps ( march_less ,

numb . c l u s t e r s =10,max . i t e r =50,
i n i t i a l . segmentat ions=l i s t ( c l 10 ) )

The result is a list with a number of clusters
(segmentation), calculated mBIC and a list of
factors spanning each of the clusters. For both ini-
tialization methods, variability of results regard-
ing the number of clusters diminished by increas-
ing the numb.runs argument to mlcc.bic and
mlcc.reps functions which control the number of
runs of the k-means algorithm.

6.1.4 Conclusions

We applied VARCLUST algorithm to data de-
scribing air quality in Kraków. We were able to
reduce the dimensionality of the data significantly.
It turns out that for each characteristics: temper-
ature, humidity and the pressure, measurements
made in 56 locations can be well represented by a
low dimensional projection found by Varclust. Ad-
ditionally, variables describing different particulate
matter levels can be clustered into geographically
meaningful groups, clearly separating the center
and a few bordering regions. If we were to use these
measurements as explanatory variables in a model
describing for example effects of air pollution on
health, factors that span clusters could be used
instead as predictors, allowing for a significant di-
mension reduction.

The results of the clustering are random by de-
fault. Increasing the number of runs of k-means
algorithm and maximum number of iterations of
the algorithm stabilize the results. Increasing these
parameters also increases the computation time.
Another way to remove randomness is to select
an initial clustering using another method. In the
examples, clustering based on SSC algorithm was
used.

The mlcc.bic function performs greedy search
by default, meaning that the search stops after first
decrease in mBIC score occurs. On the one hand,
this might lead to suboptimal choice of number

Fig. 9: Clusters of variables describing particulate matter levels
on a map of Krakow. Without any prior knowledge on spatial
structure, VARCLUST groups variables corresponding to sen-
sors located near each other.

of clusters, so setting greedy argument to FALSE
might be helpful, but on the other hand, the crite-
rion may become unstable for some larger numbers
of clusters.

6.2 TCGA Breast Cancer Data

In the next subsection, the VARCLUST clus-
tering method is applied on large open-source
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data generated by The Cancer Genome Atlas
(TCGA) Research Network, available on http:
//cancergenome.nih.gov/. TCGA has profiled
and analyzed large numbers of human tumours to
discover molecular aberrations at the DNA, RNA,
protein, and epigenetic levels. In this analysis, we
focus on the Breast Cancer cohort, made up of
all patients reviewed by the TCGA Research Net-
work, including all stages and all anatomopatho-
logical characteristics of the primary breast cancer
disease, as in [6].

The genetic informations in tumoral tissues
DNA that are involved in gene expression are mea-
sured from messenger RNA (mRNA) sequencing.
The analysed data set is composed of p = 60488

mRNA transcripts for n = 1208 patients.
For this data set, our objective is twofold. First,

from a machine learning point of view, we hope
that this clustering procedure will provide a suf-
ficiently efficient dimension reduction in order to
improve the forecasting issues related to the can-
cer, for instance the prediction of the reaction of
patients to a given treatment or the life expectancy
in terms of the transcriptomic diagnostic.
Second, from a biological point of view, the clusters
of gene expression might be interpreted as distinct
biological processes. Then, a way of measuring the
quality of the VARCLUST method is to compare
the composition of the selected clusters with some
biological pathways classification (see Figure 10).
More precisely, the goal is to check if the clusters
constructed by VARCLUST correspond to already
known biological pathways (Gene Ontology, [12]).

6.2.1 Data extraction and gene annotations

This ontological classification aims at doing a cen-
sus of all described biological pathways. To grasp
the subtleties inherent to biology, it is important
to keep in mind that one gene may be involved in
several biological pathways and that most of bio-
logical pathways are slot or associated with each
other. The number of terms on per Biological pro-
cess ontology was 29687 in January 2019 while the
number of protein coding genes is around 20000.
Therefore, one cannot consider each identified bi-
ological process as independent characteristic.

The RNASeq raw counts were extracted from
the TCGA data portal. The scaling normalization
and log transformation ([23]) were computed us-
ing voom function ([18]) from limma package ver-
sion 3.38.3 ([22]). The gene annotation was realised
with biomaRt package version 2.38.0 ([9], [10]).

The enrichment process aims to retrieve a func-
tional profile of a given set of genes in order to
better understand the underlying biological pro-

cesses. Therefore, we compare the input gene set
(i.e, the genes in each cluster) to each of the terms
in the gene ontology. A statistical test can be per-
formed for each bin to see if it is enriched for the
input genes. It should be mentioned that all genes
in the input genes may not be retrieved in the
Gene Ontology Biological Process and conversely,
all genes in the Biological Process may not be
present in the input gene set. To perform the GO
enrichment analysis, we used GoFuncR package
[13] version 1.2.0. Only Biological Processes iden-
tified with Family-wise Error Rate p-value < 0.05

were reviewed. Data processing and annotation en-
richment were performed using R software version
3.5.2.

Fig. 10: Bioinformatic annotation process for each cluster iden-
tified by VARCLUST

6.2.2 Evolution of the mBIC and clusters strucure

The number of clusters to test was fixed to 50,
100, 150, 175, 200, 225, 250. The maximal subspace
dimension was fixed to 8, the number of runs was
40, and the maximal number of iterations of the
algorithm was 30.

As illustrated in the Figure 12, the mBICs re-
main stable from the 35th iteration. The mBIC
is not a.s. increasing between 50 and 250 clus-
ters sets. The mBIC for K = 175 and K = 250

clusters sets were close. The proportion of clusters
with only one principal component is also higher
for K = 175 and K = 250 clusters sets.

6.2.3 Biological specificity of clusters

In this subsection, we focus on some biological in-
terpretations in the case: K = 175 clusters.
In order to illustrate the correspondance between
the genes clustering and the biological annota-
tions in Gene Ontology, we have selected one clus-
ter with only one Gene Ontology Biological Pro-
cess (Cluster number 3) and one cluster with two
Gene Ontology Biological processes (Cluster num-
ber 88). We keep this numbering notation in the
sequel.
Among the 98 genes in Cluster 3, 70 (71.4%, called
“Specific Genes”) were reported in the GO Bi-
ological process named calcium-independent cell-
cell adhesion via plasma membrane, cell-adhesion

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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Fig. 11: Left: evolution of the mBIC with the number of clusters; middle: evolution of the mBIC with the number of iterations;
right: number of principal components in clusters in terms of K.

molecules (GO : 0016338). The number of prin-
cipal components in this cluster was 8 (which
may indicate that one Biological process has to
be modeled using many components). Among the
441 genes in Cluster 88, 288 (65.3%) were re-
ported in the GO Biological processes named small
molecule metabolic process ( GO : 0044281) and
cell-substrate adhesion (GO : 0031589). The num-
ber of principal components in this cluster was also
8.
To investigate whether the specific genes, i.e. in-
volved in the GO biological process are well sep-
arated from unspecific genes (not involved in the
GO biological process), we computed two standard
PCAs in Clusters 3 and 88 separetely. As shown
in Figure 12, the separation is well done.

7 VARCLUST package

The package [25] is an R package that imple-
ments VARCLUST algorithm. To install it, run
install.packages("varclust") in R console.

The main function is called mlcc.bic and it pro-
vides estimation of:

– Number of clusters K
– Clusters dimensions k
– Variables segmentation Π

These estimators minimize modified BIC described
in Section 2.
For the whole documentation use ?mlcc.bic.
Apart from running VARCLUST algorithm using
random initializations, the package allows for a hot
start specified by the user.

Information about all parameters can be found
in the package documentation. Let us just point
out few most important from practical point of
view.

– If possible one should use multiple cores com-
putation to speed up the algorithm. By default

all but one cores are used. User can override
this with numb.cores parameter

– To avoid algorithm getting stuck in the lo-
cal minimum one should run it with ran-
dom initialization multiple times (see parame-
ter numb.runs). Default value is 20. We advice
to use as many runs as possible (100 or even
more).

– We recommend doing a hot-start initialization
with some non-random segmentation. Such a
segmentation could be result of some expert
knowledge or different clustering method e.g.
SSC. We explore this option in simulation stud-
ies.

– Parameter max.dim should reflect how large di-
mensions of clusters are expected to be. Default
value is 4.
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8 Appendix. Proof of the PESEL
Consistency Theorem

In the following we shall denote the sample covari-
ance matrix

Sn =
(X − X̄)T (X − X̄)

n
,

the covariance matrix

Σn = E (Sn) =
MT
n×pMn×p

n
+
n− 1

n
σ2Id
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Fig. 12: Repartition of specific (red color) and unspecific genes (black color) according to a standard PCA.

and the heterogeneous PESEL function F (n, k)

F (n, k) =

− n

2

 k∑
j=1

ln(λj) + (p− k) ln

 1

p− k

p∑
j=k+1

λj

+ p ln(2π) + p


︸ ︷︷ ︸

G(k)

− ln(n)
pk − k(k+1)

2 + k + p+ 1

2︸ ︷︷ ︸
P (n,k)

(8.1)

Proposition 1 Let E have i.i.d. entries with a
normal distribution N (0, σ2). There exists a con-
stant C > 1 such that almost surely,

∃n0
∀n≥n0

‖ 1

n
(E − Ē)T (E − Ē)− σ2Id‖ ≤

C

√
2 ln lnn√

n

Proof. It is a simple corollary of LLN and LIL. The
term jk of 1

n (E − Ē)T (E − Ē) equals

1

n
(E•j−Ē•j1)T (E•k−Ē•k1) =

1

n

n∑
i=1

EijEik−Ē•jĒ•k.

An upper bound of convergence of 1
n

∑n
i=1EijEik

to σ2δjk is
√
2 ln lnn√

n
. It is easy to show that an

upper bound of convergence of Ē•jĒ•k to 0 is
(
√
2 ln lnn√

n
)2 ≤

√
2 ln lnn√

n
. ut

Proposition 2 Let E have i.i.d. entries with a
normal law N (0, σ2). There exists a constant C >

1 such that almost surely,

∃n0
∀n≥n0

‖ 1

n
(X − X̄)T (X − X̄)− (L+ σ2Id)‖ ≤

C

√
2 ln lnn√

n
(8.2)

Proof. It is easy to check that X−X̄ = M+E−Ē.
We write

1

n
(X − X̄)T (X − X̄) =

1

n
MTM +

1

n
(E − Ē)T (E − Ē)

+
1

n
(MTE + ETM)− 1

n
(MT Ē + ĒTM)

To the first two terms we apply, respectively,
the hypothesis (4.2) and the Proposition 1.

To prove the right pace of convergence of the
third term 1

n (MTE + ETM) we consider every
term (MTE)ij = 〈M•i, E•j〉 for which we use a
generalized version of Law of Iterated Logarithm
from [21]. Its assumptions are trivially met for ran-
dom variables

MliElj ∼ N (0,M2
liσ

2)

as they are Gaussian and Bn+1

Bn
= n+1

n → 1, where
Bn is defined as Bn =

∑
lM

2
liσ

2. Then, by [21],
the following holds

lim sup
n→∞

∑
lMliElj√

2Bn log logBn
= 1 a.s.

The fourth term 1
n (MT Ē + ĒTM) is treated

using Cauchy-Schwarz inequality:
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|( 1

n
MT Ē)ij | =

1

n
|〈M•i, Ē•j〉|

≤ 1

n
‖M•i‖‖Ē•j‖ =

1

n
‖M•i‖

√
n E•j

2

=
1√
n
‖M•i‖|E•j |.

By LIL, |E•j | ≤ C
√
2 ln lnn√

n
. The square of the

first term ( 1√
n
‖M•i‖)2 converges to a finite limit

by the assumption (4.2). ut

Lemma 1 There exists C ′ > 0 such that almost
surely,

∃n0 ∀n ≥ n0 ‖λ(S)− λ(Σ)‖∞ ≤ C ′
√

2 ln lnn√
n

,

(8.3)

where S is sample covariance matrix for data
drawn according to model (4.1), Σ is its expected
value and function λ(·) returns sequence of eigen-
values.

Proof.
Observe that∥∥∥∥∥ (X −X)T (X − X̄)

n
−Σ

∥∥∥∥∥
∞

≤ ‖ 1

n
(X − X̄)T (X − X̄)− (L+ σ2Id)‖

+ ‖(L+ σ2Id)−Σ‖

We apply Proposition 2 to the first term and
the assumption (4.2) to the second one.
Inequality (8.3) holds because (8.2) holds and, by
Theorem A.46(A.7.3) from [3], when A,B are sym-
metric, it holds

max
k
|λk(A)− λk(B)| ≤ ‖A−B‖,

where function λk(·) denotes the kth eigenvalue in
the non-increasing order. ut

Proof of Theorem 1.

Let εn = maxi |λi(Sn)−λi(L)|. From Lemma 1
we have limn εn = 0 almost surely, so for k ≤ k0−1,
for almost all samplings, there exists n0 such that
if n ≥ n0,

εn < σ2 and εn <
1

4
min

k≤k0−1
ck(γ),

where ck(γ) = γk+1 −
∑p
k+2 γi

p−k−1 > 0.
We study the sequence of non-penalty terms G(k)

(see (8.1)). For simplicity, from now on, we use
notation λj = λj(Sn). We consider G(k)−G(k+1)

thus getting rid of the minus sign.

G(k)−G(k + 1) =

= lnλk+1 + (p− k − 1) ln

∑p
k+2 λj

p− k − 1

− (p− k) ln

∑p
k+1 λj

p− k

= lnλk+1 − ln

∑p
k+2 λj

p− k − 1

+ (p− k)

[
ln

∑p
k+2 λj

p− k − 1
− ln

∑p
k+1 λj

p− k

]
Let us now denote a = λk+1 and b =

∑p
k+2 λj

p−k−1 .
Then the above becomes:

ln a− ln b+ (p− k)

[
ln b− ln

b(p− k − 1) + a

p− k

]
Case k ≤ k0 − 1.

We will use notation as above and exploit concav-
ity of ln function by taking Taylor expansion at
point x0

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x?)

2
(x− x0)2,

where x? ∈ (x, x0).

Let x0 = θx1 + (1− θ)x2 and x = x1. Then

f(x1) = f(x0) + f ′(x0)(1− θ)(x1 − x2)

+
f ′′(x?1)

2
(1− θ)2(x1 − x2)2.

Similarly, we take x = x2, multiply both equations
by θ and 1− θ respectively and sum them up. We
end up with the formula

θf(x1) + (1− θ)f(x2) =

f(x0) + θ(1− θ)(x2 − x1)2
[
f ′′(x?1)

2
(1− θ) +

f ′′(x?2)

2
θ

]
.

In our case f ′′(x) = − 1
x2 , which means that

f ′′(x?i )
2 < f ′′(x2)

2 because x?1 ∈ (x1, x0) < x2 and
x?2 ∈ (x0, x2) < x2. This yields

θf(x1) + (1− θ)f(x2)− f(x0) =

θ(1− θ)(x2 − x1)2
[
f ′′(x?1)

2
(1− θ) +

f ′′(x?2)

2
θ

]
(8.4)

< θ(1− θ)(x2 − x1)2
f ′′(x2)

2

Now, going back to G(k), we set

x1 = b =

∑p
k+2 λj

p− k − 1
, x2 = a = λk+1, θ = 1− 1

p− k
.

(8.5)
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By multiplying both sides of (8.4) by p− k we get

(p− k − 1) ln

(∑p
k+2 λj

p− k − 1

)
+ ln(λk+1)

− (p− k) ln

(
(1− 1

p− k
)

∑p
k+2 λj

p− k − 1
+

1

p− k
λk+1

)
< −

(
1− 1

p− k

)(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ2k+1

So, using k + 1 ≤ k0 in the last inequality, we get

G(k + 1)−G(k) >(
1− 1

p− k

)(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ2k+1

=
p− k − 1

p− k

(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ2k+1

>
p− k0 − 1

p− k0

(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ21

From Lemma 1, λi ∈ [γi+σ2−εn, γi+σ2 +εn],
where εn goes to 0 and

(
λk+1 −

∑p
k+2 λj

p− k − 1

)
≥

≥ γk+1 + σ2 − εn −
∑p
k+2(γi + σ2 + εn)

p− k − 1

= ck(γ)− 2εn ≥ min
k≤k0−1

ck(γ)− 2εn > 0

for some constants ck(γ). Thus

G(k + 1)−G(k)

>
p− k0 − 1

p− k0
( min
k≤k0−1

ck(γ)− 2εn)2
1

2(γ1 + σ2 + εn)2

>
C ′

2
min

k≤k0−1
ck(γ) > C > 0

where C,C ′ are constants independent of k and n.
It follows that for n large enough

n

2
[G(k + 1)−G(k)]

≥ n

2
C

� lnn

2
(p− k)

= P (n, k + 1)− P (n, k).

This implies that the PESEL function
F (n, k) = n

2G(k) − P (n, k) is strictly increasing
for k ≤ k0.

Case k ≥ k0. By Lemma 1 we have that, for
almost all samplings, there exists n0 such that if
n ≥ n0,

εn ≤ C
√

2 ln lnn√
n

and εn <
1

2
σ2.

We apply the formula (8.4) and as before, we
use the notations (8.5). It yields

G(k + 1)−G(k) ≤
(

1− 1

p− k

)(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2b2

≤ (λk+1 − b)2
1

2b2

≤ (|λk+1 − σ2|+ |σ2 − b|)2 1

2b2

≤ (|λk+1 − σ2|+
∑p
k+2 |σ2 − λj |
p− k − 1

)2
1

2b2

≤ 4ε2n
1

2(σ2 − εn)2
≤ C2 2 ln lnn

n

4

2σ4

= C ′
ln lnn

n

and consequently

n

2
[G(k + 1)−G(k)] ≤ C ′′ ln lnn

Recall that the PESEL function equals F (n, k) =
n
2G(k)−P (n, k). The increase of n2G(k) is smaller
than the rate ln lnn, while the increase of penalty
P (n, k + 1) − P (n, k) = lnn

2 (p − k) is of rate lnn.
Consequently, there exists n1 such that for n > n1,
the PESEL function is strictly decreasing for k ≥
k0 with probability 1.
We saw in the first part of the proof that the
PESEL function F (n, k) is strictly increasing for
k ≤ k0, for n big enough. It implies that with prob-
ability 1, there exists n2 such that for n > n2 we
have k̂0(n) = k0. ut
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