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Abstract: Studies on Protein-Protein interactions (PPI) can be helpful for the annotation of 10 

unknown protein functions and for the understanding of cellular processes, such as specific 11 
virulence mechanisms developed by bacterial pathogens. In that context, several methods have 12 
been extensively used in recent years for the characterization of Mycobacterium tuberculosis PPI to 13 
further decipher TB pathogenesis. This review aims at compiling the most striking results based on 14 
in vivo methods (yeast and bacterial two-hybrid systems, protein complementation assays) for the 15 
specific study of PPI in mycobacteria. Moreover, newly developed methods, such as in-cell native 16 
mass resonance and proximity-dependent biotinylation identification, will have a deep impact on 17 
future mycobacterial research, as they are able to perform dynamic (transient interactions) and 18 
integrative (multiprotein complexes) analyses. 19 

Keywords: tuberculosis; Mycobacterium; protein-protein interactions; virulence 20 

 21 

1. Introduction 22 

Mycobacterium tuberculosis (Mtb) is the main causative agent of human tuberculosis (TB), which 23 
is the leading global cause of death due to a single infectious agent. In 2017, TB killed an estimated 24 
1.6 million people, according to the World Health Organization. In addition, there is an alarming 25 
increase in multi-drug resistant TB cases (0.6 million cases in 2017). Therefore, actions to fight TB 26 
have to be urgently taken and understanding the mechanisms underpinning mycobacterial 27 
virulence, such as signaling pathways [1], transport across the mycobacterial cell wall [2] or lipid 28 
metabolism [3], may be useful to tackle TB. 29 

 30 
Proteins perform various key roles in bacteria (enzymatic reactions, transport, DNA replication, 31 

etc), either alone or in association with other partners as part of stable or dynamic complexes. Thus, 32 
elucidating the role of individual proteins is essential to understand the physiology of bacteria, 33 
including Mtb. Moreover, deciphering Protein-Protein Interactions (PPI) is crucial not only to 34 
understand bacterial physiology but also to elucidate host-pathogen interactions [4]. In addition, 35 
studying PPI may facilitate the discovery of unknown protein functions by the ‘guilty by association’ 36 
principle, implying that the partner(s) of a protein with unknown function may provide valuable 37 
information about the function of that protein [5]. This may potentially lead to the identification of 38 
new antibacterial drug targets. 39 

 40 
The aim of this review is to provide an overview of the in vivo methods used for the 41 

characterization of PPI in mycobacteria and to highlight the pros and cons for each method. Several 42 
examples will illustrate how these studies contributed to decipher the mycobacterial interactome, 43 
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providing worthy insights into Mtb virulence mechanisms [6]. This review will focus only on in vivo 44 
methods, and in vitro methods, such as co-precipitation, surface plasma resonance or isothermal 45 
titration calorimetry, will not be discussed here. 46 

2. Yeast two-hybrid (Y2H) system 47 

2.1. Principle 48 

The Y2H system is based on the reconstitution of an active transcriptional activator (TA) in 49 
yeast (e.g. GAL4 or LexA) [7]. The proteins of interest (POIs) are produced as chimeric proteins with 50 
the DNA-binding domain (BD) or the activating domain (AD) of the TA (Figure 1). If the two 51 
proteins under investigation interact, the BD and AD are close enough to each other to allow the 52 
transcription of reporter genes, usually auxotrophic markers (HIS3, ADE2 and MEL1) or lacZ, which 53 
in turn allows yeast colonies to grow on selective media or to change color on colorimetric media. 54 

 55 

Figure 1. Schematic representation of the Y2H system. 56 

2.2. The Y2H system to study mycobacterial PPI 57 

2.2.1. Signaling pathways 58 

Sigma factors are subunits of the RNA polymerase complex required for transcriptional 59 
initiation of specific sets of genes. As rapid adaptation is key to the success for bacterial pathogens, 60 
sigma factors play a critical role in Mtb physiology and virulence [8]. Among the dozen of sigma 61 
factors in Mtb, SigA, also called RpoV, is essential for growth and is involved in the transcription of 62 
housekeeping genes [9]. To study mycobacterial PPI involving SigA, the Y2H system was used to 63 
screen a Mtb H37Rv library, which led to the identification of the transcriptional regulator WhiB3 as 64 
an interactor of SigA/RpoV [10]. In addition, a single amino acid change in SigA/RpoV (R515H) was 65 
sufficient to abolish its interaction with WhiB3 in the Y2H system [10]. Another transcriptional 66 
regulator, WhiB1, was shown to interact with the alpha-glucan branching enzyme GlgB [11]. SigF is 67 
the general stress response sigma factor of Mtb and is responsible for the regulation of genes 68 
involved in cell wall protein synthesis and in the survival of the bacilli in the host [12,13]. The Y2H 69 
system was also used to study the interactions between anti-anti-sigma factor, anti-sigma factor 70 
RsbW and sigma factor SigF [14].  71 

Besides sigma factors, the Mtb genome encodes a dozen two‐component systems (TCS), 72 
allowing gene expression to adapt in response to a wide variety of signals. Some of these TCS were 73 
shown to be involved in the regulation of virulence [15]. The Kdp signal transduction pathway 74 
appears to be the primary response mechanism to osmotic stress, which is mediated by differences 75 
in the potassium concentrations within the bacteria. The N‐terminal sensing module of the histidine 76 
kinase KdpD interacts with a portion thought to be cytosolic of two membrane lipoproteins, LprF 77 
and LprJ, to modulate kpd expression [16]. Another study assessed pairwise interactions in the Y2H 78 
system between histidine kinases and response regulators of all the mycobacterial TCS in order to 79 
assess crosstalks between the different TCS [17]. 80 
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The Mtb genome also encodes eleven Serine/Threonine Protein Kinases (STPK), from PknA to 81 
PknL. As the Mtb phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins 82 
that participate in many aspects of Mtb biology (signal transduction, cell wall synthesis, 83 
pathogenesis, etc), STPK are critical for the regulation of Mtb physiology [18]. In an extensive study, 84 
492 STPK interactants were identified by a Mtb proteome microarray [19]. To confirm the in vitro 85 
screening, the Y2H system was further used to assess the interactions between 75 randomly-selected 86 
interactants with PknB, PknD, PknG and PknH. However, only 52% (39 out 75) of the STPK 87 
interactants could be confirmed by the Y2H system, which may be due to the fact that PknB, PknD 88 
and PknH were tested without their membrane domain, as this could have been detrimental in the 89 
Y2H system [19]. 90 

2.2.2. Mtb cell division 91 

As for other living organisms, mycobacterial cell growth and division needs to be tightly 92 
organized and regulated [20]. In particular, divisome assembly depends on the proper localization 93 
of FtsZ in order to form the Z ring structure [20]. Thus, a Y2H screening was performed using Mtb 94 
FtsZ as a bait, which led to the identification of SepF (Rv2147c), an essential protein of the division 95 
machinery in mycobacteria [21].  96 

Reactivation of dormant Mtb requires the resuscitation-promoting factors (Rpf), which are 97 
peptidoglycan–hydrolyzing enzymes [22]. The Y2H system was used to identify a RpfB and RpfE 98 
interactant, named RipA for Rpf-interacting protein A [23]. Additional work performed with RipA 99 
as a bait in the Y2H system further identified the protein PBP1/PonA1 as a new partner, potentially 100 
modulating the RipA-RpfB cell wall degradation activity [24]. 101 

2.2.3. Mtb cell wall composition 102 

Mycolic acids are essential lipid components of the mycolic 103 
acid-arabinogalactan-peptidoglycan complex (MAPc) in the Mtb cell wall and they contribute 104 
directly to the pathogenicity of Mtb [25]. The Y2H system was extensively used to demonstrate that 105 
the discrete enzymes of the Fatty Acid Synthase-II (FAS-II) system interact with each other during 106 
mycolic acid biosynthesis, suggesting the existence of specialized and interconnected protein 107 
complexes [26-28]. 108 

Another study using the Y2H system showed that Rv2623, a universal stress-response protein, 109 
and Rv1747, a putative ABC transporter, interact with each other to regulate mycobacterial growth 110 
by potentially impeding Rv1747 function as a phosphatidylinositol mannoside (PIM) transporter 111 
[29]. PIM are immunologically active lipids that can modulate the host immune response [30,31]. 112 

2.2.4. Secretion of Mtb virulence factors 113 

ESAT-6 and CFP-10 are both secreted antigens, which play a key role in Mtb virulence [32,33]. 114 
The Y2H system helped to demonstrate that EccCa1, EccCb1 and EccD1, which are components of 115 
the type VII secretion system ESX-1 [34,35], are required for ESAT-6/CFP-10 secretion [36]. In 116 
addition, a single amino acid change in the C-terminal region of CFP-10 was enough to abolish the 117 
CFP-10/EccCb1 interaction in the Y2H system, and to prevent secretion of the ESAT-6/CFP-10 118 
complex [37]. Similarly to CFP-10, the C-terminal region of EspC, another ESX-1 substrate, was 119 
shown to interact with Rv3868, a cytosolic ATPase, by a Y2H approach [38].     120 

2.2.5. Regulation of mycobacterial protease activity 121 

Mycobacterial proteases play critical roles in pathogenesis [39]. For instance, the site-2 protease 122 
Rip1 (Rv2869c) is a major virulence determinant in Mtb [40,41]. A Y2H screening performed using 123 
the Rip1 PDZ domain against a Mtb library led to identification of PDZ-interacting protease 124 
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regulators 1 and 2 (Ppr1 and Ppr2, corresponding to Rv3333c and Rv3439c, respectively) and these 125 
interactions are thought to prevent nonspecific activation of the Rip1 pathway [42]. 126 

2.3. Pros and cons 127 

The Y2H system allows direct assessment of pairwise interactions between partners in an in vivo 128 
context. However, as the readout is based on transcription factors active in the nucleus of the yeast 129 
cell, the Y2H system requires nuclear translocation of the proteins under study. Thus, 130 
membrane-associated proteins are difficult if not impossible to study in this system (Table 1). 131 
Furthermore, only two (or three in the case of a Y3H system) partners can be studied at a time. In 132 
addition, the Y2H system is not suitable for the study of PPI in their natural cellular context, and 133 
specific mycobacterial Post-Translational Modifications (PTM) or cofactors may be lacking in yeast 134 
(Table 1). 135 

Table 1. Comparison of the different techniques used to study mycobacterial PPI. 136 

Methods Contact 
Membrane 

proteins 

Nature of the 

interaction 

Cellular 

context 

PTM and 

cofactors 
HTS 1 

Y2H direct no binary no no yes  

BACTH direct yes binary yes/no yes/no yes  

M-PFC direct yes binary yes yes yes 

Split-Trp direct yes binary yes yes yes 

Crosslinking direct yes complex yes yes no 

In-cell NMR proximity yes complex yes/no yes/no no 

Biotinylation proximity yes complex yes yes yes 
1 HTS, High-Throughput Screening 137 

3. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system 138 

3.1. Principle 139 

The BACTH system is based on the interaction-mediated reconstitution of an active Bordetella 140 
pertussis adenylate cyclase (CyaA) in Escherichia coli [43-45]. POIs are genetically fused to the 141 
N-terminal or C-terminal ends of the subunits T18 or T25 of CyaA (Figure 2). The enzyme is inactive 142 
when T18 and T25 are physically separated. When the POIs interact, the proximity of T18 and T25 143 
allows the generation of cyclic AMP (cAMP), which then binds to the Catabolite Activator Protein 144 
(CAP). This cAMP/CAP complex then activates the transcription of reporter genes (lac and mal 145 
operons). As lac and mal operons are involved in lactose and maltose catabolism, respectively, this 146 
allows E. coli to grow on media on which lactose or maltose is the unique carbon source. 147 
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Figure 2. Schematic representation of the BACTH system. 149 

3.2. The BACTH system to study mycobacterial PPI 150 

3.2.1. Signaling pathways 151 

Mtb SigE plays an important role in the intracellular life of mycobacteria and regulates the 152 
expression of several genes that are important for maintaining the integrity of the cell envelope 153 
during stress, particularly during macrophage infection, since SigE is required to arrest phagosome 154 
maturation [46,47]. SigE interacts with the anti-sigma factor RseA in the BACTH system, and using 155 
this system residues C70 and C73 of RseA have been shown to be required for full interaction, which 156 
prevents the transcription of genes that are controlled by SigE [48]. 157 

The BACTH system was also used to study the interactions between components of TCS, such 158 
as the C-terminal domain of the response regulator MtrA and the histidine kinase MtrB [49]. 159 
Although the environmental signals sensed by MtrA/B are unknown, this TCS is essential for 160 
mycobacterial growth. On the other hand, overexpression of mtrA was shown to impede in vivo 161 
proliferation of Mtb [50,51]. In another study, the sensor kinase KdpD was found to interact in the 162 
BACTH system with the membrane peptide KpdF, potentially altering KdpABC transporter 163 
function [52]. In the same study, a screening was performed using KdpF as a bait against a Mtb 164 
H37Rv DNA library, which led to the identification of MmpL7 and MmpL10 as interactors [52]. 165 
These proteins are members of the MmpL protein family involved in lipid and iron transport in 166 
mycobacteria [53,54]. It was further shown that KdpF also interacts with the nitrosative stress 167 
detoxification proteins NarI and NarK2, as well as with a protein highly induced upon nitrosative 168 
stress, Rv2617c [55]. This PPI network suggests that the KdpF peptide could promote the 169 
degradation of these partners involved in nitrosative stress, leading to decreased intracellular 170 
multiplication of the mycobacteria [55]. 171 

3.2.2. Cell division 172 

The BACTH system was also used to characterize the mycobacterial cell division. It allowed the 173 
identification of interactions between FtsW, FtsZ and PbpB [56]. Another study demonstrated that 174 
FtsZ is able to interact with ClpX, the substrate-recognition domain of the ClpXP protease, 175 
potentially modulating Z-ring structure formation and negatively regulating FtsZ polymerization 176 
[57]. FtsZ also interacts with CrgA (Rv0011c), a protein that possibly facilitates septum formation 177 
[58]. Another study showed that the membrane protein CwsA (Rv0008c) interacts with CrgA and 178 
Wag31, both involved in mycobacterial peptidoglycan biosynthesis [59]. Together these studies 179 
highlight the value of the BACTH system to characterize the mycobacterial divisome [60]. 180 

3.2.3. Mtb cell wall composition 181 



Pathogens 2019, 8, x FOR PEER REVIEW 6 of 17 

 

A BACTH screening using as a bait KasA, a component of FAS-II system, revealed that KasA 182 
interacts with PpsB and PpsD, which are two enzymes involved in the biosynthesis of lipid 183 
phthiocerol dimycoserosate (PDIM). This suggests a possible transfer of lipids between the FAS-II 184 
system and the PDIM biosynthetic pathways [61], highlighting the importance of PPI in the course of 185 
mycobacterial cell wall biosynthesis. Similar to mycolic acids, PDIM are involved in mycobacterial 186 
virulence [62,63]. 187 

EccA1 is an ATPase and belongs to ESX-I, the mycobacterial type VII secretion system [34]. It 188 
was shown that the Mycobacterium marinum EccA1 activity is required for optimal mycolic acid 189 
biosynthesis, probably through its interaction with FAS-II components (KasA and KasB), the 190 
mycolic acid condensase Pks13 and potentially with the mycolic acid methyltransferase MmaA4 191 
[64]. In addition, EchA6, a putative enoyl-CoA hydratase, also interacts with several members of the 192 
FAS-II system (KasA and InhA), suggesting a possible role in feeding FAS-II with long-chain fatty 193 
acids [65]. 194 

The BACTH system was also used to detect interactions between the transporter-like Rv3789 195 
and the galactosyltransferase Glft1, involved in arabinogalactan biosynthesis, another component of 196 
the mycobacterial MAPc [66]. 197 

Recently, a Mtb genome-wide screening using MmpL3 as a bait in BACTH system identified 198 
several interactants related to mycolic acid biosynthesis (MmpL11 and Rv0228=TmaT), PG 199 
biosynthesis (Rv3909, Rv3910 and Rv1337), glycolipid biosynthesis (Rv0227c, Rv0236c=AftD and 200 
Rv1457c) and cell division (CrgA) [67]. 201 

3.2.4. Mtb virulence factors 202 

The BACTH system was used to search for partners of the virulence-associated factor Erp, 203 
which is required for optimal multiplication of Mtb in murine bone marrow-derived macrophages 204 
and in vivo in mice [68]. This led to the identification of two putative membrane proteins, Rv1417 and 205 
Rv2617c [69], the functions of which remain yet to be established. 206 

MgtC is a virulence factor that participates to the adaptation of mycobacteria to magnesium 207 
deprivation [70]. The BACTH system was used to assess the interactions between MgtC from Mtb 208 
and a MgtR peptide from Salmonella typhimurium [71], known to promote MgtC degradation in 209 
Salmonella [72]. Thus, the BACTH system is also useful to evaluate the anti-virulence activity of 210 
peptides (or proteins). 211 

HbhA is a surface-exposed adhesin that is involved in the binding of mycobacteria to 212 
non-phagocytic cells, a necessary process for Mtb dissemination [73], and in the formation of 213 
intracellular lipid inclusions [74]. The BACTH system was used to demonstrate that HbhA interacts 214 
with Rv0613c and MmpL14 [75]. In addition, deletion of the orthologous gene of rv0613c in 215 
Mycobacterium smegmatis prevents cell-surface exposure of HbhA [75], illustrating that the BACTH 216 
system can be helpful to start deciphering novel protein secretion mechanisms. 217 

A three-hybrid system was developed in E. coli and helped to confirm the interactions between 218 
ESAT-6, CFP-10 and EccCb1 [76], as previously described with individual binary interactions 219 
identified in the Y2H system [36,37]. 220 

3.2.5. High-Throughput screening applied to BACTH 221 

The BACTH system has mostly been used to study pairwise interactions between a limited 222 
number of proteins. However, a global Mtb PPI network was also studied using the BACTH system. 223 
By using the nearly complete Mtb gene sets, it led to the identification of more than 8,000 interactions 224 
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involving 2,907 mycobacterial proteins [77]. All these potential interactions now require further 225 
validation and characterization using complementary approaches. 226 

3.3. Pros and cons 227 

Like the Y2H system, the BACTH system also permits to test direct interactions of pairwise 228 
partners in an in vivo environment and is limited to detect binary interactions (or potentially ternary 229 
interactions in the case of the bacterial three-hybrid system). However, unlike the Y2H system, 230 
membrane-associated proteins can be studied in the BACTH system, as long as T18 and T25 reside in 231 
the cytoplasmic compartment of the bacteria. The bacterial cellular context is partially maintained 232 
but it lacks the specificity of the mycobacterial cell wall organization (Table 1). Finally, some 233 
bacterial PTM and cofactors may be present in E. coli, however, all specific mycobacterial PTM and 234 
cofactors are absent (Table 1). 235 

4. Methods developed for use with live mycobacteria 236 

4.1. The mycobacterial protein fragment complementation (M-PFC) 237 

The Y2H and BACTH systems have their limitations, as the identified interactions do not 238 
necessarily occur in their natural environment. In addition, neither system can take care of the 239 
specific mycobacterial cell wall organization, and some of the specific PTM and cofactors (Table 1). 240 
Hence, systems to directly assess PPI in a mycobacterial environment have been developed. The 241 
mycobacterial protein fragment complementation (M-PFC) technology relies on the functional 242 
reconstitution of a murine dihydrofolate reductase (mDHFR) in M. smegmatis [78]. The POIs are 243 
fused to complementary fragments of mDHFR (Figure 3). If the POIs interact, the reconstitution of 244 
an active mDHFR confers resistance to the antibiotic trimethoprim. This system was validated by 245 
confirming the interactions between ESAT-6 and CFP-10, membrane-associated DosS and cytosolic 246 
DosR, and membrane-associated KdpD and cytosolic KdpE [78]. The authors performed a screen 247 
using a Mtb library and CFP-10 as a bait, which confirmed interactions of CFP-10 with ESAT-6 and 248 
identified new interactions of CFP-10 with Rv0686, FtsQ, ClpC1, Pks13 and Rv2240c [78]. 249 
Interestingly, the interaction between CFP-10 and mycolic acid condensase Pks13 could not be 250 
reproduced in the Y2H system, inferring that this interaction requires a specific mycobacterial 251 
environment to be detected [78]. 252 

 253 

Figure 3. Schematic representation of the M-PFC technology. 254 

4.1.1. Signaling pathways 255 

M-PFC was also used to demonstrate interactions between PknH and the response regulator 256 
DosR, demonstrating convergence between STPK and TCS signaling in Mtb [79]. In combination 257 
with Mtb proteome microarrays and Y2H approaches, M-PFC was used to further validate 258 
interactions between STPK protein interactants and the two selected STPK PknB and PknD [19].  259 
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4.1.2. Cell division 260 

In agreement with the BACTH system, M-PFC confirmed interactions between ClpX and FtsZ 261 
[57]. M-PFC also confirmed interactions between FtsZ and SepF [80], independently of the screening 262 
performed in the Y2H system using FtsZ as a bait, as mentioned above [21].  263 

4.1.3. Peptidoglycan biosynthesis 264 

Mur synthases (MurC-F), which are essential and involved in peptidoglycan biosynthesis in 265 
mycobacteria [81], interact with regulatory proteins and proteins involved in cell division, such as 266 
PknA and PknB [82].  267 

4.2. The split-protein sensor (Split-Trp) 268 

Split-Trp (or protein fragment complementation assay) requires a tryptophan biosynthetic 269 
pathway, which is present in mycobacteria. It relies on the reconstitution of an active Trp1p enzyme, 270 
only if the POIs interact with each other (Figure 4 and Table 1). This will then allow the tryptophan 271 
auxotrophic strain of M. smegmatis hisA to grow on media without tryptophan [83]. The validity of 272 
Split-Trp was assessed by confirming interactions between ESAT-6 and CFP-10, and the 273 
homodimerization of GlfT1 and RegX3 [83]. In parallel with M-PFC, Split-Trp was used to evaluate 274 
interactions between PknH and DosR. However, only the phosphorylation-defective form of DosR 275 
(T198A/T205A) was able to interact with PknH in this system, suggesting that Split-Trp is less 276 
sensitive than M-PFC [79]. 277 

 278 

Figure 4. Schematic representation of the Split-Trp technology. 279 

4.3. In vivo crosslinking in live mycobacteria 280 

In vivo crosslinking was developed to directly address PPI in a natural environment in order to 281 
limit false positive interactions or miss transient interactions (Table 1). It relies on the use of 282 
crosslinking agents, such as formaldehyde or (sulfo-)disuccinimidyl suberate, generating covalent 283 
adducts of two spatially close proteins (Figure 5). Using formaldehyde as a crosslinking agent, Mtb 284 
subunit E1 of the pyruvate dehydrogenase complex was shown to interact with nine M. smegmatis 285 
proteins [84]. Nonetheless, this approach could generate false positives, as naturally biotinylated 286 
mycobacterial proteins may interfere with the purification protocol [84]. 287 
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 288 

Figure 5. Schematic representation of in vivo crosslinking. 289 

A more recent approach consists in incorporating the UV-crosslinking unnatural amino acid 290 
p-benzoylphenylalanine, added to the culture medium, via nonsense suppression in the sequence of 291 
the protein under study [85]. Upon UV irradiation of live cells, this allows the formation of a 292 
covalent adduct between the studied protein and any interactant, thus capturing physiological 293 
interactions in a native environment. This method was applied to the lipoprotein LprG [86], which is 294 
involved in cell surface exposure of lipoarabinomannan, the regulation of triacylglycerol levels, 295 
phagolysosomal fusion and Mtb virulence [87-89]. Among 23 identified interactants, the authors 296 
focused on the site-specific interactions of LprG with LppI and LppK, as well as on the physical and 297 
functional interactions between LprG and the mycoloyltransferase Ag85A conditioning cell growth 298 
and mycolic acid composition [86]. 299 

4.4. Pros and cons 300 

Methods developed for use with live mycobacteria are devoted to test direct interactions 301 
between potential partners within the mycobacterial environment, in the presence of an adequate 302 
cellular organization and the potentially required cofactors or PTM. M-PFC and Split-Trp can be 303 
used to characterize pairwise interactions, whereas in vivo crosslinking may be useful to demonstrate 304 
the existence of protein complexes (Table 1). However, this latter technique is hardly amenable for 305 
the development of a high-throughput screening system (Table 1). As distance and orientation 306 
between the tested proteins are important, Split-Trp may lead to false positive or false negative 307 
results, as shown for some ESAT-6 and CFP-10 interactions [83]. Thus, the use of several 308 
independent methods in mycobacteria is important in order to eliminate false positive or false 309 
negative results. 310 

5. Conclusion and perspectives 311 

All the methods listed above greatly contributed to the understanding of Mtb virulence 312 
mechanisms by focusing on PPI. However, despite the tremendous amount of data generated by 313 
these different technologies, deciphering mycobacterial PPI in terms of multiprotein and dynamic 314 
complexes requires more specific and more appropriate systems. In that regard, novel methods, 315 
such as in-cell Native Mass Resonance (NMR) spectroscopy or the proximity-dependent 316 
biotinylation assay, appear to be very promising (Table 1). 317 

 318 
In-cell NMR is useful to study the conformation and the dynamics of biological macromolecules 319 

(such as protein complexes) under physiological conditions (i.e. within living cells) [90]. For 320 
instance, in-cell NRM was used to study the intrinsically disordered mycobacterial protein Pup, a 321 
functional analog of ubiquitin [91]. Pup targets mycobacterial proteins for proteasome-mediated 322 
degradation, a process that is directly involved in Mtb virulence [92]. Pup was studied for its 323 
interaction in E. coli with the mycobacterial proteasomal ATPase Mpa and with the intact 324 
mycobacterial proteasome (Mpa plus Mtb proteasome core particle), showing that the proteasome 325 
complex had a higher affinity for Pup than Mpa alone [93]. However, the application of in-cell NMR 326 
directly in living mycobacteria remains to be tested and further developed. 327 

 328 
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Proximity-dependent biotinylation assays [94] consist in generating a hybrid protein between 329 
the POI and a biotin ligase (e.g. a variant of E. coli BirA [95] or A. aeolicus biotin ligase [96]) or an 330 
engineered ascorbic acid peroxidase (e.g. APEX [97,98]) (Figure 6). APEX catalyzes the conversion of 331 
its substrate biotin-phenol into short-lived and highly reactive radicals, leading to the covalent 332 
attachment of biotin to electron-rich amino acids (such as tyrosines) of proximal proteins [94]. As the 333 
technique is directly performed in the organism of interest, whose subcellular structures are kept 334 
intact, it greatly minimizes false-positive identifications. The hybrid protein can properly localize, 335 
perform its function and add a biotin residue to all potential partners in spatial proximity (in a 10- to 336 
20-nm radius). Once the biotin is covalently bound to the proximal proteins, classical lysis methods 337 
are not expected to interfere in the process, in contrast to other approaches, such as co-precipitation 338 
or tandem affinity purification. The bacterial lysate can then be subjected to purification using 339 
streptavidin-based beads or columns. After stringent washes, elution and tryptic digestion, the 340 
samples can be subjected to mass spectrometry analysis to detect which biotinylated proteins are 341 
enriched in the samples. This method may be particularly suitable for the study of PPI in a natural 342 
context, for particular subcellular structures or for proteins involved in specific mycobacterial 343 
processes (such as cell wall biosynthesis or virulence mechanisms). Although Mtb possesses a biotin 344 
synthesis pathway [99] that could interfere with this technique, the use of relevant controls (e. g. a 345 
similar production of the POI not fused to the biotin ligase) would allow the identification of a 346 
specific subset of enriched biotinylated proteins, representing either direct interactants or 347 
spatially-close partners. This technology has not yet been applied to mycobacteria, but may be 348 
worthwhile to be tested for the study of Mtb PPI. 349 

 350 
Figure 6. Schematic representation of the proximity-dependent biotinylation assay. 351 
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