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In previous articles we presented a simple set of axioms named “Contexts, Systems and Modalities”
(CSM), where the structure of quantum mechanics appears as a result of the interplay between the
quantized number of modalities accessible to a quantum system, and the continuum of contexts that
are required to define these modalities. In the present article we discuss further how to obtain (or
rather infer) Born’s rule within this framework. Our approach is compared with other former and
recent derivations, and its strong links with Gleason’s theorem are particularly emphasized.

I. INTRODUCTION.

Many recent articles [1] claim to provide new deriva-
tions of Born’s rule, that is clearly a major theoretical
basis of quantum mechanics (QM). Others claim that de-
riving Born’s rule is a nonsense, and that it must essen-
tially be postulated [2]. In this article we take a medium
position, that is: Born’s rule cannot be logically proven,
but it does not have either to be postulated. Actually, it
can be inferred from some simple physical requirements
or postulates, based on established (quantum) empirical
evidence [4]. After the realization of loophole free Bell
tests [5] and in the era of quantum technologies [6], these
postulates can be simply formulated [7–12]. They are
presented here in a synthetic form, and various conse-
quences are obtained and discussed.

II. DEFINITIONS AND POSTULATES.

Definition 1 : We consider a quantum system S
and a specified ensemble of measurement devices inter-
acting with it; this ensemble is called a context1. The
best physically allowed measurement process provides a
set of numbers, corresponding to the values of a well-
defined and complete set of jointly measurable quantities;
these values will be found again with certainty, as long as
the system and context are kept the same2. The physi-
cal situation occurring after such an ideal and repeatable
measurement process is called a modality.

As an example using QM notations (not required yet),
for K particles with spin 1/2, the set of observables

{S(i)
z , i = 1...K} constitutes a context, and the obser-

vation of a given set of results {m(i), i = 1...K}, where
m(i) equals either +~/2 or −~/2, constitutes a modal-
ity. The modalities are not defined in the same way as
the usual “quantum states of the system”, since they are
explicitly attached to both the context and the system.

1 The word “context” includes the actual settings of the device,
e.g. measurement of Sz rather than Sx: the context must be
factual, not contrafactual. On the other hand all devices able
to measure Sz are equivalent as a context, in a (Bohrian) sense
that they all define the same conditions for predicting the future
behaviour of the system.

2 We omit the free evolution of the system; if it is present, the re-
sult of a new measurement can still be predicted with certainty,
but in another context that can be deduced from the free evolu-
tion. Mutatis mutandis, this is equivalent to full repeatability.

From the above definition, justified by empirical ev-
idence, one measurement provides only one modality.
Therefore in any given context the various possible
modalities are mutually exclusive, meaning that if one
result is true, or verified, all other ones are not true, or
not verified. We have then the

Basic postulate (contextual quantization) : The
number N of mutually exclusive modalities for a given
quantum system is the same in any relevant context.

In the above example one has N = 2K .

Definition 2 (incompatible modalities) : Modalities
observed in different contexts are generally not mutually
exclusive, they are said to be incompatible.

Incompatible means that if a result is true, or verified,
one cannot tell whether the other one is true or not.

Definition 3 (extravalence3) : When S interacts in
succession with different contexts, certainty and repeata-
bility can be transferred between their modalities. This is
called extracontextuality, and defines an equivalence
class between modalities, called extravalence4.

The equivalence relation is obvious, for more details and
examples of extravalence classes see [11].

The intuitive idea behind these definitions and postu-
late is that making more measurements in quantum me-
chanics (by changing the context) cannot provide “more
details” about the system, because this would increase
the number of mutually exclusive modalities, contradict-
ing the basic postulate. One might conclude that chang-
ing context randomizes all results, but this is not true:
some modalities may be related with certainty between
different contexts, this is why extravalence is an essential
feature of the construction.

3 In ref. [9] extravalent modalities in different contexts are consid-
ered to be the same modality, transferred from a context to an-
other. This is however not satisfactory, since a modality belongs
to a specific context (and system). The notions of extracontex-
tualy and extravalence are therefore more suitable to distinguish
modalities and “state vectors”, as explained in ref. [11].

4 Note that extravalent modalities appear only if N ≥ 3, this has
an obvious geometrical interpretation in relation with Gleason’s
theorem (see below).
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III. THEOREMS.

Theorem 1 : Given an initial modality and context,
obtaining another modality in another context must (in
general) follow a probabilistic law.

First, let us emphasize that modalities in different con-
texts are always considered different, even if they are ex-
travalent, so some care is required when counting modal-
ities. Let us start from an initial modality for a system
in context Cu, and perform a measurement in another
context Cv. Several situations can be considered:

(i) From the basic postulate there are N mutually ex-
clusive modalities in each context, and one of them is
realized when doing a measurement. Therefore the sit-
uation where all modalities in context Cv would have a
probability p = 0 to occur is excluded by construction.

(ii) If one modality in the new context Cv is obtained
with certainty, this means that Cv contains a modal-
ity extravalent with the initial one; then p = 1 for this
modality, and p = 0 for all other (mutually exclusive)
ones. If the situation is the same for all modalities in
Cu, then they are all extravalent with a modality in Cv,
and the modalities in the new context can be seen as a
rearrangement (permutation) of the initial ones. So let’s
try again with another context Cw; if the situation is the
same again in all other contexts, it means that there are
only N classes of extravalent modalities, going through
all contexts. This means that the context is unique up to
a rearrangement (permutation) of the modalities; there-
fore there are no incompatible modalities, and the situa-
tion is essentially classical.

(iii) Since case (i) is excluded, and case (ii) is classi-
cal (there are no incompatible modalities), the general
case (where incompatible modalities do exist) is that ob-
taining a modality in the new context is probabilistic
(0 < p < 1), hence the theorem is demonstrated. �

The core of this proof is that measuring in a new con-
text cannot be a “refinement” of the previous measure-
ment, because this would extend the number N of mu-
tually exclusive modalities. To see that more explicitly,
let us consider an initial modality u0 in Cu, connected to
at least two modalities v1 or v2, according to (iii) above.
Now let us measure again in Cu: if u0 is found again with
certainty, then there would be two mutually exclusive sit-
uations, u0 → v1 → u0 and u0 → v2 → u0. This would
give at least (N + 1) mutually exclusive modalities, in
contradiction with the quantization postulate.

Therefore the randomness is not only from Cu to Cv,
but also back from Cv to Cu [12]. This makes clear that
probabilities do follow from the fixed value of N , i.e. from
the maximum number of mutually exclusive modalities
for a given system, imposed by the basic postulate.

Theorem 2 : Given an initial modality and con-
text, the probability to get another modality in another
context keeps the same value as long as the initial and fi-
nal modalities belong to the same respective extravalence
class, independently of the embedding contexts.

Let us start again from an initial modality ui and con-
text Cu, and follow the same steps as in Theorem 1 when
performing a measurement in another context Cv.

(i) The situation where no modality can be obtained
in the new context (p = 0) is excluded as said above.

(ii) The situation where obtaining one modality in the
new context is certain (p = 1) means that the new con-
text contains a modality extravalent with the initial one.
Then p = 1 corresponds to modalities in the same ex-
travalence class, this is the definition of extravalence.

(iii) In the general case one gets another modality vj
with a probability 0 < p < 1. Given this new modality
vj , changing again the context to another one Cw con-
taining a modality wk extravalent to vj will yield wk with
certainty. In that case the probability for going from ui
to vj will be the same as the one for going from ui to
wk (Fig. 1). Moreover, if one starts from a modality
xl extravalent to ui, and one goes to ui then to vj , the
probability for going from xl to vj will be the same as
the one for going from ui to vj .

Therefore the probability to get another modality in
another context only depends on the extravalence classes
of the initial and final modalities, and the theorem is
demonstrated5. �

ui	 vj	

xl	 wk	

FIG. 1: The four modalities {ui, vj , xl, wk} belong to four
different contexts, and ui (resp. vj) is extravalent with xl

(resp. wk). Then all probabilities represented by dashed lines
are equal according to Theorem 2.

This theorem shows that the probability to get a new
modality starting from an initial one is linked neither to
the context, nor to the modalities themselves, but to their
extravalence class. In some approaches this property is
called “non-contextual assignment of probabilities”, and
this is a very fundamental feature of quantum mechan-
ics, which appears here as a theorem. It also suggests
the major next step, i.e. that the probability law should
be obtained by attributing a mathematical object to an
extravalence class, in such a way that all the above re-
quirements are fulfilled. As a general feature of such an
inductive or inference reasoning [4], it cannot be shown
that the proposed solution is unique (ie, necessary), but
it can be shown that it fulfills all the requirements (ie,
that it is sufficient).

Theorem 3 : Let us associate a N ×N rank-1 pro-
jector Pi to each extravalence class of modalities, and a
set of N mutually orthogonal projectors to each context.
Then the probability law f(Pi) built from these projectors
obeys Born’s rule, and different sets of mutually orthogo-
nal projectors are related by (complex) unitary matrices.

5 In order to make sense of Theorem 2, it is essential to distinguish
between modalities and vectors in an Hilbert space, that will
correspond to extravalence classes of modalities (see below). This
issue is also essential for understanding Gleason’s hypotheses.
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Since the N ×N projectors are associated to extrava-
lence classes of modalities, the probabilities are a function
f(Pi) of these projectors, in agreement with Theorem 2.
Since a context (set of mutually exclusive modalities) is
associated to a set of N mutually orthogonal projectors,
the probabilities for this set of projectors sum to 1. This
condition only requires to add probabilities for commut-
ing (orthogonal) projectors, avoiding known objections
to other derivations [3]. Then all the hypotheses for
Gleason’s theorem [13] are fulfilled (see § IV), and thus
Born’s rule applies [11]. By construction orthogonal sets
of projectors are connected by complex unitary matrices.
Complex numbers are required to connect continuously
the identity matrix to all permutations of modalities: this
cannot be done by (real) orthogonal matrices, which split
into two subsets with determinants ±1; see [9, 11]. �

Here we have considered initial and final modalities,
i.e. rank 1 projectors [11], but more generally Gleason’s
theorem provides the probability law for density opera-
tors (convex sums of projectors), interpreted as statistical
mixtures. This clarifies the link between Born’s rule and
the mathematical structure of density operators [18].

IV. AN OVERVIEW OF GLEASON’S
THEOREM.

Gleason’s theorem has the reputation of being un-
penetrable by physicists, who usually keep away from
this frightening monument (see also Discussion below).
Therefore we want to present here a “physicist’s demon-
stration”, where most mathematical difficulties are de-
liberately omitted, in order to reveal the big picture. All
the (nice) mathematical details can be found in “An el-
ementary proof of Gleason’s theorem”, by Roger Cooke,
Michael Keanes & William Moran, Math. Proc. Camb.
Phil. Soc. 98, 117 (1985) [14], which is more recent and
reader-friendly than the original work by Gleason [13].

Let us consider a separable Hilbert space H over R
or C, and if dim(H) = N we denote it CN (over C) ou
RN (over R). Then we define a real-valued non-negative
function f acting on the unit sphere of H, such that for
any orthonormal basis {xi} of H, one has

∑
i f(xi) = 1.

The function f(xi) can be seen as the probability to
get the result xi, in a “state” defined by f . Note that
if f(xj) = 1 for the vector xj , then f(xk 6=j) = 0 for all
other vectors in the orthonormal basis {xi}: the results xi
are mutually exclusive as we required. The non-obvious
hypothesis is why f(xi) depends only on xi and f , and
not on the other vectors {xk 6=j} in the orthonormal basis:
this is where the discussion above plays a crucial role, by
associating xi to an extravalence class of modalities.

Here our goal is to sketch a demonstration of Gleason’s
theorem: If N ≥ 3, there exists a density operator 6

ρ defined on H such that f(xi) = 〈xi|ρ|xi〉 for all unit
vectors xi. Then f is said to be “regular”.

6 This means a positive semidefinite Hermitian operator with unit
trace. It describes a pure state if it is a rank one projector.

For simplicity we will assume that the extreme value
f(xi) = 1 is reached, and then present the (easier) re-
sult that in that case ρ is a projector |x〉〈x|, so f(xi) =
〈xi|x〉〈x|xi〉 = |〈xi|x〉|2 : this is the usual Born’s rule for
pure states (or for extravalent modalities).

Step 1: prove the following “reduction lemmas”

L1 - In RN, f is regular iff it is the restriction to the
unit sphere of a quadratic form (this is clear by writing
explicitly ρ as a self-adjoint operator)

L2 - If f is regular in R3, then it is also regular in any
2-dimensional subspaceR2 ofR3 (this is clear by restrict-
ing the quadratic form from R3 to R2)

L3 - If f is regular in any subspace R2 of C2, then it is
regular in C2 (not obvious, see [14])

L4 - If f is regular in any subspace C2 of CN, then it is
regular in CN (not obvious, see [14])

Crucial lemma: If f is regular in R3, then it is regular
in CN (use L2, then L3, then L4).

Therefore it is enough to show that f is regular in
R3. This explains why the theorem requires N ≥ 3: in
fact, f is regular in any C2 considered as a subspace of
CN, but not in C2 considered alone. Said otherwise, it is
well known, e.g. from Clauser [15], that one can build
a “classical model of a (unique) qubit”. However this
classical model fails if this qubit is one among several
qubits, which is fine as far as QM is concerned.

Step 2: prove that f is regular in R3

Now one looks for a probability function f(u), where u
is a normalized vector in R3, so that 0 ≤ f(u) ≤ 1 and
f(u)+f(v)+f(w) = 1 for any orthonormal basis {u, v, w}
of R3. One does not assume that f is continous, but here
we assume that the extreme values 0 and 1 are reached
(this is only for simplification, and the general case is
treated in the full theorem [13, 14]).

Given a normalized vector p and an orthonormal basis
{u, v, w}, the quantities cos2(u, p), cos2(v, p), cos2(w, p)
are the squares of the components of p in the basis, so
they sum to 1. Therefore cos2(u, p) for a fixed p is an
acceptable function f(u), and actually it is the good one.
But why is it the only such function? We will split the
answer in two parts.

We look for a probability function f(u), where u is a normalized vector in R3, so that 
0 ≤ f(u) ≤ 1 and f(u) + f(v) + f(w) = 1 for any orthonormal basis {u, v, w} of R3.  
 
For simplification assume that the extreme values 0 and 1 are reached (this is only 
for  simplification, the general case is treated in the full theorem).   

Gleason’s theorem, why and how (2) ?  

p 

q u v 

w 

Then define a normalized vector p such that  
f (p) = 1, and put it at the pole of the 3D sphere. As a 
consequence, f (q) = 0 for any q on the equator.  
 
Given an orthonormal basis {u, v, w}, the quantities 
cos2 (u,p), cos2 (v,p), cos2 (w,p) are the squares of the 
components of p in the basis, so they sum to 1. 

Therefore h(u) = cos2(u,p) is an acceptable function f(u), and actually it is the 
good one. But why is it the only one ? This can be shown by (simple but smart) 
geometrical arguments, including a nice lemma due to C. Piron.  

FIG. 2: We look for a probability function f(u), where u is
a normalized vector in R3, so that 0 ≤ f(u) ≤ 1 and f(u) +
f(v)+f(w) = 1 for any orthonormal basis {u, v, w} of R3. To
be simple (see text) we assume that the extreme values 0 and 1
are reached, we define a normalized vector p such that f(p) =
1, and put it at the pole of the 3D sphere. As a consequence,
f(q) = 0 for any q on the equator. Given an orthonormal basis
{u, v, w}, the quantities cos2(u, p), cos2(v, p), cos2(w, p) are
the squares of the components of p in this basis, so they sum
to 1. Therefore h(u) = cos2(u, p) is an acceptable function
f(u), and Gleason’s theorem shows that it is the only one.



4

Why is there no φ ?

In R3 a normalized vector u is defined by two polar
angles θ and φ, and in cos2(u, p) there is only one angle,
why? To be specific let us choose p as the vector such
that f(p) = 1 (since this value is reached), and position it
at the pole of the unit sphere in 3 dimensions (see Fig. 2).
As a consequence, f(q) = 0 for all vectors on the equator,
and for any vector one can define h(u) = cos2(u, p), which
depends on the “latitude” of u (the polar angle θ), but
not on its “longitude” (the azimuthal angle φ).

One can then use two lemmas to show that for any
two vectors u, v in the northern hemisphere such that
h(u) > h(v), one has f(u) ≥ f(v); this is done in Annex
1. Then define the smallest and largest values of the
possible values of f(u) for a given latitude:

m(x) = Inf{f(u) such that h(u) = x}
M(x) = Sup{f(u) such that h(u) = x}.

One has M(1) = m(1) = 1 at the pole, M(0) = m(0) =
0 at the equator, and if x < x′ then M(x) ≤ m(x′)
due to the above lemmas. In addition one has obviously
m(x) ≤ M(x) and m(x′) ≤ M(x′), so if x→ x′ one gets
a contradiction (M less than m), unless m(x) = M(x),
i.e. f(u) depends only on the latitude. �

Why only cos2(u, p) ?

Given that cos2(u, p) is an acceptable f(u), one may
think that any other function f(u) = g(cos2(u, p)) should
be acceptable also. To show this not the case, one uses a

Magical lemma: Consider a function g over [0, 1], veri-
fying the hypotheses (i) g(0)=0, (ii) a < b⇒ g(a) < g(b),
(iii) a+b+c = 1⇒ g(a)+g(b)+g(c) = 1. Then g(a) = a
for any a within [0,1].

The proof (subtle but not difficult) is given in Annex 2.
It is easily seen that g(cos2(u, p)) fulfills the hypothesis
of the lemma for any orthonormal basis {u, v, w}, with
a = cos2(u, p) etc. So from the magical lemma one gets
g(cos2(u, p)) = cos2(u, p), and the additional function g
is useless. �

Step 3: conclude that f is regular in CN
Therefore f is regular in R3, and also in CN from the re-
duction lemmas. The demonstration can be reconsidered
in the more general case where the value f(p) = 1 is not
reached, and one finds7 that ρ is no more a projector, but
a density matrix associated with a statistical mixture. �

V. DISCUSSION.

An essential feature of the contextual quantization pos-
tulate, i.e. the fixed value N of the maximum number
of mutually exclusive modality, turns out to be the di-
mension of the Hilbert space. In the spirit of [4] and as

7 In the general case in R3, the maximum (resp. minimum) value
of f is 0 ≤ M ≤ 1 (resp. 0 ≤ m ≤ 1), and one shows [14]
that there exist a basis {p, q, r} such that f(u) = M cos2(u, p) +
m cos2(u, q) + (1−M −m) cos2(u, r) with M + m ≤ 1.

shown is [9, 11], this provides one more heuristic reason
for using projectors. Then the projective structure of the
probability law warrants that, despite the availability of
an infinite number of incompatible modalities, N cannot
be “bypassed” by getting more details on any of them.

This would not be the case in the usual probability
theory, based on partitions : making a partition of all
modalities in N sub-ensembles for each given context
would not prevent sub-partitions, that would correspond
to additional details or “hidden variables”, that are for-
bidden by our basic postulate. This corresponds math-
ematically to Bell’s or Kochen-Specker’s theorems, and
all their variants, which basically show the inadequacy
of partition-based probabilities. This problem obviously
vanishes when projectors are used, and then from Glea-
son’s theorem no other choice is left than Born’s rule. It
is worth emphasizing also that Bell’s or Kochen-Specker’s
theorems consider discrete sets of contexts, whereas Glea-
son’s theorem is based upon the interplay between the
continuum of contexts, and the quantized number of
modalities accessible in a given context. This feature
also fits perfectly with the CSM ideas.

We note that some recent derivations of Born’s law [16–
18] dismiss Gleason’s theorem, on the basis that its hy-
potheses are either too strong (extracontextuality) or un-
justified (projective probabilities). More precisely, refs.
[16–18] argue for the non-relevance of Gleason’s theo-
rem to QM, in opposition to the CSM view. Quoting
[18]: “As mentioned in the introduction, Gleason’s the-
orem and many other derivations of the Born rule as-
sume the structure of quantum measurements. That is,
the correspondence between measurements and orthonor-
mal bases {ϕi}, or more generally, positive-operator val-
ued measures. But in addition to this, they assume that
the probability of an outcome ϕi does not depend on the
measurement (basis) it belongs to.”

In [18] this additional assumption (which is physi-
cally true) is called “non-contextuality”, that is clearly
misleading, clashing with the terminology used in the
Kochen-Specker theorem. As written above, a better
name is “non-contextual assignment of probabilities”,
and the best name is just extracontextuality, that has
deep physical roots. This is made clear by associat-
ing projectors to extravalence classes, clearly distinguish-
ing the physical result (the modality) and the mathe-
matical construction (the projector). To answer the re-
mark about “assuming the structure of quantum mea-
surements”, we do posit the projective structure of quan-
tum probabilities [11], not as a deduction but as a duly
justified inference [4]. In the CSM approach the mathe-
matical formalism works because physics tells the rules,
and not the opposite.

Therefore in our approach Gleason’s hypotheses have
a deep physical content, linking contextual quantization
and extracontextuality of modalities. Since these features
are required from empirical evidence, the QM formalism
provides a good answer to a well-posed question.
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VI. ALGEBRAIC SCHEME FOR QUANTUM
MEASUREMENTS.

A consequence of our approach is that usual textbook
quantum mechanics, which is limited to type-I operator
algebra as introduced initially by Murray and Von Neu-
mann [19], is not universal because it does not include the
context. This issue was already discussed by Von Neu-
mann [20], and again later in the framework of algebraic
quantum theory [21]. Nevertheless, as discussed in these
articles, it is possible to get a full picture by including
the context in the formalism, taking into account that its
number of degrees of freedom is unbounded, which makes
its algebra of operators non-type I [20, 21].

42 

System    Cut    Context (unbounded) 
Type I (countable basis)     Type II or III  (uncountable basis) 
Unitary equivalence     Loss of unitary equivalence 
Superpositions      Sectorization + updating 
o————————————X——————————————————————— 
 
 
System    Ancilla   Cut  Context (unbounded)  
Type I (countable basis)  (goes together   Type II or III  (uncountable basis) 
Unitary equivalence  with the system)   Loss of unitary equivalence 
Superpositions   Entanglement   Sectorization + updating 
o————————————————————X—————————————— 

FIG. 3: Generic scheme including the system, a possible an-
cilla, and the context. The number of degrees of freedom in
the context is unbounded, which makes its algebra non type-I.
The cut separates a type-I system algebra, where usual QM
applies, from the type-II or III context algebra where there is
no more unitary equivalence of representations.

Fig. 3 displays such a generic scheme, including the
system (plus ancillas) and context, separated by a (mov-
able) cut. The full scheme is then universal, but the
mathematical description including type II or III alge-
bra does not allow arbitrary quantum superpositions at
the context level – in agreement with empirical evidence.
Then a quantum measurement proceeds as follows:

• Before the measurement the modality is associated
with the following (density) operator in context C1:

|ψi〉〈ψi| ⊗ ρ(C1)
i

Specifying the modality requires to give both

|ψi〉〈ψi| and ρ
(C1)
i because the projector |ψi〉〈ψi|

specifies only an extravalence class of modalities.

• After the measurement carried out in context C2,
but before reading out the result, the sectorized
state (statistical mixture) is∑

j

pj |φj〉〈φj | ⊗ ρ(C2)
j

This form is completely generic from a mathemati-
cal point of view because the context is unbounded,
and it can be justified in several possible ways:
sectorization in the non-type-I algebra, loss of off-
diagonal elements of the reduced density matrix,
flow of information to the environment, loss of in-
terference, loss of the ability to create entanglement

in a projective measurement... They all lead to the
same results, as discussed e.g. in [22].

• After reading out the measurement result k in con-
text C2, the new modality can be updated and it
is associated with the operator:

|φk〉〈φk| ⊗ ρ(C2)
k

This defines a new pre-measurement modality, and
|φk〉〈φk| may evolve unitarily until the next mea-
surement is performed.

Summarizing, the non-unitary step in the measure-
ment is due to the fact that the whole unbounded context
is involved in a transient way; this is not an additional
ingredient, but a required part of the full (non type-I)
formalism. Looking at |ψ〉 as the “state of the system”,
as done usually, is misleading because the vector (or pro-
jector) is associated with an extravalence class of modal-
ities. The basic CSM tenet, that the modality belongs to
both the system and the context, appears explicitly here
under a mathematical form.

As a conclusion, usual type I QM provides a de-
scription of (idealized) isolated quantum systems. A
state vector or projector is “incomplete” because it is
not associated with an actual modality, but with an
extravalence class of modalities, belonging to different
contexts. From a physical point of view, the modality
belongs jointly to a quantum system, and to a specified
context. From a mathematical point of view, the behav-
ior of modalities can be studied using type-I QM, where
Born’s rule applies as a consequence of Gleason’s theo-
rem. On the other hand, the description of (unbounded)
contexts requires a non type-I formalism. Overall, these
combined tools provide a consistent picture of quantum
measurements within a unified quantum framework.

Annex 1 : Proof of the geometrical lemmas.

Here we show that for two vectors u, v in the northern
hemisphere with h(u) > h(v), one has f(u) ≥ f(v).

For this purpose we define Du, the great circle going
through u and cutting the equator at two points corre-
sponding to vectors orthogonal to u. By convention Du

is called the “descent through u”, and u is obviously the
“northern vector” in Du. Then one prooves the two lem-
mas:

Basic lemma : One has f(u) ≥ f(u′) for any u′ in Du.

Proof : Consider a vector u, and another vector u′ within
Du. Let v (resp. v′) be a vector in Du orthogonal to
u (resp. u′). Adding a vector w perpendicular to the
Du plane, {u, v, w} and {u′, v′, w} are two orthonormal
basis. By definition of f one has f(u) + f(v) + f(w) =
f(u′) + f(v′) + f(w) therefore f(u) = f(u′) + f(v′) since
f(v) = 0 because v is on the equator. Since f(v′) ≥ 0
one has f(u) ≥ f(u′). �

Piron’s lemma : Consider u, v such that h(u) > h(v).
Then there is a series of N vectors wn such that w0 = u,
wN = v, and each wn is within Dwn−1 , i.e. in the descent
through the previous vector of the series.

Proof : It relies on a smart geometrical construction due
to Piron [23]. It is convenient to project the northern



6

hemisphere on a plane tangent at the pole p, using a
projection from the center of the sphere. The different
latitudes are then concentric circles centered on p, and
the equator is projected at infinity. The descent through
u is a straight line, tangent at u to the circle correspond-
ing to the latitude of u. Then there are two cases :

- If u and v have the same longitude, one takes u = w0,
v = w2, and there exists w1 with a latitude between
those of w0 and w2, located on Du = Dw0 , and such that
w2 is on Dw1 (this is clear by looking at the previous
projection, u and v are on the same line coming from p).

- If u and v have different longitudes, one can take
u = w0, v = wN , and build the other vectors wn by
progressively rotating between the two circles associated
to the two latitudes. When these latitudes get closer, N
becomes larger, and it tends to infinity for two different
longitudes with almost the same latitude (again this is
clear from a drawing). This proves the lemma.

Therefore the basic lemma relates u and u′ within the
descent through u, and Piron’s lemma relates u and v
from a succession of descents through the vectors in the
series wn. As a conclusion, one deduces from the two
lemmas that for u, v in the northern hemisphere with
h(u) > h(v), one has f(u) ≥ f(v). �

Annex 2 : Proof of the magical lemma.

For mathematical reasons related to continuity [24],
it is assumed that g is defined on [0,1] except an at
most countable set K of points, and that the hypotheses
(i) g(0)=0, (ii) a < b =⇒ g(a) < g(b), (iii) a+ b+ c = 1
=⇒ g(a) + g(b) + g(c) = 1 are valid under these same
conditions. One has then g(1) = 1, since g(0) = 0 and
g(a) + g(b) + g(c) = 1. Considering the rational numbers
r and s, and a0 outside K, one gets:

g(ra0) + g(sa0) + g(1− ra0 − sa0) = 1

g(0) + g(ra0 + sa0) + g(1− ra0 − sa0) = 1

=⇒ g(ra0) + g(sa0) = g(ra0 + sa0) = g((r + s)a0)

=⇒ g(ra0) = rg(a0)

Taking the limit r → 1/a0 one gets g(1) = g(a0)/a0 = 1
and thus g(a0) = a0 and g(ra0) = ra0. �
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[7] A. Auffèves and P. Grangier, “Contexts, Systems and
Modalities : a new ontology for quantum mechanics”,
Found. Phys. 46, 121 (2016); arXiv:1409.2120 [quant-ph].
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