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Abstract 

We investigate the effect that recording off-axis electron holograms on pixelated detectors, such 

as charge-coupled devices (CCD) and direct-detection devices (DDD), can have on measured 

amplitudes and phases. Theory will be developed for the case of perfectly uniform interference 

fringes illuminating an imperfect detector with gain variations and pixel displacements. We will 

show that both these types of defect produce a systematic noise in the phase images that depends 

on the position of the holographic fringes with respect to the detector. Subtracting a reference 

hologram from the object hologram will therefore not remove the phase noise if the initial phases 

of the two holograms do not coincide exactly. Another finding is that pi-shifted holograms are 

much less affected by gain variations but show no improvement concerning geometric distortions. 

The resulting phase errors will be estimated and simulations presented that confirm the 

theoretical developments. 

Introduction 

In electron holography, there is a continual quest to improve the precision and accuracy of phase 

measurements [1-7]. This is particularly the case at medium resolution where the phase is directly 

related to the local field strengths measured in quantitative experiments, whether they be electric 

[8, 9, 10], magnetic [11, 12] or crystalline strain [13, 14]. Most attention has been focussed on the 

detection limits imposed by the random errors caused by counting statistics [15]. However, there 

are also many other sources of error, more often systematic in nature, such as specimen 

interactions and preparation artefacts, optical parameters, hologram processing and the main 

object of this paper, the detector characteristics. With the advent of almost unlimited exposure 

times [16], systematic errors will determine the ultimate accuracy, and even precision in some 

sense, of electron holography experiments. 

Random errors indeed arise essentially from the counting statistics. Electron holograms are 

acquired with a finite number of electrons which leads inevitably to random fluctuations in the 
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measured intensities, which in turn leads to noise in the reconstructed phase images [15]. 

Numerous papers, both theoretical and experimental, have been dedicated to the phase detection 

limits imposed by counting statistics. They show that the noise is random and can be reduced by 

increasing the electron dose [3, 4, 7]. 

Systematic errors come from various sources, first and foremost being the sample under 

investigation. Whilst the sample is providing the fields we are trying to measure, real specimens 

also introduce a number of additional phenomena which can produce systematic shifts in the 

phase. An uneven sample thickness can introduce unwanted phase variations through the action 

of the mean-inner potential of the material [8] or dynamic diffraction effects [17]. Sample charging 

under the electron beam also produces spurious phase variations [18, 19, 20] and damage from 

specimen preparation may diminish the phase change from electric fields in a systematic way [9, 

21, 22]. 

A number of artefacts arise from the imaging conditions, such as the curvature of the elliptic 

incident wave [23] or from charging of biprisms or their associated Fresnel fringes when used 

singly [24]. The projector lenses of the microscope will introduce long-range phase changes, just 

like in high-resolution electron microscopy [25]. Finally, the detector introduces systematic phase 

variations from the packing of the fibre-optic coupling of charge-coupled devices (CCD) [1, 6].  

The best way to deal with systematic errors is of course to eliminate them at the source, such as 

employing better sample preparation techniques [22] or using two biprisms to avoid almost 

entirely Fresnel fringes in holograms [26]. To correct for the remaining systematic errors, the 

standard procedure is to acquire a reference hologram taken in a field-free region of the vacuum 

[1]. Apart from sample artefacts (and Fresnel fringes) the method is considered robust for all 

other systematic errors. In this paper, we will show that for pixelated detectors, such as CCDs or 

direct-detection devices (DDD), a single reference hologram is not sufficient and will furthermore 

introduce additional systematic errors.  

This paper was written in the context of dynamic automation and the stabilisation of holographic 

fringes [16]. We have shown that controlling the microscope with feedback loops allows us to 

stabilise the phase of the hologram during very long exposure times, without the need of image 

stacks [7, 27]. The aim is to reduce significantly the random errors from counting statistics and 

hence reach the ultimate phase detection limits in electron holography experiments. Of course the 

dose that samples can submit has a limit. But in some cases, the important factor is the dose rate, 

meaning that a high number of electrons can be accumulated over very long exposure times at 

low beam intensity. In addition, some fields are measured in the vacuum where there are no such 

limitations. 
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As random errors are gradually squeezed out of experiments, all sources of systematic error must 

be ascertained and removed. Control of the average phase of the hologram also allows more 

sophisticated phase reconstruction methods such as the fringe-shifting method [28] used in the 

pi-shift variant in image stacks [29] or through automation [16]. The method is particularly useful 

for separating the centre-band from the side-band in the reconstruction process. We will be 

making use of these possibilities in the theoretical development. We will not consider sample 

artefacts and implicitly treat measurements carried out in the vacuum either containing stray 

fields or in field-free reference hologram regions. We will also consider a double biprism 

configuration was successful in removing the Frensel fringes [26]. The only remaining source of 

error is the detector. 

Pixelated digital detectors, originally in the form of CCD and now DDD, have revolutionized 

electron microscopy [30] and were key to the development of quantitative techniques, in 

particular electron holography [31]. Nevertheless, they are not perfect and suffer, for example, 

from non-uniform modulation transfer functions (MTF) or lower than ideal Detective Quantum 

Efficiency (DQE). Here, we will be examining the consequences for electron holography of two less 

studied imperfections: gain variations and geometric displacement of pixels. 

Theory 

The case of a perfectly regular set of interference fringes illuminating a pixelated detector will be 

studied. In addition, it will be assumed that the signal is sufficiently intense to ignore counting 

statistics. The input signal, S, can then be described as: 

 𝑆𝑆(𝒓𝒓,𝜙𝜙) = 1 + 2𝑎𝑎 cos(2𝜋𝜋𝒒𝒒.𝒓𝒓 + 𝜙𝜙) (1) 

where q is the carrier frequency vector of the interference fringes, r the position coordinate on 

the detector in the x-y plane, ‘a’ the amplitude (with this definition equal to half the visibility) of 

the fringes and φ their phase. The amplitude is a real number less than one half and the phase of 

the fringes will depend on the choice of origin of the coordinate system with respect to the 

detector. In what follows, the assumed units for r and q will be pixels and pixels-1 respectively. 

For most of the following development, the signal will be expressed in the complex form: 

 𝑆𝑆(𝒓𝒓,𝜙𝜙) = 1 + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 (2) 

which allows easy passage to and from the Fourier-space representation: 

 𝑆̃𝑆(𝒌𝒌,𝜙𝜙) = 𝛿𝛿(𝒌𝒌) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌 − 𝒒𝒒) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌 + 𝒒𝒒) (3) 

where k is the frequency coordinate in Fourier space. The signal is separated into three parts: a 

centre-band centred at k = 0 and two side bands at q and –q. 

https://doi.org/10.1093/jmicro/dfaa044
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Pi-shifted holograms 

We will also be making use of pi-shifted holograms during the development [28]. This consists in 

recording a second hologram, shifted in phase by exactly pi: 

 𝑆𝑆(𝒓𝒓,𝜙𝜙 + 𝜋𝜋) = 1 + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖+𝑖𝑖𝑖𝑖𝑒𝑒2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖−𝑖𝑖𝑖𝑖𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓  

 = 1 − 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 − 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 (4) 

If the two hologram signals are summed, we obtain the centre-band only: 

 𝑆𝑆(+)(𝒓𝒓,𝜙𝜙) ≝ 𝑆𝑆(𝒓𝒓,𝜙𝜙) + 𝑆𝑆(𝒓𝒓,𝜙𝜙 + 𝜋𝜋)  = 2 (5) 

and subtraction allows the centre-band to be eliminated: 

 𝑆𝑆(−)(𝒓𝒓,𝜙𝜙) ≝ 𝑆𝑆(𝒓𝒓,𝜙𝜙) − 𝑆𝑆(𝒓𝒓,𝜙𝜙 + 𝜋𝜋) = 2𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 + 2𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 (6) 

The factor of two indicates that twice as many electrons were used to create the pi-shifted 
hologram than the single hologram. 

Phase reconstruction 

The extraction of a side-band from the hologram can be described as follows [32]: 

 𝑆̃𝑆𝑞𝑞(𝒌𝒌,𝜙𝜙) ≝ 𝑆̃𝑆(𝒌𝒌 + 𝒒𝒒,𝜙𝜙)𝑀𝑀�(𝒌𝒌) (7) 

where 𝑀𝑀�(𝒌𝒌) is the masking function. The mask can take different shapes but will be considered to 

be real, centrosymmetric and unity at the origin: 

 𝑀𝑀�(𝒌𝒌) = 𝑀𝑀�∗(𝒌𝒌),𝑀𝑀�(𝒌𝒌) = 𝑀𝑀�(−𝒌𝒌) and 𝑀𝑀�(𝟎𝟎) = 1  (8) 

The simplest mask shape is a hard circular mask, with a radius of kM that we will assume to be less 

than q/2 in order to separate side-band from centre-band: 

 ∀ 𝑘𝑘 < 𝑘𝑘𝑀𝑀,𝑀𝑀�(𝒌𝒌) = 1, otherwise 0 (9) 

Another form is the cosine mask, which we will be using later to avoid ringing artefacts in the 

processing of the simulated holograms: 

 ∀ 𝑘𝑘 < 𝑘𝑘𝑀𝑀,𝑀𝑀�(𝒌𝒌) = cos �𝜋𝜋
2

𝑘𝑘
𝑘𝑘𝑀𝑀
� , otherwise 0 (10) 

It is easy to show that the two extracted side-bands are conjugate symmetric [32], as for Fourier 

components of real images: 

 𝑆̃𝑆−𝑞𝑞(𝒌𝒌,𝜙𝜙) = 𝑆̃𝑆𝑞𝑞(𝒌𝒌,𝜙𝜙)∗ (11) 

It is therefore only necessary to consider one of the side-bands, the positive one in our case.  

Taking the perfect hologram described in Fourier space, Eq. (3), and applying Eq.  (7) to extract 

the side-band and centre-band produces the following trivial result: 

 𝑆̃𝑆𝑞𝑞(𝒌𝒌,𝜙𝜙) = a𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌) and 𝑆̃𝑆0(𝒌𝒌,𝜙𝜙) = 𝛿𝛿(𝒌𝒌) (12) 

and in real-space: 
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 𝑆𝑆𝑞𝑞(𝒓𝒓,𝜙𝜙) = a𝑒𝑒𝑖𝑖𝑖𝑖 and 𝑆𝑆0(𝒌𝒌,𝜙𝜙) = 1 (13) 

Naturally, the exact shape of the mask does not matter for perfect fringes with delta-function side 

and centre-bands. 

For the pi-shifted holograms the results for the side-band reconstruction are: 

 𝑆𝑆𝑞𝑞
(−)(𝒓𝒓,𝜙𝜙) = a𝑒𝑒𝑖𝑖𝑖𝑖 and 𝑆𝑆𝑞𝑞

(+)(𝒓𝒓,𝜙𝜙) = 0 (14) 

and for the centre-band reconstruction: 

 𝑆𝑆0
(−)(𝒓𝒓,𝜙𝜙) = 0 and 𝑆𝑆0

(+)(𝒓𝒓,𝜙𝜙) = 1 (15) 

This is the expected result from the pi-shifting algorithm: the side-band and centre-band are 

obtained from the subtracted and summed holograms, respectively. For a uniform and perfect 

hologram, the process has no interest. However, the technique will be of great value in the 

presence of spatial variations, allowing the centre and side-bands to be separated. 

Gain variations 

We will now consider the effect of an imperfect pixelated detector, and firstly with a variable gain. 

Let the gain, G, be a function of (pixel) position: 

 𝐺𝐺(𝒓𝒓) = 1 + 𝑔𝑔(𝒓𝒓) (16) 

where g(r) is the deviation from the perfect value of 1 and assumed to have an average of zero. 

The gain can have both low and high-frequency variations. In this paper, we will be particularly 

interested in the latter. Later on, the gain will be modelled as random variations, uncorrelated 

from pixel to pixel, but fixed for a given experiment. The Fourier transform of the gain will 

therefore be uniformly filled across all frequencies: equivalent to a white noise distribution. The 

following development will, however, remain general. 

For a general signal, S, the image intensity recorded by the detector will be: 

 𝐼𝐼(𝒓𝒓) = 𝑆𝑆(𝒓𝒓)𝐺𝐺(𝒓𝒓) (17) 

In Fourier space the gain will be introduced as a convolution: 

 𝐼𝐼(𝒌𝒌) = 𝑆̃𝑆(𝒌𝒌)⨂𝐺𝐺�(𝒌𝒌) (18) 

which is the source of the complications for the phase reconstruction. For the perfect hologram 

fringes, the result in Fourier space will be, explicitly: 

𝐼𝐼(𝒌𝒌,𝜙𝜙) = 𝑆̃𝑆(𝒌𝒌,𝜙𝜙) ⊗𝐺𝐺�(𝒌𝒌) = �𝛿𝛿(𝒌𝒌) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌 − 𝒒𝒒) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌 + 𝒒𝒒)�⊗ (𝛿𝛿(𝒌𝒌) + 𝑔𝑔�(𝒌𝒌)) 

 = 𝑆̃𝑆(𝒌𝒌,𝜙𝜙) + 𝑔𝑔�(𝒌𝒌) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔�(𝒌𝒌 − 𝒒𝒒) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔�(𝒌𝒌+ 𝒒𝒒) (19) 

https://doi.org/10.1093/jmicro/dfaa044
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The convolution is illustrated schematically in Figure 1a where the Fourier transform of the gain 

is convoluted with the centre-band and side-bands to create overlap. After extraction of the 

positive side-band: 

𝐼𝐼𝑞𝑞(𝒌𝒌,𝜙𝜙) = �𝛿𝛿(𝒌𝒌 + 𝒒𝒒) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌 + 2𝒒𝒒) + 𝑔𝑔�(𝒌𝒌 + 𝒒𝒒) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔�(𝒌𝒌)

+ 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔�(𝒌𝒌+ 2𝒒𝒒)�𝑀𝑀�(𝒌𝒌) 

 = 𝑀𝑀�(−𝒒𝒒) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑀𝑀�(𝟎𝟎) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑀𝑀�(−2𝒒𝒒) + 𝑔𝑔�(𝒌𝒌 + 𝒒𝒒)𝑀𝑀�(𝒌𝒌) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔�(𝒌𝒌)𝑀𝑀�(𝒌𝒌) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔�(𝒌𝒌 +
2𝒒𝒒)𝑀𝑀�(𝒌𝒌)  (20) 

Since the mask is zero by design for values of k > q/2, and unity at the origin, some of the terms 

will disappear: 

 𝐼𝐼𝑞𝑞(𝒌𝒌,𝜙𝜙) = 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑔𝑔�(𝒌𝒌 + 𝒒𝒒)𝑀𝑀�(𝒌𝒌) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔�(𝒌𝒌)𝑀𝑀�(𝒌𝒌) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔�(𝒌𝒌 + 2𝒒𝒒)𝑀𝑀�(𝒌𝒌) (21) 

To simplify the expression, the same definition as for the side-band extraction, Eq. (7), can be 

exploited to describe the different parts of the gain function: 

 𝐼𝐼𝑞𝑞(𝒌𝒌,𝜙𝜙) = 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑔𝑔�𝑞𝑞(𝒌𝒌) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔�0(𝒌𝒌) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔�2𝑞𝑞(𝒌𝒌) (22) 

The three contributions are illustrated in Figure 1b which we will be calling the low, medium and 

high-frequency components of the gain variation, bearing in mind of course that their actual 

frequency range will depend on the carrier frequency q. In real-space the side-band becomes: 

 𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙) = 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔0(𝒓𝒓) + 𝑔𝑔𝑞𝑞(𝒓𝒓) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔2𝑞𝑞(𝒓𝒓) (23) 

The low-frequency term, 𝑔𝑔0(𝒓𝒓), is real with no imaginary part, but the medium, 𝑔𝑔𝑞𝑞(𝒓𝒓), and high-

frequency, 𝑔𝑔2𝑞𝑞(𝒓𝒓), terms are in general complex.  

 
Figure 1. Fourier transform of image intensity described as a convolution: (a) Fourier transform of the 
gain variation is convoluted with the centre-band (green), positive side-band (yellow) and negative 
side-band (orange); (b) Contributions to positive side-band from different parts of the Fourier 
transform of the gain. 

q
2q

0
q

0
-q

a b
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The side-band (and centre-band) can in turn be described in terms of the reconstructed 

amplitude, 𝐴𝐴(𝒓𝒓,𝜙𝜙), and phase, Φ(𝒓𝒓,𝜙𝜙), defined by: 

 𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙) ≝ 𝐴𝐴(𝒓𝒓,𝜙𝜙)𝑒𝑒𝑖𝑖Φ(𝒓𝒓,𝜙𝜙) (24) 

where the capitals emphasise their difference from the input, or original, amplitude and phase. To 

evaluate the variation from the perfect detector case where the recorded side-band would equal 

the signal side-band, we introduce the normalised functions such that: 

 𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙) = 𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙) 𝑆𝑆𝑞𝑞(𝒓𝒓,𝜙𝜙)⁄  (25) 

and for the amplitudes and phases, respectively: 

 𝐴𝐴(𝒓𝒓,𝜙𝜙) = Amp�𝑆𝑆𝑞𝑞(𝒓𝒓,𝜙𝜙)�× Amp�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� ≡ 𝑎𝑎𝐴̂𝐴(𝒓𝒓,𝜙𝜙) (26) 

and Φ(𝒓𝒓,𝜙𝜙) = Phase�𝑆𝑆𝑞𝑞(𝒓𝒓,𝜙𝜙)�+ Phase�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� ≡ 𝜙𝜙 + Φ�(𝒓𝒓,𝜙𝜙) (27) 

For both the side-bands and the centre-band, the amplitude of the normalised function gives the 

relative variation, or percentage error, in the amplitude compared to the input signal and the 

phase of the normalised side-band gives directly the phase error. We will be assuming that the 

gain variations are small and hence the amplitude of the normalised function be close to one and 

the imaginary part close to zero. In that case, the corresponding real and imaginary parts will 

equal the amplitude and phase, respectively, to a very good approximation: 

 𝐴̂𝐴(𝒓𝒓,𝜙𝜙) ≅ 𝑅𝑅𝑅𝑅�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� (28) 

and Φ�(𝒓𝒓,𝜙𝜙) ≅ 𝐼𝐼𝐼𝐼�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� (29) 

Side-band analysis 

For the side-band, the result is: 

 𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙) = 1 + 𝑔𝑔0(𝒓𝒓) + 𝑎𝑎−1𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓) + 𝑒𝑒−2𝑖𝑖𝑖𝑖𝑔𝑔2𝑞𝑞(𝒓𝒓) (30) 

Firstly, the function is clearly complex and will have an effect on both the reconstructed amplitude 

and phase. Secondly, and perhaps even more crucially, this effect will depend on the phase of the 

input hologram,  𝜙𝜙. To understand better, we need to look at the real and imaginary parts: 

 𝑅𝑅𝑅𝑅�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� = 1 + 𝑔𝑔0(𝒓𝒓) + 𝑎𝑎−1𝑅𝑅𝑅𝑅�𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓)� + 𝑅𝑅𝑅𝑅�𝑒𝑒−2𝑖𝑖𝑖𝑖𝑔𝑔2𝑞𝑞(𝒓𝒓)� (31) 

 𝐼𝐼𝐼𝐼�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� = 𝑎𝑎−1𝐼𝐼𝐼𝐼�𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓)�+ 𝐼𝐼𝐼𝐼�𝑒𝑒−2𝑖𝑖𝑖𝑖𝑔𝑔2𝑞𝑞(𝒓𝒓)� (32) 

where we have used the fact that 𝑔𝑔0(𝒓𝒓) is real.  

Both the amplitude and the phase depend on the original phase of the hologram, 𝜙𝜙, except for the 

low-frequency term present in the amplitude. A subtler feature is that the relative weighting of 

the terms depends on the input amplitude of the fringes, a. As the visibility improves, the medium-

frequency 𝑔𝑔𝑞𝑞(𝒓𝒓) term diminishes in influence compared with the low 𝑔𝑔0(𝒓𝒓) and high-frequency 

𝑔𝑔2𝑞𝑞(𝒓𝒓) terms. 
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The interim conclusion is that the usual procedure of subtracting the phase of a reference 

hologram to correct the systematic errors will run into problems, as we will show later in detail.  

Centre-band analysis 

The result for the centre-band, whether normalised or not, is: 

𝐼𝐼0(𝒓𝒓,𝜙𝜙) = 𝐼𝐼0(𝒓𝒓,𝜙𝜙) = 1 + 𝑔𝑔0(𝒓𝒓) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔−𝑞𝑞(𝒓𝒓) + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓) 

= 1 + 𝑔𝑔0(𝒓𝒓) + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓)∗ + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓) 

 = 1 + 𝑔𝑔0(𝒓𝒓) + 2𝑎𝑎𝑎𝑎𝑎𝑎�𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓)� (33) 

Again, we see that the phase of the hologram will change the contribution from the gain but is not 

influenced by the high-frequency gain variations. 

Pi-shifted holograms 

Side-band analysis 

The results for the pi-shifted holograms are the following for the side-band: 

 𝐼𝐼𝑞𝑞
(−)(𝒓𝒓,𝜙𝜙) = 1 + 𝑔𝑔0(𝒓𝒓) + 𝑒𝑒−2𝑖𝑖𝑖𝑖𝑔𝑔2𝑞𝑞(𝒓𝒓) (34) 

where the normalisation is carried out with respect to the signal, Eq. (25), which is twice as strong 

as for a single hologram. If we compare with the result from a single hologram, Eq. (30), we can 

see that the medium-frequency noise term has been eliminated. This term came from the 

convolution of the signal centre-band with the gain variation, the influence of the centre-band 

being eliminated from the pi-shifted hologram.  

The real and imaginary parts are the following: 

 𝑅𝑅𝑅𝑅 �𝐼𝐼𝑞𝑞
(−)(𝒓𝒓,𝜙𝜙)� = 1 + 𝑔𝑔0(𝒓𝒓) + 𝑅𝑅𝑅𝑅�𝑒𝑒−2𝑖𝑖𝑖𝑖𝑔𝑔2𝑞𝑞(𝒓𝒓)� (35) 

 𝐼𝐼𝐼𝐼 �𝐼𝐼𝑞𝑞
(−)(𝒓𝒓,𝜙𝜙)� = 𝐼𝐼𝐼𝐼�𝑒𝑒−2𝑖𝑖𝑖𝑖𝑔𝑔2𝑞𝑞(𝒓𝒓)� (36) 

For completeness, we will include the result for the addition of the pi-shifted side-bands, which in 

the ideal case would produce zero (see Eq. (14)). However, in the presence of gain variations a 

non-zero result is obtained: 

 𝐼𝐼𝑞𝑞
(+)(𝒓𝒓,𝜙𝜙) = 𝑎𝑎−1𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓) (37) 

In this case, the result has been normalised with respect to the side-band signal. The medium-

frequency noise has not been eliminated by the pi-shifting algorithm but displaced. 

Centre-band analysis 

The centre-band of the pi-shifted holograms should give a uniform distribution in the absence of 

noise, Eq. (15), but now will give: 
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 𝐼𝐼0
(−)(𝒓𝒓,𝜙𝜙) = 2𝑎𝑎𝑎𝑎𝑎𝑎�𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓)� (38) 

and 𝐼𝐼0
(+)(𝒓𝒓,𝜙𝜙) = 1 + 𝑔𝑔0(𝒓𝒓) (39) 

The centre-band result has no imaginary part, as must be the case given the masks used (Eq. (8)).  

Even for the pi-shifted holograms will be affected by the original phase of the signal but to a lesser 

degree. 

Pixel displacements 

After having analysed gain variations, we will now consider the fact that the pixels of a detector 

never lie on a perfectly regular square array. Their effective positions are slightly displaced from 

their ideal positions, either because of the fibre optic coupling or the lay-out of the detection 

electronics [33]. These are known to produce phase variations [1, 6] but the consequences of high-

frequency components from abrupt pixel-to-pixel displacements have not been fully appreciated.   

We can model these distortions as a vector displacement field, u(r). Following the same argument 

as for geometric phase analysis [34], the recorded intensity is related to the input signal in the 

following way: 

 𝐼𝐼(𝒓𝒓) = 𝑆𝑆(𝒓𝒓 − 𝒖𝒖(𝒓𝒓)) (40) 

For the perfect hologram fringes, this becomes: 

 𝐼𝐼(𝒓𝒓,𝜙𝜙) = 1 + 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒.𝒖𝒖(𝒓𝒓)𝑒𝑒2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 + 𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑒𝑒2𝜋𝜋𝜋𝜋𝒒𝒒.𝒖𝒖(𝒓𝒓)𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 (41) 

𝑤𝑤here the familiar geometric phase terms appear. At this point, it is interesting to note that the 

centre-band is not directly affected by the displacement field, contrary to gain variations. In 

Fourier space, only the two side-bands will be convoluted with the displacement field distribution. 

This has consequences for the pi-shifting algorithm later on.  

The displacements will be considered small, small compared to the pixel spacing, so to a good 

approximation: 

 𝐼𝐼(𝒓𝒓,𝜙𝜙) = 𝑆𝑆(𝒓𝒓,𝜙𝜙) − 2𝜋𝜋𝜋𝜋𝒒𝒒.𝒖𝒖(𝒓𝒓)𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 + 2𝜋𝜋𝜋𝜋𝒒𝒒.𝒖𝒖(𝒓𝒓)𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒.𝒓𝒓 (42) 

To simplify the appearance of the equations, we will introduce the scalar function, u, which is the 

component of the displacement in the direction of the carrier frequency vector, q: 

 𝑢𝑢(𝒓𝒓) ≝ 𝒒𝒒.𝒖𝒖(𝒓𝒓) 𝑞𝑞⁄  (43) 

where q is the modulus of the vector q. In Fourier space, the recorded intensity then becomes: 

 𝐼𝐼(𝒌𝒌,𝜙𝜙) = 𝑆̃𝑆(𝒌𝒌,𝜙𝜙) − 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑒𝑒𝑖𝑖𝑖𝑖𝑢𝑢�(𝒌𝒌 − 𝒒𝒒) + 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑒𝑒−𝑖𝑖𝑖𝑖𝑢𝑢�(𝒌𝒌 + 𝒒𝒒) (44) 

Following the same procedure as for the gain that resulted in Eq. (30), we can arrive at the 

following relations for the normalised side-bands: 
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 𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙) = 1 − 2𝜋𝜋𝜋𝜋𝜋𝜋𝑢𝑢0(𝒓𝒓) + 2𝜋𝜋𝜋𝜋𝜋𝜋𝑒𝑒−2𝑖𝑖𝑖𝑖𝑢𝑢2𝑞𝑞(𝒓𝒓) (45) 

Given that the low-frequency displacement function is real, the result in terms of the real and 

imaginary parts, and hence the measured amplitude and phase, is the following: 

 𝑅𝑅𝑅𝑅�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� = 1 − 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋�𝑒𝑒−2𝑖𝑖𝑖𝑖𝑢𝑢2𝑞𝑞(𝒓𝒓)� (46) 

 𝐼𝐼𝐼𝐼�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� = −2𝜋𝜋𝜋𝜋𝑢𝑢0(𝒓𝒓) + 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋�𝑒𝑒−2𝑖𝑖𝑖𝑖𝑢𝑢2𝑞𝑞(𝒓𝒓)� (47) 

The amplitude of the reconstructed side-band will therefore have systematic noise from the high-

frequency displacement field, 𝑢𝑢2𝑞𝑞(𝒓𝒓), dependent on the initial phase. The phase of the 

reconstruction will be modified by the low-frequency component of the displacement field, 𝑢𝑢0(𝒓𝒓). 

It is this component which is usually corrected for using a reference hologram, and accurately so, 

given that this noise is independent of the initial phase of the hologram.  

However, there is also noise from the high-frequency component of the displacement field, 𝑢𝑢2𝑞𝑞(𝒓𝒓), 

which will not be eliminated in general by subtracting the phase of a single reference hologram. 

Contrary to gain variations, Eq. (30), however, the term in frequency q of the noise, 𝑢𝑢𝑞𝑞(𝒓𝒓), is 

absent. This is due to the fact that displacements do not modify the centre-band of the signal 

directly. However, this term does appear in the centre-band of the reconstruction: 

 𝐼𝐼0(𝒓𝒓,𝜙𝜙) = 𝐼𝐼0(𝒓𝒓,𝜙𝜙) = 1 − 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑒𝑒𝑖𝑖𝑖𝑖𝑢𝑢−𝑞𝑞(𝒓𝒓) + 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑒𝑒𝑖𝑖𝑖𝑖𝑢𝑢𝑞𝑞(𝒓𝒓) (48) 

Using the symmetry between conjugate components, Eq. (11), this simplifies to: 

 𝐼𝐼0(𝒓𝒓,𝜙𝜙) = 𝐼𝐼0(𝒓𝒓,𝜙𝜙) = 1 − 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋�𝑎𝑎𝑒𝑒−𝑖𝑖𝑖𝑖𝑢𝑢𝑞𝑞(𝒓𝒓)� (49) 

As expected, the centre-band reconstruction is real and has no phase component. However, the 

amplitude is indeed modulated by noise from the pixel-to-pixel displacements, this time the 

medium-frequency component, 𝑢𝑢𝑞𝑞(𝒓𝒓). This noise depends on the initial phase of the fringes, just 

like the side-band.  

There is no point in considering the pi-shifted holograms for the pixel-to-pixel distortions as we 

can see that the reconstructed side band, Eq. (45), is unaffected by a change of pi of the signal 

hologram.  No components of the noise will therefore be eliminated using the algorithm and is a 

direct consequence of the centre-band of the signal not influencing the results, as mentioned 

previous with respect to Eq. (41). 

Results 

To test the theory, we have carried out some simulations using scripting in DigitalMicrograph 

(Gatan Inc.) and hologram processing with HoloDark (HREM Research Inc.), a plugin for 

DigitalMicrograph. The detector was modelled as having 512 by 512 pixels and illuminated by a 

perfect hologram with 6-pixel fringe spacing at an angle of 20° to the horizontal. The visibility of 
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the fringes was 40% giving a fringe amplitude, a, of 0.2 and had different input phases, φ, of zero, 

pi/2 and pi. The detector was considered to have variable gain and pixel-to-pixel distortions but 

otherwise perfect. The hologram signal was simulated using Eq. (1) and the recorded hologram 

using Eq. (17) for the gain variations and Eq. (41) for the displacements. 

Gain variation simulations 

Random numbers with a Gaussian distribution were generated for each pixel and then fixed for 

all the simulations (see Figure 2a). The standard deviation of the gain variations was 5%. The low, 

medium and high-frequency gain components appearing in Eq. (23) were extracted from the 

Fourier transform (see Figure 2b) using Eq. (7) with circular cosine masks, Eq. (10) of radius q/2. 

The real and imaginary parts of the functions are shown in Fig. 2 b-h. To avoid any possible edge 

effects, only the central 256 square area is shown for all the Figures. 

 

Figure 2. Simulated gain variations: (a) random gain variations; (b) power spectrum of gain 

variations with masks indicated for low (c,d), medium (e,f) and high frequency components 

(g,h). Real and Imaginary parts shown for central 256 square area of detector. Grey levels (a) 

±15% minimum to maximum (c-h) ±1% minimum to maximum. Standard deviations are: (a) 

5% (c) 0.40% (e-h) 0.28%. 

As expected, the power spectrum of the gain (Fig. 2b) shows the characteristic white noise speckle, 

uniformly spread across all frequencies. We can see that the low-frequency term, 𝑔𝑔0(𝒓𝒓), is indeed 

real with no imaginary part (Fig. 2d) but that the medium, 𝑔𝑔𝑞𝑞(𝒓𝒓), and high-frequency, 𝑔𝑔2𝑞𝑞(𝒓𝒓), 

terms are complex (Eq. (23)). It is important to point out that there is no correlation between the 

different components, as they come from different parts of the Fourier transform, and have 

completely uncorrelated spatial distributions even between real and imaginary parts. 
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For gain variations of 5% shown here, the standard deviations of the real part of low-frequency 

term  𝑔𝑔0(𝒓𝒓) is 0.40% whereas the real and imaginary parts of 𝑔𝑔𝑞𝑞(𝒓𝒓), and high-frequency, 𝑔𝑔2𝑞𝑞(𝒓𝒓), 

have standard deviations of 0.28%. In fact, the standard deviation of the modulus of all the 

components is 0.40%, the reason for the apparent difference being that the low-frequency term 

has no imaginary part. The much lower variability in the components compared with the original 

gain comes from the mask used in the Fourier processing detailed later. 

A hologram, simulated and adjusted for the gain directly using Eqs. (1) and (17), is shown in Figure 

3a. The side-band was extracted using Eq. (7) with the same cosine mask as previously (Figs. 3c 

and d). The standard deviation of the amplitude is 1.5% of the average value and the phase 14.1 

mrad. To test the theoretical development, the corresponding amplitude and phase (Figs. 3e and 

3f) were then calculated instead using Eqs. (31) and (32), respectively, and injecting the gain 

components calculated in Figure 2. The results of simulations and theory match to within 

numerical errors. 

 

Figure 3. Simulated hologram with 5% gain variations: (a) hologram intensity simulated using 

Eq. (17); (b) power spectrum with mask indicating side-band extraction; (c) reconstructed 

relative amplitude; (d) corresponding reconstructed phase (in colour); (e) theoretical relative 

amplitude using Eq. (31); (f) theoretical phase using Eq. (32); (g) reconstructed relative 

amplitude for simulation with initial phase of π/2; (h) corresponding relative phase. Grey levels 

(c,e,g) ±1% minimum to maxium; Colour range (d,f,h) ±50 mrad black to white. Standard 

deviations are: (c,e,g) 1.5% of the amplitude; (d,f,h)14.1 mrad in the phase. 

Also shown on Figure 3 are the amplitude and phase for a simulated hologram with initial phase 

of 𝜋𝜋 2⁄ . The amplitude and phase systematic noise (Figs. 3g and 3h respectively) are very different 
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to that from the hologram with an initial phase of zero (Fig. 3c and 3d). Subtracting the two 

hologram phases would therefore increase, not eliminate, the noise from gain variations. 

 

Figure 4. Phase noise from 5% gain variation as a function of initial phase, φ: theoretical relative 

phase Φ�(𝒓𝒓,𝜙𝜙) calculated using Eq. (32). Colour range: ±50 mrad black to white. 

We can easily calculate the relative phase for any other value of initial phase, φ, using Eq. (32). 

These are shown on Figure 4 for initial phases from 0 to 2π in steps of 𝜋𝜋 4⁄ . The phase noise 

changes gradually over the cycle. Because the two terms in Eq. (32) cycle differently, every phase 

image is different. The dominant term depends on the medium-frequency component 𝑔𝑔𝑞𝑞(𝒓𝒓) which 

inverts on changing the initial phase by π. However, the other term depending on the high-

frequency term 𝑔𝑔2𝑞𝑞(𝒓𝒓) does not.  
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The analysis of a simulated pi-shifted hologram, calculated from two simulated holograms using 

Eq. (6), is shown in Figure 5. The centre-band is indeed absent from the Fourier transform (Fig. 

5b). The amplitude and phase variations are much smaller (Figs. 5c and 5d) than in Figure 3, given 

the absence of terms in the theoretical expressions Eqs. (35) and (36) respectively (Figs. 5e and 

5f). Indeed, the standard deviations for the relative amplitude and phase are now only 0.51% and 

2.9 mrad, respectively.  

 

Figure 5. Simulated pi-shifted hologram with 5% gain variation: (a) pi-shifted hologram 

intensity; (b) power spectrum with mask indicating side-band extraction; (c) reconstructed 

relative amplitude; (d) corresponding reconstructed phase (in colour); (e) theoretical relative 

amplitude using Eq. (35); (f) theoretical phase using Eq. (36); (g) reconstructed relative 

amplitude for initial phase of π/2; (h) corresponding relative phase. Grey levels (c,e,g) ±1% 

minimum to maxium; Colour range (d,f,h) ±50 mrad black to white. Standard deviations are: 

(c,e,g) 0.51% of the amplitude; (d,f,h) 2.9 mrad in the phase. 

Figures 5g and 5h show the amplitude and phase determined from a pi-shifted hologram with 

calculated from the holograms of initial phases of π/2 and 3π/2. The phase (Fig. 5h) is exactly 

inverted with respect to pi-shifted hologram at zero initial phase (Fig. 5d), as expected from Eq. 

(36). In this case, subtracting the two reconstructed phases would exactly double the noise. 

Pixel displacement simulations 

We can carry out a similar analysis for the pixel-to-pixel displacements. This time, a random 

displacement field was simulated having a standard deviation of 0.05 pixels in both x and y 

directions. The corresponding holograms were calculated using Eq. (41) and the same fringe 

visibility and carrier frequency as before. A hologram having and initial phase of zero is shown in 

Figure 6a. 
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Figure 6. Simulated hologram with pixel-to-pixel displacements: (a) hologram simulated using 

Eq. (41); (b) power spectrum with mask indicating side-band extraction; (c) reconstructed 

relative amplitude; (d) corresponding reconstructed phase (in colour); (e) theoretical relative 

amplitude using Eq. (46); (f) theoretical phase using Eq. (47); (g) reconstructed relative 

amplitude for initial phase of π/2; (h) corresponding relative phase. Grey levels (c,e,g) ±1% 

minimum to maxium; Colour range (d,f,h) ±50 mrad black to white. Standard deviations are: 

(c,e,g) 0.29% of the amplitude; (d,f,h) 5.1 mrad in the phase. 

Again, the simulation (Figs. 6c and 6d) using Eq. (41) and theory (Figs. 6e and 6f) using Eqs. (46) 

and (47), agree to within numerical errors. The standard deviations for the relative amplitude and 

phase are 0.29% and 5.1 mrad respectively. For an initial phase of π/2, the spatial distribution of 

the noise is different (Figs. 6g and 6h). In fact, the amplitude noise is exactly inverted, whereas the 

phase appears uncorrelated. This is because only the high-frequency distortion terms inverts (Eq. 

(46)) whilst the low-frequency distortion term stays the same. 

Discussion 

Gain variations and pixel displacements produce phase variations which look like random noise 

(see Figs. 3-6). However, the variations can be determined directly from the static gain and 

displacement distributions, through Eqs. (32) and (47) respectively. Unfortunately, these 

distributions are difficult to determine experimentally with sufficient accuracy. Gain varies from 

day to day and geometric distortions, though stable, are difficult to measure accurately at the scale 

of individual pixels. The only solution is to consider them as a fatality, similar to random noise, or 

try to correct them. We will begin by estimating the resulting standard deviation in the phase.  

The variations of the relevant gain and displacement components will be lower than the initial 

standard deviation (cf Fig. 2) depending on the mask used. The reduction factor has been 
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calculated for hard binary masks [35]. An extension to other masks, like the cosine mask used 

here, shows that the variance is multiplied by a factor equal to the integral of the square of the 

mask in Fourier space.  Some tedious integration of the cosine mask, Eq. (10), gives the following 

result for the standard deviation factor, fM: 

 𝑓𝑓𝑀𝑀 = 𝑘𝑘𝑀𝑀�
𝜋𝜋
2
− 2

𝜋𝜋
= 0.967𝑘𝑘𝑀𝑀 (50) 

The mask radius, kM, expressed in pixels-1, is less than 0.5 (Nyquist) and therefore the factor is 

always less than one for any mask. In our case, the mask radius is q/2 giving: 

 𝑓𝑓𝑀𝑀 = q
2
�𝜋𝜋
2
− 2

𝜋𝜋
= 0.484𝑞𝑞 (51) 

By comparison, a hard square mask of side q would give [35]: 

 𝑓𝑓𝑀𝑀 = 𝑞𝑞 (52) 

The standard deviation of the real and imaginary parts of the medium and high-frequency 

components are √2 smaller when taken individually. For a given standard deviation of the gain 

variations, σg, they follow the relation: 

 𝜎𝜎�𝑔𝑔0(𝒓𝒓)� = √2𝜎𝜎�𝑅𝑅𝑅𝑅�𝑔𝑔𝑞𝑞(𝒓𝒓)�� = √2𝜎𝜎�𝐼𝐼𝐼𝐼�𝑔𝑔𝑞𝑞(𝒓𝒓)�� = 𝑓𝑓𝑀𝑀𝜎𝜎𝑔𝑔 (53) 

For our fringe spacing of 6 pixels, the mask factor is 0.081 using Eq. (51), giving for a gain variation 

of 5% a standard deviation of 0.40% for the low-frequency component and 0.28% for the real and 

imaginary parts of the others. These values reproduce exactly the standard deviations measured 

from the simulations (Fig. 3). 

We have already seen that the noise appears lower in the pi-shifted holograms in the presence of 

gain variations (cf Figs. 3 and 5). Assuming that the different components are indeed uncorrelated, 

the standard deviation of the phase due to non-uniform gain can be estimated from Eq. (32) by 

summing the variances: 

 𝜎𝜎𝑔𝑔�Φ�� = 1
2
𝑓𝑓𝑀𝑀𝜎𝜎𝑔𝑔√𝑎𝑎−2 + 1 (54) 

The corresponding result for the pi-shifted holograms, Eq. (47), is: 

 𝜎𝜎𝑔𝑔�Φ� (−)� = 1
2
𝑓𝑓𝑀𝑀𝜎𝜎𝑔𝑔 (55) 

We would therefore expect the pi-shifted hologram to have noise lowered by a factor of √𝑎𝑎−2 + 1, 

or in our case about 5. The actual values from the simulations are 14.1 mrad (Fig. 3) and 2.9 mrad 

(Fig. 4) respectively, giving a reduction of 4.9. Indeed, any improvement seen in experiments on 

pi-shifting could be indicative of poor gain normalisation. 

For the distortion, similar analysis applied to Eq. (47) results in: 
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 𝜎𝜎𝑢𝑢�Φ�� = 2πq�3
2
𝑓𝑓𝑀𝑀𝜎𝜎𝑢𝑢 (56) 

The standard deviation calculated for the simulation is 5.1 mrad, which agrees with the measured 

value (Figure 6). A systematic increase in the phase noise with carrier frequency (but keeping the 

same mask size, see Eqs. (50) and (51)) might be indicative of high-frequency pixel displacements. 

Unfortunately, other sources of noise typically increase with carrier frequency. No improvement 

should be visible in the pi-shifted holograms. 

The question is whether these values can be improved by correction using the standard procedure 

of subtracting the phase of a reference hologram, given that we have shown that the variations 

depend on the original phase of the signal (cf Fig. 4). If all the conditions are identical, including 

the initial phase of the hologram, the systematic terms will all be eliminated. However, there is no 

certainty that the reference hologram would be acquired with the same phase, barring automation 

[16]. Indeed, the hologram of a real object will have a varying phase over the field of view. Locally, 

the object hologram and reference hologram will not have the same phase in general. 

Imagine correcting the phase using a reference hologram of phase, 𝜙𝜙ref: 

 Φ� corr�𝒓𝒓,𝜙𝜙,𝜙𝜙ref� = Φ� raw(𝒓𝒓,𝜙𝜙) −Φ� ref�𝒓𝒓,𝜙𝜙ref� (57) 

From Eq. (29), it follows that: 

 Φ� corr�𝒓𝒓,𝜙𝜙,𝜙𝜙ref� ≃ 𝐼𝐼𝐼𝐼�𝐼𝐼𝑞𝑞(𝒓𝒓,𝜙𝜙)� − 𝐼𝐼𝐼𝐼�𝐼𝐼𝑞𝑞�𝒓𝒓,𝜙𝜙ref�� (58) 

For gain variations, Eq. (32), this means: 

 Φ� corr�𝒓𝒓,𝜙𝜙,𝜙𝜙ref� = 𝐼𝐼𝐼𝐼 ��𝑒𝑒−𝑖𝑖𝑖𝑖 − 𝑒𝑒−𝑖𝑖𝜙𝜙ref�𝑔𝑔𝑞𝑞(𝒓𝒓)� + 𝐼𝐼𝐼𝐼 ��𝑒𝑒−2𝑖𝑖𝑖𝑖 − 𝑒𝑒−2𝑖𝑖𝜙𝜙ref�𝑔𝑔2𝑞𝑞(𝒓𝒓)� (59) 

Now expressing the phase difference as: 

  Δ𝜙𝜙 ≝ 𝜙𝜙ref − 𝜙𝜙 (60) 

we come to the following result: 

 Φ� corr�𝒓𝒓,𝜙𝜙,𝜙𝜙ref� = 2a−1 sin(Δ𝜙𝜙 2⁄ ) 𝐼𝐼𝐼𝐼�𝑖𝑖𝑒𝑒−𝑖𝑖Δ𝜙𝜙 2⁄ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓)�+ 2 sin(Δ𝜙𝜙) 𝐼𝐼𝐼𝐼�𝑖𝑖𝑒𝑒−𝑖𝑖Δ𝜙𝜙𝑒𝑒−2𝑖𝑖𝑖𝑖𝑔𝑔2𝑞𝑞(𝒓𝒓)� 
(61) 

There are two terms with different behaviour. If the phase of the reference hologram is the same 

as the target hologram, the corrected phase is zero. This is the signature of systematic errors: 

repeating an identical experiment will produce exactly the same result. However, the reference 

hologram is more likely to have a different phase as explained previously. If the phase difference 

is π, for example, then: 

 Φ� corr�𝒓𝒓,𝜙𝜙,𝜙𝜙ref,Δ𝜙𝜙 = 𝜋𝜋 � = 2a−1𝐼𝐼𝐼𝐼�𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔𝑞𝑞(𝒓𝒓)� (62) 

and the noise is far from being eliminated on correction. 
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The pi-shifted holograms, however, have only one term, giving the following result: 

 Φ� corr�𝒓𝒓,𝜙𝜙,𝜙𝜙ref� = 2 sin(Δ𝜙𝜙) 𝐼𝐼𝐼𝐼�𝑖𝑖𝑒𝑒−𝑖𝑖Δ𝜙𝜙𝑒𝑒−2𝑖𝑖ϕ𝑔𝑔2𝑞𝑞(𝒓𝒓)� (63) 

This shows that the maximum error is obtained when the two holograms are 𝜋𝜋 2⁄  out of phase, 

doubling the initial noise level from the gain (cf Figs. 5d and 5h). Using the previous expressions 

for the standard deviations, Eq. (53): 

 𝜎𝜎𝑔𝑔�Φ� corr� = 𝑓𝑓𝑀𝑀𝜎𝜎𝑔𝑔�a−2 sin2(Δ𝜙𝜙 2⁄ ) + sin2(Δ𝜙𝜙) (64) 

and for the pi-shifted hologram: 

 𝜎𝜎𝑔𝑔�Φ� (-)corr� = 𝑓𝑓𝑀𝑀𝜎𝜎𝑔𝑔|sin(Δ𝜙𝜙)| (65) 

For the distortions, Eq. (47), the result is similar to the pi-shifted gain variations: 

 Φ� corr(𝒓𝒓,𝜙𝜙,𝜙𝜙ref) = 4πq sin(Δ𝜙𝜙) 𝐼𝐼𝐼𝐼�𝑖𝑖𝑒𝑒−𝑖𝑖Δ𝜙𝜙𝑒𝑒−2𝑖𝑖ϕ𝑢𝑢2𝑞𝑞(𝒓𝒓)� (66) 

The low-frequency term has been completely eliminated, leaving only the high-frequency term. 

The corresponding standard deviation of the corrected phase will be: 

 𝜎𝜎𝑢𝑢�Φ� corr� = 2𝜋𝜋𝜋𝜋√2𝑓𝑓𝑀𝑀𝜎𝜎𝑢𝑢|sin(Δ𝜙𝜙)| (67) 

Using the values for our simulations, we can present Eqs. (64), (65) and (67) as a function of the 

phase shift between object and reference hologram to demonstrate the salient features (Figure 7). 

We can see that for the gain variations (Fig. 7a) the residual phases are in general much smaller 

for the pi-shifted holograms than for the individual holograms, corrected or otherwise, and that 

only very particular values of the relative phases completely eliminate the noise. For intermediate 

values, the noise in the corrected phase can even be bigger than for the raw holograms. The results 

for the pixel displacements (Fig. 7b) follow a similar trend. However, correction usually improves 

the phase noise because the low-frequency component is eliminated.  

Of course, the actual amount of detector noise, as illustrated in Fig. 7, will depend on the mask size 

and the standard deviations of the gain and pixel displacements. We chose the values of 5% gain 

variation and 5% of the pixel spacing as being representative. These values could be the residuals 

after (imperfect) calibration and correction of gain and geometric distortion. Indeed, gain 

normalisation is not necessarily easy to perform to high accuracy for every experiment. Even DDD 

cameras operating in so-called counting mode, where electrons are detected individually, have a 

gain variation representing the fact that some pixels have a higher probability of detecting an 

electron than others. On the other hand, pixel displacements are likely to be smaller in DDD 

cameras than CCD cameras, due to the lack of fibre-optic coupling, but without experimental 

verification it is hard to say. 
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Figure 7. Phase errors before (raw) and after reference hologram correction (corrected), as a 

function of the phase-shift between object and reference holograms: (a) gain; (b) distortion. 

Gain variations were 5%, pixel displacements 0.05, hologram fringe spacing 6 pixels, visibility 

40% and cosine mask radius q/2. 

Conclusions  

Residual gain variations and non-uniformity in the spatial distribution of pixels will introduce 

amplitude and phase variations which look like random noise. They are, however, completely 

deterministic given complete knowledge of the detector characteristics. Analytical expressions 

have been given (see for example, Eqs. (32) and (47)) and estimates of the standard deviations 

proposed (see Eqs. (54) and (56)). Gain variations will have a much lesser effect on pi-shifted 

holograms, confirming if need be the interest of this technique.  

With perfect knowledge of the detector in terms of gain variation and pixel distortions, these 

errors could be calculated and possibly removed from the reconstructed phase. The case of a 

varying object phase has not been analysed neither has the combination of gain and pixel 

distortions. It also remains to be seen if experimental methods can be developed to measure these 

characteristics independently with sufficient ease and accuracy. The standard procedure of using 

a reference hologram cannot eliminate the noise given that the phase variations depend on the 
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precise position of the hologram fringes with respect to the detector. Only when the phase of the 

object and reference holograms are identical over the whole field of view will the noise be 

eliminated, a rather limited case. 

Nevertheless, it should not be concluded that reference holograms are not useful. In fact, they are 

essential to correct all the other sources of systematic error in the phase. For example, projector 

lens distortions and biprism charging produce phase variations orders of magnitude larger than 

those presented here. We are saying, however, that they will not eliminate all sources of error. 

Indeed, it is likely that the only sources of error remaining in holography experiments, in the 

vacuum at least, will be the errors from the detector whether they be CCD or DDD. In the light of 

these results, new procedures for camera calibration may require investigation. 
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