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Felipe Wallison Chaves Silva† Sylvain Ervedoza‡ Diego Araujo de Souza§

April 30, 2021

Abstract
In this work, we push further the analysis of the problem of switching controls proposed in

[E. Zuazua. Switching control. J. Eur. Math. Soc. (JEMS), 13(1):85–117, 2011]. The problem
consists in the following one: assuming that one can control a system using two or more actuators,
does there exist a control strategy such that at all times, only one actuator is active? We answer
positively to this question when the controlled system corresponds to an analytic semigroup spanned
by a positive self-adjoint operator which is null-controllable in arbitrary small times. Similarly as in
[E. Zuazua. Switching control. J. Eur. Math. Soc. (JEMS), 13(1):85–117, 2011], our proof relies on
analyticity arguments and will also work in finite dimensional setting and under some further spectral
assumptions when the operator spans an analytic semigroup but is not necessarily self-adjoint.

1 Introduction
Settings and main results. In this article, we are interested in the following system:

y′ +Ay = Bu, t ∈ (0, T ), y(0) = y0 ∈ H. (1.1)

Here, y is the state variable, assumed to belong to a Hilbert space H, ′ denotes the time derivative and
A describes the free dynamics and −A generates a C0 semigroup. The function u is the control, acting
on the system through the control operator B, which is assumed to be in L (U,H), where U is a Hilbert
space, and u will be searched in the space L2(0, T ;U), with T > 0.

Controllability of systems of the form (1.1) have been analyzed thoroughly in many works. We do
not intend to give an exhaustive account of the theory, and we simply refer to the textbook [30].

Here, we focus on the case where U can be identified to U1 × U2 through an isomorphism, i.e.

there exists a linear isomorphism π : U1 × U2 → U, (1.2)

so that we can associate to B ∈ L (U,H) two operators B1 ∈ L (U1, H) and B2 ∈ L (U2, H) such that

∀(u1, u2) ∈ U1 × U2, Bπ(u1, u2) = B1u1 +B2u2. (1.3)

The control problem (1.1) can then be rewritten as

y′ +Ay = B1u1 +B2u2, t ∈ (0, T ), y(0) = y0, (1.4)
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with u1 ∈ L2(0, T ;U1) and u2 ∈ L2(0, T ;U2).
The question we are interested in is the possibility of constructing switching controls, that is, controls

u1 ∈ L2(0, T ;U1) and u2 ∈ L2(0, T ;U2) such that

a.e. in t ∈ (0, T ), ‖u1(t)‖U1
‖u2(t)‖U2

= 0. (1.5)

Informally, this means that at each time t, only one control is active.
Of course, one cannot expect to have better controllability properties for (1.4) under the condition

(1.5) than for the general case (1.1). We shall thus assume some controllability properties for (1.1) and
discuss what can be obtained for the control problem (1.4) under the condition (1.5).

More precisely, we will assume that the system (1.1) is null-controllable in arbitrary small times, i.e.
for all T > 0, there exists a constant CT such that for all y0 ∈ H, there exists u ∈ L2(0, T ;U) such that
the solution y of (1.1) satisfies

y(T ) = 0, (1.6)

and
‖u‖L2(0,T ;U) 6 CT ‖y0‖H . (1.7)

In fact, we will rather use the following equivalent observability property (see e.g. [30, Theorem
11.2.1]): For all T > 0, there exists CT such that for all zT ∈ H, the solution z of

−z′ +A∗z = 0, t ∈ (0, T ), z(T ) = zT ∈ H, (1.8)

satisfies
‖z(0)‖H 6 CT ‖B∗z‖L2(0,T ;U). (1.9)

Our goal then is to show the following result:

Theorem 1.1. Assume that system (1.1) is null-controllable in arbitrary small times and that one of
the following two conditions hold:

• A : D(A) ⊂ H → H is a self-adjoint positive definite operator with compact resolvent, H being a
Hilbert space;

• H is a finite dimensional vector space.

Let B ∈ L (U,H), where U is a Hilbert space, and assume that U is isomorphic to U1 × U2 for some
Hilbert spaces U1 and U2, and define B1 and B2 as in (1.3).

Then system (1.4) is null-controllable in arbitrary small times with switching controls, i.e. controls
satisfying (1.5). To be more precise, given any T > 0 and any y0 ∈ H, there exist control functions
u1 ∈ L2(0, T ;U1) and u2 ∈ L2(0, T ;U2) such that the solution y of (1.4) satisfies (1.6) while the control
functions satisfy the switching condition (1.5).

The proof of Theorem 1.1 is given in Section 2. It is strongly inspired by the work [31] and revisits
two ideas which are already presented there but that we exploit further. Indeed, to construct the controls
u1 and u2, we minimize, for zT ∈ H, the functional

J(zT ) =
1

2

∫ T

0

max{ ‖B∗1z(t)‖2U1
, α(t)‖B∗2z(t)‖2U2

} dt+ 〈y0, z(0)〉H , (1.10)

where z is the solution of the adjoint problem (1.8), and α = α(t) is given by

α(t) = 1 +
1

2
sin(ωt), t ∈ R, (1.11)

where ω ∈ R∗ is suitably chosen.
Similarly as in [31], the main difficulty will be to guarantee that for any minimizer ZT of J (in a

suitable class to be defined later), the set {t ∈ (0, T ), ‖B∗1Z(t)‖2U1
= α(t)‖B∗2Z(t)‖2U2

} is of measure
zero, thus guaranteeing the switching structure of the controls provided that way, or corresponds to the
straightforward case ZT = 0, see Section 2 for more details.
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As it turns out, this property will strongly use the analyticity of the semigroup of generator −A∗.
But more than that, we will strongly use the fact that α is analytic and oscillates at infinity and therefore
no resonances effect preventing from the switching structure (1.5) can arise.

Before going further, let us remark that the work [31] proposes a similar strategy, see [31, p.94 - 95 and
Theorem 2.2], but did not manage to conclude that the set {t ∈ (0, T ), ‖B∗1Z(t)‖2U1

= α(t)‖B∗2Z(t)‖2U2
}

is either of zero measure or corresponds to the trivial case ZT = 0 in the general set up we propose:
there, only the finite dimensional case was considered and it was assumed that B1 and B2 were scalar
(i.e. U1 = U2 = R) and that (A,B1 − α−B2) and (A,B1 + α+B2) satisfy Kalman rank conditions for
some α− and α+ in the accumulation sets of α at −∞ and +∞ respectively. Note in particular that
these conditions are not satisfied for the 2× 2 control system

A =

(
0 0
0 0

)
, B1 =

(
1
0

)
, B2 =

(
0
1

)
.

Some extensions were given in some particular infinite dimensional settings and for non-scalar control
operators, but under strong spectral assumptions. Namely, only the case of the heat equation has been
discussed, when the following assumptions are satisfied:

• the set of eigenvalues (λk)k∈N satisfies that for all Λ ∈ R, there is at most one pair (k, `) such that
λk + λ` = Λ,

• the eigenvectors (ϕk)k∈N of the Laplace operator satisfy for all k ∈ N, ‖B∗1ϕk‖U1
6= ‖B∗2ϕk‖U2

.

Here, our arguments avoid these strong spectral requirements by fully using the analytic function
α = α(t) in (1.10) and the fact, that for α of the form (1.11), the set of accumulation points at −∞
is a non-trivial interval. We emphasize that our work differs from [31] in the analysis of the set {t ∈
(0, T ), ‖B∗1Z(t)‖2U1

= α(t)‖B∗2Z(t)‖2U2
} and the sufficient conditions required to prove that it is of zero

measure, allowing to state the existence of switching controls under the minimal assumption that system
(1.1) is null-controllable.

Remark 1.2. Let us also point out that this result is easy to obtain in finite dimensional settings, as it
was mentioned to us by Marius Tucsnak, who we hereby thank. Indeed, when H is of finite dimension,
it is easy to check that for all T > 0, for any i ∈ {1, 2}, considering any non-empty open time interval
Ii, the set Ri(Ii) defined by

Ri(Ii) =

{∫ T

0

e−(T−s)ABi1Ii(s)ui(s) ds, with ui ∈ L2(0, T )

}
,

i.e. the reachable set for (1.4) at time T starting from y0 = 0 and with controls ui acting only in the
time interval Ii (1Ii is the indicator function of the interval Ii), the other control being null, equals to
the set Ri defined by

Ri = Ran (Bi, ABi, · · · , Ad−1Bi),

where d is the dimension of the space H. In particular, Ri(Ii) is independent of the choice of the time
interval Ii.

Recall then that if H is a finite dimensional space of dimension d and system (1.1) is controllable, the
Kalman rank condition is satisfied, i.e. Ran (B,AB, · · · , An−1B) = Rd, so that by construction (recall
(1.3)) R1 +R2 = Rd.

Therefore, using the above comments, given any initial datum y0 ∈ H and non-empty open time
sub-intervals I1 and I2 of (0, T ), there exists controls u1 ∈ L2(0, T ;U1) and u2 ∈ L2(0, T ;U2) such that
the solution y of (1.4) satisfies (1.6) while u1 is supported in I1 and u2 is supported in I2.

Even if this is a stronger statement than the one of Theorem 1.1 in the case of finite dimension, our
approach has the advantage of building a strategy which naturally constructs switching controls, optimizing
the choice of the switching times, while the above result would give switching structures through a priori
choices of the supports of the controls u1 and u2.

In fact, our proofs can be adapted to the case of more than 2 control operators and to unbounded
control operators B ∈ L (U,D(A∗)′). Assume that U is isomorphic to U1 × · · · × Un for some n ∈ N∗
satisfying n > 2, i.e.

there exists a linear isomorphism π : U1 × · · · × Un → U, (1.12)
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so that we can associate to B ∈ L (U,D(A∗)′) n operators Bi ∈ L (Ui,D(A∗)′), i ∈ {1, · · · , n}, by the
formula

∀(u1, · · · , un) ∈ U1 × · · · × Un, Bπ(u1, · · · , un) =

n∑
i=1

Biui. (1.13)

When having n controls ui ∈ L2(0, T ;Ui), the interesting notion of switching control is then the following:

a.e. in t ∈ (0, T ),

n∏
i=1

∑
j 6=i

‖ uj(t)‖Uj

 = 0. (1.14)

In other words, we shall say that the controls (u1, · · · , un) ∈ L2(0, T ;U1 × · · · × Un) are switching if
almost everywhere in t ∈ (0, T ), at most one control is active.

We then claim that Theorem 1.1 can be generalized to this case:

Theorem 1.3. Assume that system (1.1) is null-controllable in arbitrary small times and that one of
the following two conditions hold:

• A : D(A) ⊂ H → H is a self-adjoint positive definite operator with compact resolvent, H being a
Hilbert space;

• H is a finite dimensional vector space.

Let B ∈ L (U,D(A∗)′), where U is n Hilbert space, let n ∈ N∗ with n > 2, and assume that U is
isomorphic to U1 × · · · × Un for some Hilbert spaces Ui, i ∈ {1, · · · , n}, and define Bi for i ∈ {1, · · · , n}
as in (1.13).

Then the system

y′ +Ay =

n∑
i=1

Biui, t ∈ (0, T ), y(0) = y0, (1.15)

is null-controllable in arbitrary small times with switching controls, i.e. controls satisfying (1.14). To
be more precise, given any T > 0 and any y0 ∈ H, there exist n control functions ui ∈ L2(0, T ;Ui),
i ∈ {1, · · · , n}, such that the solution y of (1.15) satisfies (1.6) while the control functions satisfy the
switching condition (1.14).

The proof of Theorem 1.3 is given in Section 3 and follows the same steps as those in the proof of
Theorem 1.1.

We will then give several examples of applications, in particular regarding general parabolic systems
and Stokes problem, in Section 4. We shall also explain under which assumptions Theorems 1.1 and
1.3 can be extended to non-self adjoint operators A with compact resolvent which generates an analytic
semigroup, see Section 5 and Theorem 5.1. However, it is important to point out immediately that the
assumptions required to deal with non-self adjoint operators seem quite delicate to check in practice, as
we will explain in two examples, due to the possible complexity of the spectrum in those cases.

Related results. As said above, this work is strongly related to the work [31], which triggered our
analysis. But more generally, it is related to the common idea that minimizing `1 norms enforces sparsity.
This idea has been developed thoroughly in the context of optimal control, see e.g. [1, 21, 22, 23] and
references therein.

As we will see later in the examples described in Section 4, when considering parabolic systems or
Stokes problem, Theorem 1.3 will easily provide controllability results with controls having at each time at
most one active component. This is in sharp contrast with the questions addressed for parabolic systems
or Stokes models when the control can act on only one component, in which the controllability properties
can be strongly modified depending on the geometry of the domains or the time of controllability, see
e.g. [2, 3, 14] and the references therein, while the use of non-linear terms may help to re-establish
control properties, see e.g. the works [7, 9, 10]. In other words, the notion that we are analyzing in this
context truly lies in between the notions of controllability with controls acting on all components and
controllability with controls acting only on one component.

4



Acknowledgements. We deeply thank Franck Boyer for his encouragements regarding this work, and
we thank him especially for having pointed out to us the example (5.4) provided in Section 5.

2 Proof of Theorem 1.1
The structure of the proof of Theorem 1.1 is exactly the same whether A is a self-adjoint operator or H
is a finite dimensional space, and strongly follows the one presented in [31].

Let y0 ∈ H and T > 0 be fixed, and then introduce the functional J defined in (1.10) for zT ∈ H and
z solving (1.8).

Since inf α = 1/2 > 0 and supα = 3/2 < ∞, it is clear that the observability property (1.9) implies
that for all T > 0, there exists a constant CT such that for all zT ∈ H,

‖z(0)‖2H 6 C2
T

∫ T

0

max{‖B∗1z(t)‖2U1
, α(t)‖B∗2z(t)‖2U2

} dt. (2.1)

Although the functional J in (1.10) is convex, the functional J is in general not coercive with respect to
the norm of H (this is for instance the case when considering the heat equation). We thus introduce the
space

X = H
‖·‖obs

, (2.2)

i.e. the completion of the space H with respect to the norm ‖ · ‖obs given by

‖zT ‖2obs =

∫ T

0

max{‖B∗1z(t)‖2U1
, α(t)‖B∗2z(t)‖2U2

} dt. (2.3)

One then easily checks that, since this norm is equivalent to∫ T

0

‖B∗z(t)‖2U dt,

for α of the form (1.11), the space X does not depend on the choice of the parameter ω in (1.11).
Using (2.1), it is clear that the functional J in (1.10) admits a unique extension (still denoted the

same way) as a continuous functional in X, and that it is coercive in X, and stays convex.
The functional J has therefore a minimizer ZT ∈ X. To derive the Euler-Lagrange equation satisfied

by ZT , it is convenient to first analyze when the set

I = {t ∈ (0, T ), ‖B∗1Z(t)‖2U1
= α(t)‖B∗2Z(t)‖2U2

} (2.4)

is of non-zero measure.
Note that, when H is of finite dimension, X = H, and thus, for ZT ∈ H, the function t 7→

‖B∗1Z(t)‖2U1
− α(t)‖B∗2Z(t)‖2U2

is in fact continuous on [0, T ]. When H is of infinite dimension, the
set X might be more intricate than H; Still, as we will see in the proof of Lemma 2.1, for ZT ∈ X, the
function t 7→ ‖B∗1Z(t)‖2U1

−α(t)‖B∗2Z(t)‖2U2
is in fact continuous on any interval of the form (0, T ′) with

T ′ < T (see (2.11)), and thus the set I is properly defined.
We claim that the set I can be of non-zero measure only in the straightforward case ZT = 0 in the

two cases we are interested in:

Lemma 2.1. When A is a self adjoint positive definite operator with compact resolvent and α is as in
(1.11) with ω ∈ R \ {0}, the set I is necessarily of zero measure, except in the case ‖B∗1Z‖L2(0,T ;U1) =
‖B∗2Z‖L2(0,T ;U2) = 0 where I = (0, T ).

Lemma 2.2. Let H be a finite-dimensional space. Let (λk)k∈{1,··· ,K} be the eigenvalues of the matrix
A∗ ordered so that <(λk) 6 <(λk+1) for all k and define the set W as follows:

W = {0} ∪
{
=(λk)−=(λk1),

1

2
(=(λk)−=(λk1)), for all (k, k1) such that <(λk) = <(λk1)

}
. (2.5)

Then, for α as in (1.11) with ω ∈ R \W , the set I is necessarily of zero measure, except in the trivial
case ‖B∗1Z‖L2(0,T ;U1) = ‖B∗2Z‖L2(0,T ;U2) = 0 where I = (0, T ).

5



The proofs of Lemma 2.1, respectively Lemma 2.2, are postponed to Section 2.1, respectively Section
2.2.

Remark 2.3. We point out that Lemma 2.1 and Lemma 2.2 do not use the unique continuation property
‖B∗1Z‖L2(0,T ;U1) = ‖B∗2Z‖L2(0,T ;U2) = 0 implies that Z = 0 in (0, T ), but only the analyticity of the
semigroup and the clear structure of the spectrum of the operator A when A is a matrix or a self-adjoint
operator. This will be of interest in extending Theorem 1.1 to n operators, see Section 3.

Based on the above results, using the observability property (1.9), we deduce that the set I is of zero
measure except in the trivial case ZT = 0. Therefore, when ZT 6= 0 setting

I1 = {t ∈ (0, T ), ‖B∗1Z(t)‖2U1
> α(t)‖B∗2Z(t)‖2U2

}, (2.6)
and

I2 = {t ∈ (0, T ), ‖B∗1Z(t)‖2U1
< α(t)‖B∗2Z(t)‖2U2

}, (2.7)

the Euler-Lagrange equation satisfied by Z easily yields that for all zT ∈ H,

0 =

∫
I1

〈B∗1Z(t), B∗1z(t)〉U1
dt+

∫
I2

α(t)〈B∗2Z(t), B∗2z(t)〉U2
dt+ 〈y0, z(0)〉H , (2.8)

see [31, p.91–93] for the careful justification of this identity, that we briefly recall in the Appendix for
completeness.

It is then easy to check that, setting

u1(t) =

{
B∗1Z(t) for t ∈ I1,
0 for t ∈ I2,

and u2(t) =

{
0 for t ∈ I1,
α(t)B∗2Z(t) for t ∈ I2,

(2.9)

the corresponding solution y of (1.4) satisfies (1.6), while u1 and u2 satisfy the switching condition (1.5).
On the other hand, it is easy to check that, if ZT = 0, then y0 = 0 and the controls u1 = 0 and u2 = 0

are also suitable to control the trajectory (1.4) to zero at time T (i.e. (1.6)), and obviously satisfy the
switching condition (1.5).

It therefore remains to show Lemma 2.1 and Lemma 2.2, whose proofs are given in the next sections.

2.1 Proof of Lemma 2.1: The case of a self-adjoint positive definite operator
A with compact resolvent

In order to prove that the set I is of zero measure except when ‖B∗1Z‖L2(0,T ;U1) = ‖B∗2Z‖L2(0,T ;U2) = 0,
we will consider a strictly positive and strictly increasing sequence Tn going to T as n→∞ and we will
show that for all n ∈ N, the set

In = I ∩ (0, Tn) (2.10)

is of zero measure except in the trivial case where B∗1Z and B∗2Z vanish identically on (0, Tn). This will
entail that I is of zero measure as well except in the trivial case where B∗1Z and B∗2Z vanish identically.

Let then n ∈ N corresponding to Tn. From (1.9) applied between Tn and T , there exists Cn such
that for all zT ∈ H, the solution z of (1.8) satisfies

sup
t∈(0,Tn)

‖z(t)‖H 6 Cn‖B∗z‖L2(0,T ;U) 6
√

2Cn‖zT ‖obs.

Therefore, the map zT ∈ H 7→ z(t) ∈ C0([0, Tn];H) extends by continuity to X, and in particular, for
ZT ∈ X,

Z is well-defined and continuous on (0, Tn) with values in H, and
− Z ′ +A∗Z = 0, t ∈ (0, Tn), Z(Tn) = Zn ∈ H, (2.11)

and the set In can be equivalently defined as

In = {t ∈ (0, Tn), ‖B∗1Z(t)‖2U1
= α(t)‖B∗2Z(t)‖2U2

}.
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Now, since Z satisfies (2.11), Z is an analytic function on (0, Tn) because −A∗ = −A is the generator of
an analytic semigroup, and it can thus be extended uniquely as an analytic function on (−∞, Tn) as the
solution of

−Z ′ +A∗Z = 0, t ∈ (−∞, Tn), Z(Tn) = Zn ∈ H. (2.12)

Therefore, since α also is an analytic function, if In is of positive measure, then

∀t ∈ (−∞, Tn), ‖B∗1Z(t)‖2U1
= α(t)‖B∗2Z(t)‖2U2

. (2.13)

Our next goal is to prove that (2.13) cannot be satisfied except in the trivial case ‖B∗1Z‖L2(0,Tn;U1) =
‖B∗2Z‖L2(0,Tn;U2) = 0. We thus assume (2.13).

Now, since A is a positive definite self-adjoint operator with compact resolvent, its spectrum is given
by a positive strictly increasing sequence of eigenvalues 0 < λ1 < λ2 < · · · < λk < λk+1 → ∞ and of
corresponding eigenspace Hk = Kernel(A− λkI), which are two by two orthogonal.

We expand Zn ∈ H using this basis,

Zn =
∑
k∈N

wk, with wk ∈ Hk, and ‖Zn‖2H =
∑
k

‖wk‖2H , (2.14)

so that
∀t < Tn, Z(t) =

∑
k∈N

wke
λk(t−Tn). (2.15)

Now, let
k0 = inf{k ∈ N, ‖B∗1wk‖U1

+ ‖B∗2wk‖U2
6= 0}. (2.16)

Our goal is thus to check that k0 cannot be finite. If k0 is finite, then we should have

‖B∗1wk0‖U1
+ ‖B∗2wk0‖U2

6= 0. (2.17)

Therefore, setting
Zr(t) =

∑
k 6=k0

wke
λk(t−Tn), (t < Tn),

the identity (2.13) implies that for all t < Tn,

‖B∗1wk0‖2U1
− α(t)‖B∗2wk0‖2U2

=− 2e−λk0 (t−Tn)< (〈B∗1wk0 , B∗1Zr(t)〉U1
− α(t)〈B∗2wk0 , B∗2Zr(t)〉U2

)

− e−2λk0 (t−Tn)
(
‖B∗1Zr(t)‖2U1

− α(t)‖B∗2Z(t)‖2U2

)
.

Since
∃C > 0, ∀t < Tn, ‖B∗1Zr(t)‖U1

+ ‖B∗2Zr(t)‖U2
6 Ceλk0+1(t−Tn),

the last identity yields, for all t < Tn,∣∣‖B∗1wk0‖2U1
− α(t)‖B∗2wk0‖2U2

∣∣ 6 Ce(λk0+1−λk0 )(t−Tn) + Ce2(λk0+1−λk0 )(t−Tn).

Since λk0+1 > λk0 , making t→ −∞, we obtain that,

∀α∞ ∈ [lim inf
t→−∞

α, lim sup
t→−∞

α], ‖B∗1wk0‖2U1
− α∞‖B∗2wk0‖2U2

= 0. (2.18)

Since lim inft→−∞ α < lim supt→∞ α, we easily get that this implies

B∗1wk0 = 0, and B∗2wk0 = 0.

This contradicts (2.17), so that k0 is infinite and thus, B∗1Z = 0 and B∗2Z = 0 on (−∞, Tn). This shows
that, except when B∗1Z and B∗2Z vanish identically on (0, Tn), In is of zero measure. In particular,
passing to the limit n → ∞, we easily get that I is of zero measure except if B∗1Z and B∗2Z vanish
identically on (0, T ).

Remark 2.4. In the above proof, we did not really use the specific form of α. In fact, as one can check,
the proof of Lemma 2.1 works for any function α satisfying

α is an analytic function on R,
0 < inf

R
α < sup

R
α <∞,

lim inf
t→−∞

α < lim sup
t→−∞

α.

(2.19)
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2.2 Proof of Lemma 2.2: The case of a finite-dimensional space H

In order to prove Lemma 2.2, we will use the following result:

Lemma 2.5. Let J be a finite set and (µj)j∈J be a finite sequence of two by two distinct real numbers.
Then, for any finite sequence (aj)j∈J of elements of C such that

lim
t→−∞

∑
j∈J

aje
iµjt

 = 0, (2.20)

we have
∀j ∈ J, aj = 0. (2.21)

Proof. To prove Lemma 2.5, we use that since there is a finite number of µj ,

∫ 1

0

∣∣∣∣∣∣
∑
j∈J

bje
iµjt

∣∣∣∣∣∣
2

dt

is a norm on {b = (bj)j∈J , bj ∈ C}, and is thus equivalent to the quantity∑
j∈J
|bj |2.

Now, for (aj)j∈J as in (2.20), we have, for any T ∈ R,

∑
j∈J
|aj |2 =

∑
j∈J
|aje−iµjT |2 6 C

∫ 1

0

∣∣∣∣∣∣
∑
j∈J

aje
iµj(t−T )

∣∣∣∣∣∣
2

dt 6 C

∫ −T+1

−T

∣∣∣∣∣∣
∑
j∈J

aje
iµjt

∣∣∣∣∣∣
2

dt.

Thus, choosing T going to +∞, the assumption (2.20) and the above estimates give Lemma 2.5.

Let us now come back to the proof of Lemma 2.2. To start with, we put the matrix A∗ into its Jordan
form, and call (λk)k∈{1,··· ,K} its eigenvalues ordered so that <(λk) 6 <(λk+1) for all k, and we call Hk

the corresponding generalized eigenspaces.
We then prove that when ω ∈ R \W (recall the definition of W in (2.5)), with the choice of α as in

(1.11), I necessarily is of zero measure except in the trivial case ‖B∗1Z‖L2(0,T ;U1) = ‖B∗2Z‖L2(0,T ;U2) = 0.
We thus assume that I is of non-zero measure and we let Z be the solution of (1.8) with initial datum

ZT ∈ X. Here, since H is finite dimensional, X = H and ZT ∈ H. Then the solution Z of (1.8) can be
defined on R, is an analytic function of time, and we write it under the form

Z(t) =
∑
k

eλk(t−T )

(
mk∑
`=0

(T − t)`wk,`

)
, (t ∈ R), (2.22)

where mk is the size of the maximal Jordan block corresponding to λk (or equivalently, its algebraic
multiplicity), and each wk,` belongs to Hk. Besides, since we assume that I is of non zero measure and
since Z in (2.22) is analytic with respect to time, we should have I = (0, T ), and it follows that

∀t ∈ R, ‖B∗1Z(t)‖2U1
= α(t)‖B∗2Z(t)‖2U2

. (2.23)

Now, let

k0 = inf {k ∈ {1, · · · ,K} : ∃` ∈ {0, · · · ,mk} such that ‖B∗1wk,`‖U1
+ ‖B∗2wk,`‖U2

6= 0} .

If k0 <∞, we define `1 by

`1 = sup {` : ∃k with <(λk) = <(λk0) and ‖B∗1wk,`‖U1 + ‖B∗2wk,`‖U2 6= 0} ,

and the set
D = {k : <(λk) = <(λk0) and ‖B∗1wk,`1‖U1

+ ‖B∗2wk,`1‖U2
6= 0} ,
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which describes the indices giving the dominant terms in ‖B∗1Z(t)‖2U1
− α(t)‖B∗2Z(t)‖2U2

as t → −∞.
Indeed, setting

Zd(t) =
∑
k∈D

wk,`1e
i=(λk)(t−T ), and Zr(t) = Z(t)− e<(λk0 )(t−T )(T − t)`1Zd(t), (2.24)

we have, for some C independent of time

∀t ∈ (−∞, T ), ‖B∗1Zr(t)‖U1
+ ‖B∗2Zr(t)‖U2

6

{
Ce<(λk0 )t(1 + (T − t)`1−1) if `1 > 1,
Ce(<(λk0+1)+<(λk0 ))t/2 if `1 = 0,

. (2.25)

and thus, possibly changing the constant,

∀t ∈ (−∞, T − 1), ‖B∗1Zr(t)‖U1 + ‖B∗2Zr(t)‖U2 6 Ce<(λk0 )t(T − t)`1−1. (2.26)

Therefore, using (2.23), we easily get that

∀t ∈ (−∞, T − 1),
∣∣‖B∗1Zd(t)‖2U1

− α(t)‖B∗2Zd(t)‖2U2

∣∣ 6 C

T − t
. (2.27)

Now, we expand ‖B∗1Zd(t)‖2U1
− α(t)‖B∗2Zd(t)‖2U2

:

‖B∗1Zd(t)‖2U1
− α(t)‖B∗2Zd(t)‖2U2

=
∑
k∈D

‖B∗1wk,`1‖2U1
−
(

1 +
sin(ωt)

2

)∑
k∈D

‖B∗2wk,`1‖2U2

+ 2
∑
k∈D

∑
k1∈D, k1>k

<
(
ei(=(λk)−=(λk1 ))t〈B∗1wk,`1 , B∗1wk1,`1〉U1

)
(2.28)

− 2

(
1 +

sin(ωt)

2

)∑
k∈D

∑
k1∈D, k1>k

<
(
ei(=(λk)−=(λk1 ))t〈B∗2wk,`1 , B∗2wk1,`1〉U2

)
.

From this, we deduce that the function ‖B∗1Zd(t)‖2U1
−α(t)‖B∗2Zd(t)‖2U2

is of the form
∑
j aje

iµjt, where

{µj} = {0, ±ω, (=(λk)−=(λk1)), ±ω + (=(λk)−=(λk1)) for k, k1 ∈ D}.

This set is finite, but there might be some non-distinct values in the set given on the right hand-side.
We shall thus rely on the choice ω /∈W (recall that W is defined in (2.5)), which guarantees that 0 and
ω appears only once in the above list. Therefore, using (2.27), Lemma 2.5 guarantees at least that the
numbers in front of the constant term (corresponding to µ = 0) and of eiωt in (2.28) vanish, i.e.:

0 =
∑
k∈D

‖B∗1wk,`1‖2U1
−
∑
k∈D

‖B∗2wk,`1‖2U2
,

0 =
∑
k∈D

‖B∗2wk,`1‖2U2
.

Combining the two above identities, we easily deduce that

∀k ∈ D, ‖B∗1wk,`1‖U1 + ‖B∗2wk,`1‖U2 = 0.

In view of the definition of the set D, the set D is necessarily empty. This contradicts the definition of
k0 and `1. Hence, k0 =∞ and B∗1Z(t) = 0 and B∗2Z(t) = 0 for all t ∈ R.

3 Proof of Theorem 1.3
Of course, the proof of Theorem 1.3 follows the one of Theorem 1.1. We only point out the main
differences that are needed in the proof of Theorem 1.1 to conclude Theorem 1.3.

To fix the ideas, we consider only the case n = 3, as the case of n > 4 control operators can be done
exactly similarly to the price of adding some notations.

9



Given y0 ∈ H, we consider the functional

J(zT ) =
1

2

∫ T

0

max{ α1(t)‖B∗1z(t)‖2U1
, α2(t)‖B∗2z(t)‖2U2

, α3(t)‖B∗3z(t)‖2U3
} dt+ 〈y0, z(0)〉H , (3.1)

defined for zT ∈ D(A∗), where z is the solution of the adjoint problem (1.8), and αi = αi(t) is given by

αi(t) = 1 +
1

2
sin(ωit), t ∈ R, i ∈ {1, 2, 3}. (3.2)

where the frequencies ωi are suitably chosen.
Similarly as in the proof of Theorem 1.1, the functional J can be extended by continuity on the space

X = D(A∗)
‖·‖obs

,

where the norm ‖ · ‖obs is the one defined by

‖zT ‖2obs =

∫ T

0

max{ α1(t)‖B∗1z(t)‖2U1
, α2(t)‖B∗2z(t)‖2U2

, α3(t)‖B∗3z(t)‖2U3
} dt,

and is coercive on that space X. Therefore, J has a minimizer ZT ∈ X. Next, to properly derive the
Euler-Lagrange equation satisfied by ZT , we study the sets

∀(i, j) ∈ {1, 2, 3}2 with i < j, Ii,j =
{
t ∈ (0, T ), αi(t)‖B∗i Z(t)‖2Ui = αj(t)‖B∗jZ(t)‖2Uj

}
. (3.3)

The case A self-adjoint positive definite operator with compact resolvent. When A is a
self-adjoint positive definite operator with compact resolvent, Lemma 2.1 can be easily adapted to show
the following result:

Lemma 3.1. When A is a self adjoint positive definite operator with compact resolvent and (αi)i∈{1,2,3}
are as in (3.2) with (ω1, ω2, ω3) ∈ R3

+ two by two distincts, for all i, j ∈ {1, · · · , 3} with i 6= j, the set
Ii,j is necessarily of zero measure, except in the trivial case ‖B∗i Z‖L2(0,T ;Ui) = ‖B∗jZ‖L2(0,T ;Uj) = 0.

Since the proof of Lemma 3.1 is completely similar to the proof of Lemma 2.1, relying on the fact
that αi/αj admits a set of accumulation points at −∞ which contains a non-trivial interval, we skip it
and leave it to the reader.

The case H of finite dimension. When H is a finite dimensional vector space, we choose the
parameters ωi successively, for instance we can take

ω1 = 0, ω2 ∈ R \W, (3.4)

where W is defined in (2.5), and
ω3 ∈ R \W3, (3.5)

where W3 is defined by

W3 = W ∪ {±ω2,±ω2 + =(λk)−=(λk1), for all (k, k1) such that <(λk) = <(λk1 )}. (3.6)

We then prove the following result:

Lemma 3.2. When H is a finite-dimensional space, setting ω1 = 0, and choosing ω2 ∈ R \W (defined
in (2.5)) and ω3 ∈ R\W3 (defined in (3.6)) and taking αi as in (1.11) corresponding to ωi, for all (i, j) ∈
{1, 2, 3} with i < j, the set Ii,j is necessarily of zero measure, except in the trivial case ‖B∗i Z‖L2(0,T ;Ui) =
‖B∗jZ‖L2(0,T ;Uj) = 0.

We briefly sketch the proof of Lemma 3.2 below.
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Sketch of the proof of Lemma 3.2. Clearly, when i = 1, the proof of Lemma 3.2 reduces to the proof of
Lemma 2.2.

We thus focus on the case i = 2 and j = 3. Similarly as in the proof of Lemma 2.2, we assume that
I2,3 is of positive measure. By analyticity, this implies that I2,3 = (0, T ), and by extending Z on R by
analyticity, that for all t ∈ R, α2(t)‖B∗2Z(t)‖2U2

= α3(t)‖B∗3Z(t)‖2U2
. We then expand Z as in (2.22) and

define, as in the proof of Lemma 2.2,

k0 = inf {k ∈ {1, · · · ,K} : ∃` ∈ {0, · · · ,mk} such that ‖B∗2wk,`‖U2 + ‖B∗3wk,`‖U3 6= 0} ,

and, if k0 <∞,

`1 = sup {` : ∃k with <(λk) = <(λk0) and ‖B∗2wk,`‖U2
+ ‖B∗3wk,`‖U3

6= 0} ,
D = {k : <(λk) = <(λk0) and ‖B∗2wk,`1‖U2

+ ‖B∗3wk,`1‖U3
6= 0} ,

Zd(t) =
∑
k∈D

wk,`1e
i=(λk)(t−T ), (t ∈ R).

With the above choices, similarly as in (2.28), we have the formula, for all t ∈ R,

α2(t)‖B∗2Zd(t)‖2U2
− α3(t)‖B∗3Zd(t)‖2U3

=

(
1 +

sin(ω2t)

2

)∑
k∈D

‖B∗2wk,`1‖2U2
−
(

1 +
sin(ω3t)

2

)∑
k∈D

‖B∗3wk,`1‖2U3

+ 2

(
1 +

sin(ω2t)

2

)∑
k∈D

∑
k1∈D, k1>k

<
(
ei(=(λk)−=(λk1 ))t〈B∗2wk,`1 , B∗2wk1,`1〉U2

)
(3.7)

− 2

(
1 +

sin(ω3t)

2

)∑
k∈D

∑
k1∈D, k1>k

<
(
ei(=(λk)−=(λk+1))t〈B∗3wk,`1 , B∗3wk1,`1〉U3

)
.

which stands instead of (2.28). Besides, since for all t ∈ R, we have α2(t)‖B∗2Z(t)‖2U2
−α3(t)‖B∗3Z(t)‖2U3

=
0, we can also deduce, as in (2.26), that

∀t ∈ (−∞, T − 1),
∣∣α2(t)‖B∗2Zd(t)‖2U2

− α3(t)‖B∗3Zd(t)‖2U3

∣∣ 6 C

T − t
. (3.8)

Accordingly, using Lemma 2.5 on the function t 7→ α2(t)‖B∗2Zd(t)‖2U2
−α3(t)‖B∗3Zd(t)‖2U3

, which goes to
0 as t→ −∞, and considering the coefficients in front of the constant term and in front of eiω3t in (3.7),
which appear only once in the expansion (3.7) since ω3 /∈W3, we deduce

0 =
∑
k∈D

‖B∗2wk,`1‖2U2
−
∑
k∈D

‖B∗3wk,`1‖2U3
,

0 =
∑
k∈D

‖B∗3wk,`1‖2U3
.

This easily yields that k0 =∞, and consequently that ‖B∗2Z(t)‖U2
+ ‖B∗3Z(t)‖U3

= 0 for all t ∈ R, and
concludes the proof of Lemma 3.2.

End of the proof of Theorem 1.3. We choose the coefficients (ω1, ω2, ω3) ∈ R3 such that the
assumptions of Lemma 3.1 are satisfied in the case of a self-adjoint operator, or such that the assumptions
of Lemma 3.2 are satisfied when considering the case of H of finite dimension. According to Lemma 3.1
and 3.2, if Ii,j is of positive measure for some i, j ∈ {1, 2, 3} with i 6= j, taking ` ∈ {1, 2, 3} \ {i, j}, only
two cases arise:

• If t 7→ ‖B∗`Z(t)‖2U` is identically zero, the observability property (1.9) implies that Z = 0 identically,
which corresponds to a minimizer for J only in the case y0 = 0, which can be steered to 0 by keeping
all the controls equal to 0 at all times.
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• If t 7→ ‖B∗`Z(t)‖2U` is not identically zero, since it is an analytic function, its zero set has no
accumulation point and thus

a.e. t ∈ (0, T ), α`(t)‖B∗`Z(t)‖2U` > max{αi(t)‖B∗i Z(t)‖2Ui , αj(t)‖B
∗
jZ(t)‖2Uj}.

Accordingly, except in the trivial case ZT = 0, we have the following:

a.e. t ∈ (0, T ), ∃!` ∈ {1, 2, 3}, sucht that α`(t)‖B∗`Z(t)‖2U` > max
i 6=`
{αi(t)‖B∗i Z(t)‖2Ui}. (3.9)

We can then write the Euler-Lagrange equation satisfied by a minimizer ZT of J , and obtain that, setting
for each i ∈ {1, 2, 3},

ui(t) =

{
αi(t)B

∗
i Z(t) when αi(t)‖B∗i Z(t)‖2Ui > max

j 6=i
{αj(t)‖B∗jZ(t)‖2Uj},

0 else,

the corresponding solution y of (1.15) satisfies y(T ) = 0 while the controls u1, u2, u3 satisfy the switching
condition (1.14).

4 Examples

4.1 Examples in finite dimension
Theorems 1.1 and 1.3 have many interesting consequences even for finite dimensional systems. Let us
give below some examples.

Example 1: General matrix A. Let us fixed H = Rd for d ∈ N∗ and A a d × d matrix. Then it is
clear that the control system

y′ +Ay =


u1

u2

...
ud

 , t ∈ (0, T ), y(0) = y0 ∈ Rd, (4.1)

is exactly controllable at any time T . Indeed, controllability can be achieved as follows: given y0 and y1

in Rd, we take y a smooth function of time with values in Rd such that y(0) = y0 and y(T ) = y1, and
simply set u = y′ +Ay.

Therefore, it is clear that Theorem 1.3 applies when considering the operators Biui = uiei for
i ∈ {1, · · · , d}, where ei is the vector of Rd whose i-th component equals 1 and all the others vanish. We
thus get the following result:

Theorem 4.1. Let d ∈ N∗, H = Rd and A a d × d matrix. Then for any y0 ∈ Rd, there exist d
control functions ui ∈ L2(0, T ;R) such that the controlled trajectory of (4.1) satisfies y(T ) = 0 and with
control functions satisfying condition (1.14), i.e. such that almost everywhere in (0, T ), at most one of
the controls ui(t) for i ∈ {1, · · · , d} is non-zero.

This result can be applied for instance to the following case, which corresponds to the space semidis-
cretization of the 1-d heat equation on (0, L) with homogeneous Dirichlet boundary conditions at x = 0
and x = L: 

y′j −
1

h2
(yj+1 − 2yj + yj−1) = uj , t ∈ (0, T ), j ∈ {1, · · · , d},

y0(t) = yd+1(t) = 0, t ∈ (0, T ),
yj(0) = y0

j j ∈ {1, · · · , d},
(4.2)

where h > 0 is a (small) parameter. Indeed, equation (4.2) can be seen as the finite difference approxi-
mation of the heat equation ∂ty − ∂xxy = u, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = y(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x) x ∈ (0, L),

(4.3)
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choosing the parameter h in (4.2) of the form h = L/(d+ 1). Theorem 4.1 then yields that (4.2) can be
controlled to zero with controls ui ∈ L2(0, T ;R) for each i ∈ {1, · · · , d} such that at any time, only one
of the controls ui is active.

It is not clear how that process can pass to the limit as d → ∞, and this is an interesting open
question.

Example 2: General matrices (A,B) satisfying Kalman condition. If A is a d× d matrix and
B is a d × n matrix, it is well known (see e.g. [30]) that the system (1.1) is controllable if and only if
the following Kalman condition is satisfied:

Rank(B ,AB , A2B · · · , Ad−1B) = d. (4.4)

Now, we have chosen B under the form of a d× n matrix, meaning that the control function u belongs
to u ∈ L2(0, T ;Rn). As before, when n > 2, it is interesting to write

Bu =

n∑
i=1

Biui, where Bi is the i-th column of B. (4.5)

Applying then Theorem 1.3, we get the following result:

Theorem 4.2. Let A be a d× d matrix and B be a d× n matrix such that the Kalman rank condition
(4.4) holds, and let Bi denote the i-th column of the matrix B. Then for any y0 ∈ Rd, there exist n
control functions ui ∈ L2(0, T ;R) such that the controlled trajectory of (1.15) satisfies y(T ) = 0 and with
control functions satisfying condition (1.14), i.e. such that almost everywhere in (0, T ), at most one of
the controls ui(t) for i ∈ {1, · · · , d} is non-zero.

Again, a nice application is given by the space semi-discretization of some PDE, for instance of the
wave equation. Indeed, if we consider the wave equation ∂tty − ∂xxy = u, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = y(t, L) = 0, t ∈ (0, T ),
(y(0, x), ∂ty(0, x)) = (y0(x), y1(x)) x ∈ (0, L),

(4.6)

its finite difference semi-discretization is given by
y′′j −

1

h2
(yj+1 − 2yj + yj−1) = uj , t ∈ (0, T ), j ∈ {1, · · · , d},

y0(t) = yd+1(t) = 0, t ∈ (0, T ),
(yj(0), y′j(0)) = (y0

j , y
1
j ) j ∈ {1, · · · , d},

(4.7)

where h = L/(d + 1). It is clear that the system (4.7) is controllable in any arbitrary time, so that
Theorem 4.2 applies immediately and provides controls ui ∈ L2(0, T ) for all i ∈ {1, · · · , d} such that at
all times only one of the control is active.

Here again, it is completely unclear how this process can pass to the limit as d → ∞. It is even
probably more difficult to analyze than in the previous example since the limit equation (4.6) does not
correspond to an analytic semigroup. Still, the recent works on sparse optimal controls for the wave
equation, see in particular [24], may yield some insights on this problem.

4.2 Distributed control of parabolic systems
To give a non-trivial PDE example, let us consider Ω a smooth bounded domain of RN (N > 1), an open
subset O ⊂ Ω and the following parabolic system:

∂ty −D∆y + Py = 1O

(
u1

u2

)
, in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,
y(0, ·) = y0 in Ω,

(4.8)

where
y =

(
y1

y2

)
, D =

(
d1 0
0 d2

)
, with d1, d2 > 0,
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and P = P (x) ∈ L∞(Ω;S+
2 (R)), where S+

2 (R) denotes the set of symmetric positive definite 2 × 2
matrices with real coefficients. Here, the control

u =

(
u1

u2

)
,

acts on the system (4.8) on O through the multiplication by the indicator function 1O of the subset O.
System (4.8) fits into the framework of Theorem 1.1, by setting

A = −D∆x + P, in H = (L2(Ω))2 with domain D(A) = (H2 ∩H1
0 (Ω))2, (4.9)

and
Bu = 1O

(
u1

u2

)
for u =

(
u1

u2

)
, U = (L2(O))2.

Indeed, the operator A in (4.9) is obviously self-adjoint with compact resolvent. Besides, the following
result is a straightforward consequence of the Carleman estimates in [18]:

Proposition 4.3. System (4.8) is null-controllable in arbitrarily small times with control functions u in
L2(0, T ; (L2(O))2).

Thus, to apply Theorem 1.1, a natural example consists in choosing

B1u1 = 1O

(
u1

0

)
, U1 = L2(O), and B2u2 = 1O

(
0
u2

)
, U2 = L2(O). (4.10)

Theorem 1.1 then readily implies:

Theorem 4.4. System (4.8) is null-controllable in arbitrary small times with controls u1 and u2 in
L2(0, T ;L2(O)) satisfying the additional switching constraints (1.5).

Remark 4.5. By a shifting argument, Theorem 4.4 remains true if we only consider P a bounded
symmetric matrix.

Here, we would like to emphasize that our results are different from the ones in which the controls
may act only on one component. Indeed, in such case, it is clear that more conditions are needed, since
when P = 0 and controlling on only one component, the second component will be free of control.

Of course, when P = 0, it is easy to check that one can control system (4.8) with controls having a
switching structure, since one can control the first component y1 to 0 at time T/2 by keeping the control
u2 = 0 in (0, T/2) and then control the second component y2 to 0 on (T/2, T ) by keeping the control
u1 = 0 in (T/2, T ). However, when P 6= 0, this strategy does not seem to be applicable directly.

On the other hand, when one wants to control a system through one component only, it is clear that
the coupling terms should play an important role, see for instance [14].

Therefore, our results really comes in between the questions of controllability of parabolic systems
when the controls act on all the components of the state and when the controls may act only on one (or
some) component of the state.

4.3 Distributed controls of 3-d Stokes equations.
Let Ω be a smooth bounded domain of R3 and let us consider the following Stokes equation:

∂ty −∆y +∇p = 1Ou in (0, T )× Ω,
div y = 0 in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω,
y(0, ·) = y0 in Ω.

(4.11)

Here, y = y(t, x) ∈ R3 denotes the velocity field of an incompressible fluid, p is the pressure, and the
control u acts through the non-empty open subset O of Ω.

This example fits the setting of Theorem 1.3 by choosing the state space

H = V 0
n (Ω) = {y ∈ L2(Ω;R3), div y = 0 in Ω and y · nx = 0 on ∂Ω}, (4.12)
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the operator A as

A = −P∆, with D(A) = {y ∈ H2 ∩H1
0 (Ω;R3), div y = 0 in Ω} in H, (4.13)

where nx is the outward normal to x ∈ ∂Ω, P is the orthogonal projection on V 0
n (Ω) in L2(Ω;R3), and

the control operator

Bu = 1O

 u1

u2

u3

 , with U = (L2(O))3.

It is then natural to define the operators B1, B2 and B3 as follows:

B1u1 = 1O

 u1

0
0

 , B2u2 = 1O

 0
u2

0

 , B3u3 = 1O

 0
0
u3

 ,

with U1 = U2 = U3 = L2(O). (4.14)

Indeed, we have the following results:

• The operator A is self-adjoint on V 0
n (Ω), see e.g. [6, Lemma IV.5.4];

• The Stokes problem (4.11) is null-controllable in arbitrary small times, see [20];

We can therefore readily apply Theorem 1.3:

Theorem 4.6. Given any y0 ∈ V 0
n (Ω), there exist control functions u1, u2 and u3 in L2(0, T ;L2(O))

such that the controlled trajectory y of (4.11) satisfies y(T ) = 0 in Ω and with control functions u1, u2

and u3 satisfying condition (1.14), i.e. such that almost everywhere in (0, T ), at most one of the controls
u1(t), u2(t), u3(t) is non-zero.

It is interesting to consider this case, since the controllability of the Stokes equation (4.11) with
controls having one or two vanishing components has been studied in the literature. In particular, it has
been shown in [9] that, given ` ∈ {1, 2, 3}, system (4.11) is null-controllable in arbitrary small times with
controls u ∈ L2(0, T ; (L2(O))3) satisfying u` ≡ 0. Besides, the result in [26] shows that system (4.11) may
be not null-controllable (in fact, not even approximate controllable) in some specific geometric settings
with controls having two vanishing components.

Note that the result in [10] about the null-controllability of the 3-dimensional incompressible Navier-
Stokes equation with controls having two vanishing components strongly uses the non-linear term in the
Navier-Stokes equation in the spirit of the celebrated Coron’s return method, and thus does not apply to
the linear problem (4.11).

4.4 Boundary control of a system of coupled heat equations.
This example is closely related to the one in Section 4.2. Let us consider Ω a smooth bounded domain
and the following parabolic system: ∂ty −D∆y + Py = 0, in (0, T )× Ω,

y = u1Γ on (0, T )× ∂Ω,
y(0, ·) = y0 in Ω,

(4.15)

where

y =


y1

y2

...
yn

 , D = diag (d1, · · · , dn), with di > 0 for all i ∈ {1, · · · , n},

and P = P (x) ∈ L∞(Ω;S+
n (R)), where S+

n (R) denotes the set of symmetric positive definite n × n
matrices with real coefficients. Here, the control

u =

 u1

...
un

 ,
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acts on the system (4.15) on a non-empty open subset Γ of the boundary ∂Ω through the multiplication
by the indicator function 1Γ.

System (4.15) fits into the framework of Theorem 1.3 by setting

A = −D∆x + P, in H = (L2(Ω))n with domain D(A) = (H2 ∩H1
0 (Ω))n, (4.16)

and the control operator B as follows:

Bu = ÃDirΓ(u) for u =

 u1

...
un

 , U = (L2(Γ))n,

where DirΓ : (L2(Γ))n 7→ (L2(Ω))n is the Dirichlet operator given by

DirΓu = z, where z solves
{
−D∆z + Pz = 0, in Ω,
z = u1Γ on ∂Ω,

and Ã denotes the extension of A of domain (L2(Ω))n on ((H2 ∩H1
0 (Ω))n)′, see [30, Proposition 3.4.5

and Section 10.7].
Similarly as in Proposition 4.3, one can show using classical Carleman estimates (see [18]) that:

Proposition 4.7. System (4.15) is null-controllable in arbitrarily small times with control functions
u = (u1, · · · , un) in L2(0, T ; (L2(Γ))n).

One can then readily apply Theorem 1.3:

Theorem 4.8. System (4.15) is null-controllable in arbitrary small times with controls u = (u1, · · · , un)
in L2(0, T ; (L2(Γ))n) satisfying the additional switching constraints (1.14).

Again, we emphasize that our results really complements the ones in which the controls act only on
one component of the system, in which the situation is much more intricate since controllability results
will depend on delicate coupling conditions, see for instance [3] and references therein.

4.5 Boundary control of 3-d Stokes equations.
Again, one can also consider Stokes equations, but this time controlled from the boundary. Using [20]
(see also [16]), in a smooth bounded domain Ω ⊂ R3, the 3-d Stokes equations is null-controllable in any
time T through any non-empty open subset of its boundary. To be more precise, we let Ω be a smooth
bounded domain of R3 and Γ a non-empty open subset of ∂Ω, and we consider the following Stokes
equation: 

∂ty −∆y +∇p = 0 in (0, T )× Ω,
div y = 0 in (0, T )× Ω,
y = 1Γ(x)u on (0, T )× ∂Ω,
y(0, ·) = y0 in Ω,

(4.17)

where 1Γ is the indicator function of the set Γ, and u is assumed to belong to L2(0, T ;L2(Γ;R3)) and
satisfy

∀t ∈ (0, T ),

∫
Γ

u(t, x) · nx dσ = 0 (4.18)

where nx is the outward normal to ∂Ω at x ∈ ∂Ω. Condition (4.18) can be seen as a compatibility
condition with the divergence free condition div y = 0 and can be obtained immediately by integrating
it in Ω.

Properly speaking, [20] does not deal with boundary controls, but the following result can be easily
obtained from [20] using the classical extension/restriction argument to get controllability results with
controls on the boundary:

Theorem 4.9 ([20]). System (4.17) is null controllable in any time T . To be more precise, for all T > 0,
for any y0 ∈ V 0

n (Ω), there exists a control function u ∈ L2(0, T ;L2(Γ;R3)) satisfying (4.18) such that the
controlled trajectory y of (4.17) satisfies y(T ) = 0 in Ω.
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Because of condition (4.18), it is natural to decompose the space {u ∈ L2(Γ;R3) :
∫

Γ
u(x) ·nx dσ = 0}

using tangential and normal components of u. Therefore, we choose a family of triplets (e1(x), e2(x),nx)
indexed by x ∈ Γ such that for all x ∈ Γ, (e1(x), e2(x),nx) is an orthonormal basis of R3, and we define
U1 = U2 = L2(Γ;R) and U3 = {u3 ∈ L2(Γ;R) with

∫
Γ
u3(x)dσ = 0}, also denoted by L2

0(Γ;R), and the
isomorphism π in (1.12) is then given by

π : (u1, u2, u3) ∈ U1 × U2 × U3 7→ (x 7→ (u1(x)e1(x) + u2(x)e2(x) + u3(x)nx)) . (4.19)

Now, as before, see e.g. [29], to properly define the operator B in this case, we need to introduce the
Dirichlet operator DΓ defined by

DΓu = z, where z solves

 −∆z +∇p = 0 in Ω,
div z = 0 in Ω,
z = 1Γu on ∂Ω,

and the operator B is defined by
Bu = ÃPDΓu,

where Ã denotes the extension of the Stokes operator (defined in (4.12)–(4.13)) from V 0
n (Ω) to D(A)′

and P denotes the Leray projection, that is the orthogonal projection on V 0
n (Ω) in L2(Ω;R3), . The full

system (4.17) can then be written as Py′ + ÃPy = Bu, t ∈ (0, T ),
Py(0) = Py0,
(I − P)y = (I − P)DΓu, t ∈ (0, T ).

(4.20)

Accordingly, the quantities Py and (I − P)y should be handled separately. In particular, see [29, The-
orem 2.3 and Theorem 3.1] for u ∈ L2(0, T ;L2(Γ;R3)) satisfying (4.18), the solution y of (4.20) with
initial datum Py0 ∈ V 0

n (Ω) satisfies Py ∈ L2(0, T ;V 0
n (Ω))∩ε>0 L

2(0, T ;V 1/2−ε(Ω))∩H1/4(0, T ;V 0(Ω))∩
C0([0, T ];V −1(Ω)) and (I −P)y ∈ L2(0, T ;V 1/2(Ω)). Here, V 0

n (Ω) is the space defined in (4.12), and the
other spaces are

V s(Ω) = {y ∈ Hs(Ω;R3), div y = 0 in Ω, with 〈y · n, 1〉H−1/2(∂Ω),H1/2(∂Ω) = 0}, (s > 0),

V 1
0 (Ω) = {y ∈ H1

0 (Ω;R3), div y = 0 in Ω},

and V −1(Ω) is the dual of V 1
0 (Ω) with V 0

n (Ω) as pivot space.
Theorem 1.3 then yields the following result:

Theorem 4.10. Let Ω be a smooth bounded domain of R3, Γ a non-empty open subset of ∂Ω. Given a
family of orthonormal triplets (e1(x), e2(x),nx) for x ∈ Γ which defines the control operators B1, B2 and
B3 according to (1.13) through the isomorphism π in (4.19), the control system (4.17) is null-controllable
in arbitrary small times with controls (u1, u2, u3) ∈ L2(0, T ;L2(Γ;R)2×L2

0(Γ;R)) satisfying the switching
condition (1.14) in the following sense: for any T > 0, for any y0 ∈ V 0

n (Ω), there exist control functions
u1, u2 in L2(0, T ;L2(Γ;R)), and u3 ∈ L2(0, T ;L2

0(Γ;R)) satisfying the switching condition (1.14) such
that the solution y of (4.20) satisfies Py(T ) = 0.

Remark 4.11. Although Theorem 4.10 states only the control of Py at time T , extending the controls
(u1, u2, u3) by 0 for t > T , one easily checks that Py and (I − P)y vanishes for t > T . The difficulty is
that (I − P)y does not a priori make sense at time T since it only belongs to L2(0, T ;V 1/2(Ω)).

It is to be noted that there are, up to our knowledge, almost no result regarding the controllability of
Stokes system with controls acting only on normal or tangential components only. We are only aware of
[17] when considering tangential controls on the whole boundary and of the results in [8] for the Stokes
equation in a channel when the control is localized on the whole boundary of one side of the channel.

5 Extensions
Theorem 1.3 focuses on the case of operators A which are either positive self-adjoint with compact
resolvent or are matrices. Thus, it is natural also to consider the case of general operators A which
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generates an analytic semigroup and are possibly non self-adjoint. The goal of this section is precisely
to discuss this case. As we will see, our arguments will require the introduction of several spectral
assumptions which are hard to check in practice.

Theorem 5.1. Let A be an operator on the Hilbert space H having compact resolvent and such that −A
generates an analytic semigroup.

Assume that the Hilbert space H can be decomposed as

H = ⊕k∈NHk, where Hk are finite-dimensional vector spaces (5.1)

such that for all k ∈ N,

A∗(Hk) ⊂ Hk, and A∗|Hk = A∗k,

where A∗k is of the form λkI +Nk, with λk ∈ C and Nk nilpotent. (5.2)

Also assume for simplicity that <(λ0) 6 <(λ1) 6 · · · 6 <(λk) 6 · · · → ∞.
Furthermore, denoting Pk the projection on Hk parallel to ⊕j 6=kHj, we assume that there exists T0 > 0

large enough so that
∀t > T0, e−tA

∗
=
∑
k

e−tA
∗
kPk, (5.3)

i.e. the right hand side is norm convergent for t > T0.
Let B ∈ L (U,D(A∗)′), where U is a Hilbert space, let n ∈ N with n > 2, and assume that U is

isomorphic to U1 × · · · × Un for some Hilbert spaces Ui, i ∈ {1, · · · , n}, and define Bi for i ∈ {1, · · · , n}
as in (1.13).

We assume that system (1.1) is null-controllable in arbitrary small times.
Then the system (1.15) is null-controllable in arbitrary small times with switching controls, i.e. sat-

isfying (1.14). To be more precise, given any T > 0 and any y0 ∈ H, there exist n control functions
ui ∈ L2(0, T ;Ui), i ∈ {1, · · · , n} such that the solution y of (1.15) satisfies (1.6) while the control
functions satisfy the switching condition (1.14).

Before going further and giving the proof of Theorem 5.1, let us emphasize that the assumptions on
A∗ may be delicate to prove for general operators A generating an analytic semigroup.

Of course, each Hk corresponds to the generalized eigenspaces corresponding to the eigenvalues λk,
and the projections Pk corresponds to the spectral projections. However, condition (5.3) is difficult to
check in practice, see e.g. [19] for an introduction to spectral theory for non self-adjoint operators.

To better illustrate that fact, we present two examples of interest.
The first one is borrowed from [5] and we deeply thank Franck Boyer for having pointed it out to us.
Let us take A0 a positive self-adjoint operator with compact resolvent defined on a Hilbert space

H0 with domain D(A0), which we will assume for simplicity to have only simple eigenvalues. Then, for
f ∈ C∞(R∗+;R∗+) bounded at infinity, define

Â =

(
A0 Id
0 A0 + f(A0)

)
, in H = (H0)2, with D(Â) = (D(A0))2. (5.4)

It is easy to check that such Â generates an analytic semigroup in H, since it is a bounded perturbation
of the operator Diag (A0, A0). Besides, its spectrum can be expressed easily in terms of those of A0. If
(λk,0)k∈N is the set of eigenvalues of A0, corresponding to a family of normalized eigenvectors (ϕk,0)k∈N,
then it is easy to check that the eigenvalues of Â are given by the family (λk,1, λk,2)k∈N with λk,1 = λk,0
and λk,2 = λk,0 + f(λk,0). The corresponding eigenvectors are given for k ∈ N by

ϕk,1 =

(
1
0

)
ϕk,0, ϕk,2 =

1√
1 + f(λk,0)2

(
1

f(λk,0)

)
ϕk,0.

It is then easy to check that

Pk,1
(
z1

z2

)
= ϕk,1

〈(
1

− 1
f(λk)

)
ϕk,0,

(
z1

z2

)〉
H

,

Pk,2
(
z1

z2

)
= ϕk,2

〈(
0√

1+f(λk)2

f(λk)

)
ϕk,0,

(
z1

z2

)〉
H

.
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When f goes to zero at infinity, the norms of these projections behave like 1/f(λk). In particular, if
for T0 > 0, there exists C such that f(s) 6 Ce−T0s for s large enough, we see that the right hand
side of (5.3) is not norm convergent for t ∈ (0, T0). Of course, this also means that when considering
f(s) = exp(−s2), condition (5.3) is not satisfied whatever T0 > 0 is.

This example shows that even for rather gentle perturbations of self-adjoint operators, condition
(5.3) should be analyzed with caution.

We also present another example in this direction, based on the works [11, 12] discussing the operator
Aα defined for complex number α ∈ C \ {0} with Arg (α) < π/4 on L2(R) by

Aαy = −α−2y′′ + α2x2y.

In fact, to be perfectly rigorous, the operator Aα has to be defined as the closed densely defined operator
associated to the quadratic form ∫

R

(
α−2|y′(x)|2 + α2x2y(x)2

)
dx,

originally defined on C∞c (R).
According to [11], the eigenvalues of the operator Aα does not depend on α for α ∈ C \ {0} with

|Arg (α)| < π/4 and thus coincides with the usual ones for the harmonic operator (which are 2N + 1),
but except if α ∈ R∗+, the spectrum of Aα is wild ([11, Theorem 9]), meaning that, denoting by Pk the
spectral projector on the k-th eigenvector, ‖Pk‖ cannot be bounded by a polynomial in k.

In fact, the situation is even worse and, for α /∈ R, the formula

e−tα
2Aα =

∑
k∈N

e−tα
2λkPk,

holds only for t large enough, see [12, Corollary 4], due to the fact that ‖Pk‖ behaves like exp(c<(λk))
for some strictly positive c as k →∞.

To sum up, we see that condition (5.3) is rather delicate to deal with. Although it is automatically
satisfied in finite dimensional contexts or when A is self-adjoint, when considering general operators A
generating an analytic semigroup, condition (5.3) should be carefully analyzed.

Proof. The proof of Theorem 5.1 strongly follows the ones of Theorem 1.1 and 1.3.
For sake of simplicity, we will only focus on the case n = 2 and B ∈ L (U,H), similarly as in Theorem

1.1, since the general case n > 3 and B ∈ L (U,D(A∗)′) can be handled similarly as in Section 3 by
minor adaptations of the case n = 2.

In fact, it is easy to check that the only point which needs further analysis is the counterpart of
Lemma 2.1 and Lemma 2.2.

We thus take X as in (2.2), and let ZT ∈ X be a minimizer of the functional J in (1.10), and we
study the set I defined in (2.4).

Lemma 5.2. Assume that A is an operator on the Hilbert space H having compact resolvent and such
that −A generates an analytic semigroup. Also assume that the Hilbert space H can be decomposed as
in (5.1) such that A∗ satisfies (5.2) for all k ∈ N, where the corresponding eigenvalues (λk)k∈N are
ordered such that <(λ0) 6 <(λ1) 6 · · · 6 <(λk) 6 · · · → ∞. Furthermore assume that, denoting Pk the
projection on Hk parallel to ⊕j 6=kHj, there exists T0 > 0 large enough such that (5.3) holds.

Define the set W as in (2.5).
Let B ∈ L (U,H) and assume that system (1.1) is null-controllable in arbitrary small times.
Then, for α as in (1.11) with ω ∈ R\W , the set I is necessarily of zero measure, except in the trivial

case ‖B∗1Z‖L2(0,T ;U1) = ‖B∗2Z‖L2(0,T ;U2) = 0.

Once Lemma 5.2 will be proved (see afterwards), the end of the proof of Theorem 5.1 will follow line
to line the one of Theorem 1.1, by showing that the Euler Lagrange equation satisfied by ZT is given
by (2.8) when ZT 6= 0, entailing that the controls u1 and u2 given by (2.9) are of switching forms and
indeed control the equation (1.4). As before, the case ZT = 0 corresponds to the case y0 = 0, and then
taking the controls u1 and u2 to be identically zero solves the problem.
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Proof of Lemma 5.2. In order to prove that the set I is of zero measure except when ‖B∗1Z‖L2(0,T ;U1) =
‖B∗2Z‖L2(0,T ;U2) = 0, we consider a strictly positive and strictly increasing sequence Tn going to T as
n → ∞ and we show that for all n ∈ N, the set In = I ∩ (0, Tn) is of zero measure except in the trivial
case in which both B∗1Z and B∗2Z vanish identically on (0, Tn).

As in the proof of Lemma 2.1, the small time null-controllability implies that since ZT ∈ X, the
trajectory Z|(0,Tn) is well defined and in fact solves the equation (2.11) with some initial datum Zn ∈ H.

Accordingly, since −A∗ generates an analytic semigroup, the function t 7→ Z(t) is in fact analytic on
(0, Tn) with values in H, and can be extended analytically to (−∞, Tn).

We now assume that In is not of zero measure. According to the analyticity properties above, this
implies that the identity (2.13) holds.

To conclude as in the proof of Lemma 2.1 or Lemma 2.2, we would like to write formula (2.15). This
cannot be done for all t < Tn as before, but according to (5.3), it is still true for t 6 Tn − T0:

∀t 6 Tn − T0, Z(t) =
∑
k∈N

eA
∗
k(t−Tn)PkZn. (5.5)

Each Hk is a finite-dimensional vector space. Therefore, writing the Jordan decomposition of A∗|Hk ,
for each k ∈ N, denoting by mk the size of the maximal Jordan block corresponding to λk,

eA
∗
k(t−Tn) = eλk(t−Tn)

∑
`∈{0,··· ,mk}

(t− Tn)`

`!
N `
k.

We then follow the proof of Lemma 2.2, introducing

k0 = inf
{
k ∈ N : ∃` ∈ {0, · · · ,mk} such that ‖B∗1N `

kPkZn‖U1
+ ‖B∗2N `

kPkZn‖U2
6= 0
}
.

Our goal is to show that k0 is necessarily infinite. Indeed, if k0 is infinite, then for all k, B∗1eA
∗
k(t−Tn)PkZn

and B∗2e
A∗k(t−Tn)PkZn identically vanish, so that using the formula (5.5), we see that B∗1Z and B∗2Z

identically vanish on (−∞, Tn − T0), and by analyticity on (0, Tn) as well.
We prove that k0 is necessarily infinite by contradiction, assuming that k0 is finite.
Next, we define `1 by

`1 = sup
{
` : ∃k with <(λk) = <(λk0) and ‖B∗1N `

kPkZn‖U1
+ ‖B∗2N `

kPkZn‖U2
6= 0
}
,

and the set

D =
{
k : <(λk) = <(λk0) and ‖B∗1N

`1
k PkZn‖U1

+ ‖B∗2N
`1
k PkZn‖U2

6= 0
}
.

According to the above definition, we can decompose Z as

Zd(t) = e<(λk0 )t (Tn − t)`1
`1!

∑
k∈D

N `1
k PkZnei=(λk)(t−Tn), (t ∈ (−∞, Tn)),

Zd,2(t) =
∑

k with <(λk)=<(λk0 )

eλk(t−Tn)

 ∑
`∈{0,··· ,`1−1}

(Tn − t)`

`!
N `
kPkZn

 , (t ∈ (−∞, Tn)),

Zd,3(t) =
∑

k with <(λk)=<(λk0 )

eλk(t−Tn)

 ∑
`>`1+1

(Tn − t)`

`!
N `
kPkZn

 , (t ∈ (−∞, Tn)),

Z0(t) =
∑

k with <(λk)<<(λk0 )

eA
∗
k(t−Tn)PkZn, (t ∈ (−∞, Tn)),

Zr(t) =
∑

k with <(λk)><(λk0 )

eA
∗
k(t−Tn)PkZn, (t ∈ (−∞, Tn − T0]).

By definition of k0 and `1, we easily see that

∀t ∈ (−∞, Tn), ‖B∗1Zd,3(t)‖U1
+ ‖B∗1Z0(t)‖U1

+ ‖B∗2Zd,3(t)‖U2
+ ‖B∗2Z0(t)‖U2

= 0. (5.6)
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It is also easy to check, since the sum defining Zd,2 is finite, that there exists a constant C such that
Zd,2 satisfies

∀t 6 Tn − 1, ‖B∗1Zd,2(t)‖U1
+ ‖B∗2Zd,2(t)‖U2

6 e<(λk0 )tC(Tn − t)`−1. (5.7)

We claim that there exist constants C and µ > <(λk0) such that

∀t 6 Tn − T0 − 1, ‖Zr(t)‖H 6 Ceµt. (5.8)

Indeed, denoting A∗r = A∗|⊕k with <(λk)><(λk0
)Hk , Zr solves

−Z ′r +A∗rZr = 0, t ∈ (−∞, Tn − T0), Zr|t=Tn−T0 =
∑

k with <(λk)><(λk0 )

e−A
∗
kT0PkZn.

Since A∗ generates an analytic semigroup on H, it is easy to check that A∗r = A∗|⊕k with <(λk)><(λk0
)Hk

also generates an analytic semigroup on ⊕k with <(λk)><(λk0 )Hk and that its spectral abcissa is given by
inf{<(λk), with <(λk) > <(λk0)}. According to [28, Theorem 4.3], Zr thus decays exponentially at any
rate smaller than

inf{<(λk), with <(λk) > <(λk0)}.

Since this quantity is strictly larger than <(λk0), we have proved (5.8).
Estimate (5.8) in turns imply that

∀t 6 Tn − T0 − 1, ‖B∗1Zr(t)‖U1
+ ‖B∗2Zr(t)‖U2

6 Ceµt, (5.9)

for some µ > <(λk0).
Using then the identity (2.13), and the decay estimates (5.6), (5.7) and (5.9), we easily obtain the

counterpart of (2.27), that is the existence of positive constants C1, C2 such that for all t 6 Tn − T0 − 1,∣∣∣∣∣∣
∥∥∥∥∥B∗1

(∑
k∈D

N `1
k PkZnei=(λk)(t−Tn)

)∥∥∥∥∥
2

U1

− α(t)

∥∥∥∥∥B∗2
(∑
k∈D

N `1
k PkZnei=(λk)(t−Tn)

)∥∥∥∥∥
2

U2

∣∣∣∣∣∣
6

C

Tn − t
. (5.10)

As in the proof of Lemma 2.2, we then easily get that, if α is as in (1.11) with ω /∈W , for all k ∈ D,∥∥∥B∗1N `1
k PkZn

∥∥∥
U1

+
∥∥∥B∗2N `1

k PkZn
∥∥∥
U2

= 0.

This contradicts the definition of k0 when k0 <∞, and concludes the proof of Lemma 5.2.

6 Further comments and open problems

6.1 Further comments
Approximate controllability. In this article, we focused on the null-controllability property, but sev-
eral other notions can be used and developed similarly. For instance, we could consider the approximate
controllability property at time T , which reads as follows for system (1.1): For any y0 ∈ H and ε > 0,
there exists u ∈ L2(0, T ) such that the solution y of (1.1) satisfies ‖y(T )‖H 6 ε.

It is classical, see for instance [25], that this is equivalent to the following unique continuation property
for the adjoint equation: if zT ∈ H is such that the solution z of (1.8) satisfies B∗z = 0 in L2(0, T ;U),
then zT = 0.

In this context, following the same strategy as before, we can prove the following counterpart of
Theorem 1.1:

Theorem 6.1. Assume that system (1.1) is approximately controllable at time T and that one of the
following two conditions hold:
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• A : D(A) ⊂ H → H is a self-adjoint positive definite operator with compact resolvent, H being a
Hilbert space;

• H is a finite dimensional vector space.

Let B ∈ L (U,H), where U is a Hilbert space, and assume that U is isomorphic to U1 × U2 for some
Hilbert spaces U1 and U2, and define B1 and B2 as in (1.3).

Then system (1.4) is approximately controllable at time T with switching controls, i.e. satisfying (1.5).
To be more precise, given any ε > 0 and any y0 ∈ H, there exist control functions u1 ∈ L2(0, T ;U1)
and u2 ∈ L2(0, T ;U2) such that the solution y of (1.4) satisfies ‖y(T )‖H 6 ε while the control functions
satisfy the switching condition (1.5).

The proof of Theorem 6.1 can be done exactly similarly as the one of Theorem 1.1, by minimizing
instead of J in (1.10), the functional Jε given by

Jε(zT ) =
1

2

∫ T

0

max{ ‖B∗1z(t)‖2U1
, α(t)‖B∗2z(t)‖2U2

} dt+ ε‖zT ‖H + 〈y0, z(0)〉H , (6.1)

where z is the solution of the adjoint problem (1.8), and α = α(t) is as in (1.11) for a suitable choice of
ω ∈ R∗.

Details of the proof are left to the reader.
Similarly, counterparts of Theorem 1.3 and Theorem 5.1 can also be proved in the context of approx-

imate controllability, by penalizing the functional under consideration by the additional term ε‖zT ‖H
as in (6.1), the rest of the proof being completely similar. Precise statements and proofs are left to the
reader.

Handling source terms. In the proof of Theorem 1.1, Theorem 1.3 and Theorem 5.1, we assume
that system (1.1) is null-controllable in arbitrary small times. As we said earlier, this is equivalent to
say that for all T > 0, any solution z of (1.8) with initial datum zT ∈ H satisfies (1.9). It is then easy
to check that this property implies that for all zT ∈ H, the solution z of (1.8) satisfies

1

T

∫ T

0

1

C2
T−t
‖z(t)‖2H dt 6 sup

(0,T )

{
1

C2
T−t
‖z(t)‖2H

}
6 ‖B∗z‖2L2(0,T ;U),

thus entailing the existence of a positive function ρT ∈ L1
loc([0, T )) such that∫ T

0

ρT (t)2‖z(t)‖2H dt 6 ‖B∗z‖2L2(0,T ;U). (6.2)

Besides, easy considerations allow to show that ρT can be chosen as a strictly positive function which
may degenerate to zero only as t→ T .

This allows to handle source terms in the control problems corresponding to (1.1). For simplicity, as
before, we only focus on the counterpart of Theorem 1.1, since the counterparts of Theorems 1.3 and 5.1
can be done similarly.

Theorem 6.2. Let us assume A : D(A) ⊂ H → H is a self-adjoint positive definite operator with
compact resolvent, H being a Hilbert space.

Let B ∈ L (U,H), where U is a Hilbert space, and assume that U is isomorphic to U1 ×U2 for some
Hilbert spaces U1 and U2, and define B1 and B2 as in (1.3).

Assume that system (1.1) is null-controllable in arbitrary small times and satisfies the observability
inequality (6.2) for some functions (ρT )T>0 a.e. strictly positive with ρT ∈ L1

loc(0, T ).
Then given any T > 0, any y0 ∈ H and f ∈ L2(0, T ;H) satisfying∫ T

0

1

ρT (t)2
‖f(t)‖2H dt <∞, (6.3)

there exist control functions u1 ∈ L2(0, T ;U1) and u2 ∈ L2(0, T ;U2) such that the solution y of

y′ +Ay = B1u1 +B2u2 + f, t ∈ (0, T ), y(0) = y0, (6.4)

satisfies (1.6) while the control functions satisfy the switching condition (1.5).
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Again, the proof of Theorem 6.2 can be easily adapted from the proof of Theorem 1.1 by minimizing,
instead of the functional J in (1.10), the functional Js defined for zT ∈ H by

Js(zT ) =
1

2

∫ T

0

max{ ‖B∗1z(t)‖2U1
, α(t)‖B∗2z(t)‖2U2

} dt+

∫ T

0

〈f(t), z(t)〉H dt+ 〈y0, z(0)〉H , (6.5)

where z is the solution of the adjoint problem (1.8), and α = α(t) is as in (1.11) for a suitable choice of
ω ∈ R∗.

The condition (6.3) is there to guarantee that the term∫ T

0

〈f(t), z(t)〉H dt,

is well-defined in the space X in (2.2), and to preserve the coercivity of the functional Js. Again, the
rest of the proof of Theorem 6.2 is a verbatim copy of the one of Theorem 1.1 and is left to the reader.

The interest of Theorem 6.2 is that it allows to handle source terms and therefore paths the way to
prove local null-controllability results with switching controls for semi-linear equations in the presence
of superlinear non-linearities.

To do so, one should add suitable weights in the design of the controls. These weights can depend
only in time, as in the work [27] based on the knowledge of the cost of controllability in small times, or to
more general weights depending on time and space variables as it occurs naturally when using Carleman
estimates, see e.g. [15, 18].

6.2 Open problems
Time-dependent coefficients. One of the important restrictions of our approach is that it is based
on spectral decompositions of the space, and seems therefore to be strongly limited to operators which
are independent of time. It is natural to discuss this property more closely. In fact, looking at our
proof, it seems that the only relevant assumption should be an analytic dependence of the operators
with respect to the time t. However, so far, this problem seems to be out of reach.

Positive time of controllability. Our arguments are limited to the case of analytic semigroups which
are null-controllable in arbitrary small times, but several results have shown in the last years that there
are analytic semigroups which are null-controllable only after some strictly positive critical time. This
is the case for instance for the 1-d heat equation controlled from one well-chosen point, see [13], or when
considering Grushin operators (see [4] and references therein).

Our proofs fail to handle these cases, since we do no know how to prove that for ZT ∈ X (defined in
(2.2)), the function t 7→ B∗Z(t) (also t 7→ B∗1Z(t), t 7→ B∗2Z(t)) is analytic in time on strict subintervals
of (0, T ), which is an essential element of our analysis in the study of the set I in (2.4).

A Proof of (2.8)
The goal of this section is to present the proof of the derivation of the Euler-Lagrange equation (2.8)
satisfied by a minimizer Z of the functional J in (1.10) when the set I in (2.4) is of zero measure.

Here, we follow the arguments in [31, p.91–93].
We keep the notations of Section 2: ZT 6= 0 is assumed to be the minimizer of the functional J

in (1.10) on X (defined in (2.2)), the set I in (2.4) is of zero measure, and I1 and I2 are defined in
(2.6)–(2.7).

For zT ∈ H, and a.e. in t ∈ (0, T ), we clearly have

1

h

(
max{‖B∗1(Z + hz)(t)‖2U1

, α(t)‖B∗2(Z + hz)(t)‖2U2
} −max{‖B∗1Z(t)‖2U1

, α(t)‖B∗2Z(t)‖2U2
}
)

−→
h→0

{
2〈B∗1Z(t), B∗1z(t)〉U1

if t ∈ I1,
2α(t)〈B∗2Z(t), B∗2z(t)〉U2 if t ∈ I2,

(A.1)

i.e. pointwise convergence in the set I, which is of full measure. Thus, to establish that the Gateaux
derivative of J in ZT is given by (2.8), we only have to prove that this convergence also holds in L1(0, T ).
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Using Lebesgue’s dominated convergence, we only have to find a L1(0, T ) majorant to the aforemen-
tioned ratio as h→ 0.

Fix t ∈ (0, T ) and let us denote by i ∈ {1, 2} the index in which the maximum of the expression
max{‖B∗1(Z + hz)(t)‖2U1

, α(t)‖B∗2(Z + hz)(t)‖2U2
} is achieved and j ∈ {1, 2} the index in which the

maximum of the expression max{‖B∗1Z(t)‖2U1
, α(t)‖B∗2Z(t)‖2U2

} is achieved (i and j depend on t but this
dependence is omitted for simplicity).

Of course, if i = j, it is easy to derive the following bounds:

1

h

(
max{‖B∗1(Z + hz)(t)‖2U1

, α(t)‖B∗2(Z + hz)(t)‖2U2
} −max{‖B∗1Z(t)‖2U1

, α(t)‖B∗2Z(t)‖2U2
}
)

=

{
2〈B∗1Z(t), B∗1z(t)〉U1

+ h‖B∗1z(t)‖2U1
if i = j = 1,

2α(t)〈B∗2Z(t), B∗2z(t)〉U2
+ hα(t)‖B∗2z(t)‖2U2

if i = j = 2.

When i 6= j, this is slightly more delicate. Let us assume for instance that (i, j) = (1, 2), the case
(i, j) = (2, 1) being completely similar. Then we have

‖B∗1(Z + hz)(t)‖2U1
> α(t)‖B∗2(Z + hz)(t)‖2U2

}, and ‖B∗1Z(t)‖2U1
< α(t)‖B∗2Z(t)‖2U2

.

Accordingly,

1

h

(
max{‖B∗1(Z + hz)(t)‖2U1

, α(t)‖B∗2(Z + hz)(t)‖2U2
} −max{‖B∗1Z(t)‖2U1

, α(t)‖B∗2Z(t)‖2U2
}
)

=
1

h

(
‖B∗1(Z + hz)(t)‖2U1

− α(t)‖B∗2Z(t)‖2U2

)
{

6 1
h

(
‖B∗1(Z + hz)(t)‖2U1

− ‖B∗1Z(t)‖2U1

)
> 1

h

(
α(t)‖B∗2(Z + hz)(t)‖2U2

− α(t)‖B∗2Z(t)‖2U2

)
,

which have been estimated in the cases i = j.
Thus, we get that for all (i, j) ∈ {1, 2}2,

1

h

(
max{‖B∗1(Z + hz)(t)‖2U1

, α(t)‖B∗2(Z + hz)(t)‖2U2
} −max{‖B∗1Z(t)‖2U1

, α(t)‖B∗2Z(t)‖2U2
}
)

6 max{|2〈B∗1Z(t), B∗1z(t)〉U1 |+ h‖B∗1z(t)‖2U1
, 2α(t)|〈B∗2Z(t), B∗2z(t)〉U2

|+ hα(t)‖B∗2z(t)‖2U2
}.

The right hand-side of this estimate is clearly in L1(0, T ) since B∗i Z and B∗i z belong to L2(0, T ;Ui) for
i ∈ {1, 2} and α ∈ L∞(0, T ). Combined with the pointwise convergence (A.1), we can use Lebesgue’s
dominated convergence theorem to deduce the Euler-Lagrange equation (2.8).
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