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(Received 3 December 2019; revised 11 April 2020; accepted 5 August 2020; published 14 October 2020)

Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum
computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is
spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in situ using gate-based
dispersive sensing. In systems with a complex energy spectrum, like silicon quantum dots, accurately
identifying when singlet-triplet blockade occurs is hence of major importance for scalable qubit readout. In
this work, we present a description of spin-blockade physics in a tunnel-coupled silicon double quantum dot
defined in the corners of a split-gate transistor. Using gate-based magnetospectroscopy, we report successive
steps of spin blockade and spin-blockade lifting involving spin states with total spin angular momentum up to
S ¼ 3. More particularly, we report the formation of a hybridized spin-quintet state and show triplet-quintet
and quintet-septet spin blockade, enabling studies of the quintet relaxation dynamics from which we find
T1 ∼ 4 μs. Finally, we develop a quantum capacitance model that can be applied generally to reconstruct the
energy spectrum of a double quantum dot, including the spin-dependent tunnel couplings and the energy
splitting between different spin manifolds. Our results allow for the possibility of using Si complementary
metal-oxide-semiconductor quantum dots as a tunable platform for studying high-spin systems.

DOI: 10.1103/PhysRevX.10.041010 Subject Areas: Quantum Physics,
Quantum Information,
Semiconductor Physics

I. INTRODUCTION

High-spin states have been shown to play a key role in a
variety of important physical phenomena. They are
involved in singlet fission in organic photovoltaics [1,2],
unconventional high-spin superconductivity [3,4], and the

energy states of molecules and complexes with large
delocalized electron systems that are relevant, for example,
to biochemical catalysis [5–7]. Similarly, spin-based quan-
tum computing also necessitates a comprehensive under-
standing of the interplay of the various spin states that exist
in the quantum computing platform of choice [8–11]. Spins
bound to quantum dots defined in silicon have garnered
significant attention as an attractive quantum computing
platform due to their long coherence times [12,13],
compatibility with industrial manufacturing techniques
[14–16], and, recently, the demonstration of high-fidelity
one- and two-qubit operations [17–19]. In spin qubits,
quantum state readout is achieved via spin-to-charge
conversion, which translates the spin state into a selective
movement of charge that can be efficiently detected using
charge sensors [20] or resonant circuits [21]. Currently, the
spin-to-charge mechanism that has enabled the highest
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fidelity readout, even at high temperatures and moderate
magnetic fields [22,23], is Pauli spin blockade of the two-
electron singlet and triplet states [24–26]. Under spin
blockade, electron transitions from one quantum dot to
another are prohibited in the triplet manifold due to the
Pauli exclusion principle, while transitions among singlet
states are permitted. However, singlet-triplet spin blockade
can be lifted by the presence of low-energy excited states
that enable direct triplet tunneling and render spin blockade
less effective [27]. Given that silicon possesses an addi-
tional valley degree of freedom [28], the energy spectrum in
silicon quantum dots can be rather complex, and accurately
identifying when singlet-triplet blockade occurs is hence of
importance for achieving reliable and scalable readout of
spin qubits in silicon.
In this paper, we go beyond the standard description of

singlet-triplet Pauli spin blockade and the previous work on
multielectron double quantum dots (DQDs) with spin
angular momentum S ≤ 1 [29,30]. Here, we explore multi-
particle valence states with large spin angular momentum
and demonstrate that low-lying excited states can lead to
successive steps of spin blockade and spin-blockade lifting,
which span spin states with total spin angular momentum
up to S ¼ 3, thereby expanding concepts introduced
with transport measurements in Ref. [31]. We do so using
a DQD defined electrostatically in the corners of a Si
complementary metal-oxide-semiconductor (CMOS) split-
gate transistor [27]. By using gate-based dispersive readout
[32–34] and magnetospectroscopy of an interdot charge

transition (ICT) between two quantum dots containing a
total of 2 and 14 electrons, respectively, we demonstrate the
formation of a hybridized spin-quintet state (S ¼ 2)
between the quantum dots. We show how spin-quintet
tunneling can be blocked at low magnetic fields by the
triplet states (S ¼ 1) and at high fields by a septet state
(S ¼ 3). The spin blockade is used to study the quintet spin
relaxation to the triplet and septet states, which we find to
be of the order of a few microseconds. Moreover, to better
understand the magnetic dependence of the dispersive
response, we develop a quantum capacitance model that
enables reconstruction of the energy spectrum of the
coupled DQD, including the spin-dependent tunnel cou-
pling and the energy splitting between different spin
manifolds. Overall, our study provides a comprehensive
understanding of spin-blockade physics in systems with a
dense energy spectrum and allows for the possibility of
investigating the dynamics of high-spin systems using
programmable CMOS technology.

II. DISPERSIVE DETECTION OF THE ABSOLUTE
DQD ELECTRON OCCUPANCY

Figure 1(a) shows a SEM micrograph of an n-type
CMOS split-gate transistor fabricated on a 300-mm silicon-
on-insulator (SOI) wafer and similar to the device presented
here. The inset of Fig. 1(a) presents the cross section of
the silicon channel of the transistor, which has a height
h ¼ 7 nm, a width w ¼ 70 nm, and is separated from the Si

(a) (b)

FIG. 1. Measurement setup and charge stability diagram of the DQD. (a) Scanning electron microscopy (SEM) micrograph and sketch
of the transistor and measurement setup. The SEM micrograph is taken during processing, after the definition of the Si3N4 spacers. The
sketch inset capturing the cross section of the transistor perpendicular to the channel illustrates the architecture of the device as well as
the DQD formed in parallel in the channel corners when applying a positive potential to the face-to-face top gates. Gate Grf is connected
to a resonant LC circuit in which the inductive component is a superconducting NbN planar spiral inductor. (b) Charge stability diagram
recorded using gate-based dispersive readout while sweeping the potentials of Grf and Gmw, showing regular features characteristic of a
DQD. Counting the number of charge transitions in the diagram allows identification of the exact DQD charge configurations, e.g., that
shown in the inset, which highlights the (1,15)-(2,14) interdot charge transition investigated in this paper. The points I, I0, M, and M0
indicate the initialization and measurement points of pulsing experiments presented in Fig. 3.
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substrate, which we hold at 0 V, by a 145-nm SiO2 buried
oxide (BOX). On top and separated from the channel by
6 nm of SiO2, there is a pair of face-to-face gate electrodes
(Grf and Gmw), which have gate lengths Lg ¼ 60 nm and
are split from each other by Sg ¼ 40 nm. The space
between and around the gates is covered by 34-nm-wide
Si3N4 spacers, which help separate the highly n-type-doped
source (S) and drain (D) contacts from the central part of
the intrinsic channel. While it is not of importance to the
results described here, we note that the channel region
below Grf is lightly Bi doped with an average of about 1 Bi
dopant. By increasing the electrostatic potential of Grf and
Gmw, electrons accumulate in the corners of the channel,
thus forming two quantum dots with controllable electron
occupancies, QDrf and QDmw, in parallel between the
source and drain [see inset of Fig. 1(a)] [35]. Electrons
can be drawn in to the quantum dots from the S and D
reservoirs, which we hold at 0 V for all experiments
presented in this work.
We control and read the electron configuration of the

DQD via the setup presented in Fig. 1(a). The microwave
gate (Gmw) is connected to a dc line (VGmw) and a high-
frequency line through a bias tee. The other gate, the
reflectometry gate (Grf), is connected to a dc line (VGrf )
and, in parallel, to a lumped-element LC resonant circuit
comprised of a superconducting NbN planar spiral inductor
as well as the parasitic capacitance to ground, Cp. At
B ¼ 0 T, the resonance frequency of the resonator is
f0 ¼ 704.68 MHz; however, when increasing the magnetic
field, the kinetic inductance of the superconducting spiral
inductor increases, leading to shifts in f0 according to
f0ðBÞ ¼ 1=½2π ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðBÞðCp þ Cc þ CdÞ
p �, where LðBÞ is the

magnetic-field-dependent inductance of the spiral inductor,
Cc ¼ 0.2 pF is the coupling capacitance, and Cd is the
state-dependent device capacitance. We drive the resonator
with a frequency frf close to resonance and with a power
Prf at the input of the resonator in the range of −105 to
−95 dBm. The signal reflected from the resonant circuit is
amplified by 40 dB at 4 K and by a further 60 dB at room
temperature, where it is subsequently homodyne IQ
demodulated and low-pass filtered, thus allowing meas-
urement of the phase shift of the reflected signal, Δϕ.
Variations in phase, Δϕ ¼ −2QlΔCd=ðCp þ Cc þ CdÞ,
where Ql is the loaded quality factor, arise due to changes
in device capacitance that occur, for example, when single
electrons tunnel cyclically between QDs, or between a QD
and a reservoir, because of the influence of the rf drive [36].
We present the charge stability diagram in Fig. 1(b) [37]

obtained by measuring the phase response as a function
of the voltages VGrf and VGmw. The hexagonlike features in
the diagram confirm the presence of a DQD in the Si
channel, and the lines of nonzero phase shift indicate
regions of charge bistability. The short lines with positive
slope indicate an electron tunneling between dots, whereas
the quasivertical (quasihorizontal) lines correspond to

regions where QDrf (QDmw) exchanges an electron with
the source or drain reservoirs. We note a larger average
voltage period of the lines in VGrf (∼47 mV) with respect to
VGmw (∼18 mV), which we attribute to a misalignment of
7� 3 nm in the placement of the gates on the Si channel in
which Gmw overlaps the channel more so than Grf . The
increased elongation and the rounding of the corners of
the hexagons at larger gate voltages indicate an increased
tunnel coupling between the dots [38]. Gate-based reflec-
tometry readout enables us to discern the addition of the
first electron to each of the QDs and to count the addition of
subsequent electrons as described in Appendix A. The inset
of Fig. 1(b) shows the region of the charge stability diagram
around the even-parity interdot charge transition (ICT)
between the (1,15) and (2,14) DQD charge configurations.
Here, i in ði; jÞ refers to the electron occupancy of QDrf ,
while j refers to the electron occupancy of QDmw. The
tunneling between the two dots results in a change of
device capacitance given by the quantum capacitance of the
system, which in the slow relaxation limit can be described
by the expression [36]

CQ ¼ −
X
i

eα
∂2Ei

∂V2
Grf

Pi; ð1Þ

where e is the electron charge, α ¼ αrf − αmw is the
difference between the capacitive coupling ratio of Grf
to QDrf and QDmw, Ei is the eigenenergy of the many-
particle state i, and Pi is the probability of the state i being
occupied. The points I, I0, M, and M0 in the inset indicate
the initialization and measurement points used for pulsing
experiments described later in this paper. In the following,
we focus on the region and ICT shown in the inset of
Fig. 1(b).

III. MAGNETOSPECTROSCOPY

In order to study the spin physics and energy spectrum
of the multielectron DQD defined in this device, and, in
particular, of the ICT shown in Fig. 1(b), we perform a
dispersive magnetospectroscopy study by measuring the
line trace intersecting the ICT at VGmw ¼ 0.440 V while
increasing the magnetic field B, which is applied in plane
with the device and at an 83° angle to the nanowire. To
account for the magnetic-field-dependent inductance LðBÞ,
which changes significantly for B≳ 2 T, the magneto-
spectroscopy study is split into two measurements as
presented in Fig. 2(a), where frf is adjusted accordingly
for B ¼ 2 to 5 T. The measurements show that the signal
seen at B ¼ 0 T in the inset of Fig. 1(b) disappears when
B > 1.2 T and that a new signal at slightly lower VGrf
appears at B ∼ 2.6 T and eventually disappears again
at B ∼ 4.4 T.
The signal at B ¼ 0 T arises from tunneling between the

anticrossing singlet states S(1,15) and S(2,14) as given by
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Eq. (1) and as sketched in the lower panel of Fig. 2(b). The
curvature of the anticrossing singlet states is apparent from
their calculated eigenenergies that appear in blue in Fig. 2(c)
as a function of energy detuning between dots ε ¼
eαðVGrf − V0

GrfÞ, where V0
Grf ¼ 0.3607 V in this experi-

ment. When B is increased, excited states with a nonzero
spin-angular-momentum projection onto the direction of B,
ms ≠ 0, will Zeeman split according to EZ ¼ msgμBB,
where g is the Landé g factor and μB is the Bohr magneton.
A Zeeman-split state, for example, the triplet T− with
ms ¼ −1 illustrated in Fig. 2(b), can therefore become the
ground state at sufficiently large B. In this scenario, the
tunneling between T(1,1)- and S(2,0)-like states—T−ð1; 15Þ
and S(2,14) here—is forbidden by the Pauli exclusion
principle [14,39–41], thereby leading to Pauli spin blockade:
The ICT signal disappears because T−ð1; 15Þ shows no
curvature at detuning ε ¼ 0 and thus makes no contribution
to CQ. One may therefore initially be led to believe that
the lack of signal from B ¼ 1.2–2.6 T in Fig. 2(a) is
due to singlet-triplet spin blockade and that the signal
at B ¼ 2.6–4.4 T arises from the curvature of the
T−ð1; 15Þ-T−ð2; 14Þ anticrossing [27,42,43]. However, as
we explain below, this is not the case.

In the lower part of Fig. 2(a), we note that as B is
increased from 0 to 0.8 T, the ICT signal decreases in
intensity asymmetrically from the left. The reduction of the
signal can be ascribed to the lowering of T− below the
singlet ground state. This case is illustrated by the dashed
white line labeled S-T− in Fig. 2(a), which tracks the
position of the S-T− crossing above which T− becomes
energetically favorable compared to S as previously
explained. This case is also illustrated in Fig. 5 in
Appendix B, which shows energy diagrams similar to
Fig. 2(c) but at nonzero magnetic fields. Because the signal
of the singlet disappears at lower VGrf first, the anticrossing
between T−ð1; 15Þ and T−ð2; 14Þ states must appear at
larger gate voltage. For that reason, the signal in the region
B ¼ 2.6–4.4 T cannot arise from triplet tunneling but, as
we demonstrate below, instead comes from hybridized
quintet spin states (S ¼ 2). By closer inspection of the
B ¼ 0.8–1.2 T region (see Fig. 6 of Appendix C), we do,
however, identify the signal of the T− anticrossing. This
signal overlaps that of the low-field singlet because the
singlet-triplet splitting of this system, δST, is small relative
to the tunnel coupling of the singlet states, ΔS, thereby
making the signals of the S and T− difficult to discern. The
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FIG. 2. Pauli spin blockade and energy levels of spin states with S ≤ 3. (a) Measurement of the (1,15)-(2,14) interdot charge transition
at VGmw ¼ 0.440 V as a function of external in-plane magnetic field. From bottom to top, the dashed lines indicate fits to the S-T−,
T−-Q2−, and Q2−-X3− energy-level intersection points at varying magnetic fields. (b) Illustrative single-particle energy diagrams of the
singlet S (ms ¼ 0), triplet T− (ms ¼ −1), quintet Q2− (ms ¼ −2), and septet X3− (ms ¼ −3) states that successively become the ground
state when increasing the magnetic field in panel (a). For simplicity, the energy diagrams omit the five lowest-lying energy levels of
QDmw. The (1,15)-(2,14) anticrossings of the singlet, triplet, and quintet shown in panel (c) are demonstrated by an electron (in red)
tunneling from QDmw to QDrf . (c) Energy levels of the double quantum dot simulated based on parameters extracted from panel (a) as a
function of (1,15)-(2,14) detuning. The different colors indicate states of varying multiplicity and spin angular momentum S: a singlet
with S ¼ 0 (blue), triplets with S ¼ 1 (red), quintets with S ¼ 2 (green), and septets with S ¼ 3 (yellow). The lines with positive slope
are (1,15) states, while lines with negative slope are (2,14) states. These states mix near the anticrossings due to (1,15)-(2,14) interdot
tunneling. (d) Normalized phase response as a function of magnetic field simulated based on the energy levels presented in panel (c). In
order to enhance the visibility of low-field features, the z scale is limited to half of the normalized phase response.
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triplet signal is accompanied by a second peak (Fig. 6)
arising from the tunneling between an excited triplet
T�−ð1; 15Þ and T−ð2; 14Þ as illustrated with the red
eigenenergies in Fig. 2(c). This additional triplet anticross-
ing explains the extension of the low-field ICT signal
beyond the S-T− crossing line.
As we increase the magnetic field further, the triplet

signals vanish at about B ¼ 1.2 T, but at B ¼ 2.6 T, a new
signal starts appearing as displayed in the upper part of
Fig. 2(a). We attribute this new signal to the anticrossing
between the lowest Zeeman-split quintet states Q2−ð2; 14Þ
and Q2−ð1; 15Þ with ms ¼ −2 [green lines in Fig. 2(c)],
which have four electrons aligned with the external
magnetic field, as illustrated in Fig. 2(b). Consequently,
the Q2− state experiences twice the Zeeman splitting in
comparison to the T− and T�− states, thereby explaining
how the quintet state can become a ground state at a
sufficiently large magnetic field as shown in Fig. 5(c). Just
as the T− state blocks the singlet state at lower fields, the
low-energy Q2− state now crosses the T− state as shown
with the dashed white line labeled T−-Q2− in Fig. 2(a),
causing triplet-quintet spin blockade in the B ¼ 1.2–2.6 T
range. We note that the discontinuity of the fitted dashed
T−-Q2− line at B ¼ 2 T may be due to changes in charge in
the peripheral environment of the DQD between measure-
ments. Increasing the magnetic field beyond B ¼ 4.4 T
results in a six-electron X3− septet state with S ¼ 3
and ms ¼ −3 [top panel of Fig. 2(b) and yellow line in
Fig. 2(c)], which experiences thrice the Zeeman splitting
compared to the triplet, to move below the Q2− state and
become the new ground state as shown in Fig. 5(d). This
result generates yet another region of spin blockade as seen
in the upper part of Fig. 2(a). Magnetospectroscopy
measurements with features similar to those presented here
were obtained for a neighboring even-parity ICT with two
fewer electrons on QDmw as well as in another similar
device (see Sec. S1 of the Supplemental Material [44]).
From the measurements presented in Fig. 2(a), we

compile quantitative information about the energy spec-
trum of the DQD, which we use to produce Fig. 2(c),
showing the singlet (blue), triplet (red), quintet (green), and
septet (yellow) states at B ¼ 0 T. We obtain α ¼ 0.345
from the slopes of the asymmetrically vanishing ICT
signals [dashed lines in Fig. 2(a)]. We get the minimum
energy separation between states with the same total spin
number—the tunnel couplings—from the full width at
half maximum (FWHM) of the signals at a fixed B and
thus extract ΔS ¼ 80 μeV for the singlet at B ¼ 0 T and
ΔQ ¼ 45 μeV for the quintet at B ¼ 3.71 T and estimate
ΔT ¼ 35 μeV and ΔT� ¼ 20 μeV at B ¼ 1.02 T for the
T−ð1; 15Þ-T−ð2; 14Þ and the T�−ð1; 15Þ-T−ð2; 14Þ tunnel
couplings, respectively (the method for extracting the
tunnel couplings is described in Appendix D). Finally,
from the signal position on the VGrf axis and the magnetic
fields at which the different spin blockades occur, we

extract the energy splitting between states in both the (2,14)
and the (1,15) configurations, which, for simplicity, we
refer to as (2,0) and (1,1), respectively. We get the singlet-
triplet splitting on the (2,0) side, δ20ST ¼ 80 μeV; the singlet-
triplet* splitting on the (1,1) side, δ11

ST� ¼ 80 μeV; the

singlet-quintet splitting on the (1,1) side, δ11SQ¼360 μeV,
and the (2,0) side, δ20SQ ¼ 100 μeV; and lastly, the singlet-
septet splitting on the (2,0) side, δ20SX ¼ 570 μeV. The
smallest splittings, δ20ST and δ11

ST�, may be associated with
valley splittings, while the others involve combinations of
valley and orbital excitations in QDmw. The relatively small
δ20ST, which is associated with QDrf , is in the lower range of
values reported for this class of devices (few tens to few
hundreds of μeV [45–49]), which may be linked to a weak
vertical electrical field and to the condition of the Si=SiO2

interface. We note that the valley splitting may be enhanced
by applying a negative back-gate voltage [47] or by
reducing the number of electrons in the DQD, which
strengthens vertical confinement.
In the context of spin-qubit implementation, it is impor-

tant to observe that splittings of high-spin states, e.g.,δ20SQ and
δ11SQ, comparable to or smaller than the high-spin Zeeman
splitting at themagnetic field of operation, may compromise
manipulation and readout of single-spin and singlet-triplet
qubits, as is explained in Appendix E. These considerations
are particularly relevant to multielectron planar and corner
DQDs as they may be more likely to exhibit an increased
number of near-degenerate excited states [11].
Using the parameters introduced above, we build the

multispin Hamiltonian of the system as described in
Appendix F and extract the eigenenergies Ei as plotted in
Figs. 2(c) and 5. Using the expression for CQ in Eq. (1) and
the magnetic field dependence of the eigenenergies, we then
obtain the simulated magnetospectroscopy map in Fig. 2(d)
for which we included a finite electron temperature
T ¼ 175 mK. The goodmatch between data and simulation
confirmsourunderstandingof theDQDenergyspectrumand
thereby allows for the possibility of probing the dynamical
properties of the high-spin states accessible in this DQD.

IV. RELAXATION OF THE QUINTET STATE

Spin relaxation time T1 is an important metric as it
ultimately limits coherence and determines the minimum
readout time required for achieving high-fidelity spin
readout [24]. Spin relaxation in silicon has been measured
for single spins [20], singlet-triplet systems [41], hybrid
qubits [50], and hole spins [10,16]. In the following, we
explore spin relaxation from spin-quintet states. To deter-
mine the relaxation time of the Q2− state, we first set
B ¼ 2.5 T, at which point the DQD is under triplet-quintet
spin blockade. Figure 3(a) shows the energy levels at
B ¼ 2.5 T as simulated based on the parameters extracted
from magnetospectroscopy. At this field, the Q2−
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anticrossing at ε ∼ −0.25 meV lies at energies slightly
higher than the energy of the T− state; however, at
sufficiently large ε, Q2−ð2; 14Þ is the ground state. To
probe the Q2− anticrossing, we therefore apply a 50%-duty-
cycle square-wave voltage pulse to Gmw that is initialized
(I) from the (1,14) configuration and then pulsed to the
measurement point (M) on the ICT as seen in the inset of
Fig. 1(b). When crossing the (1,14)-(2,14) charge transi-
tion, an electron is loaded into QDrf at a rate Γ≳ frf , given
that the transition produces a measurable phase shift in the
resonator response [51]. We set the rise and fall time of the
pulse to 10 ns, much slower than the tunneling time, such
that the system is initialized in the energetically favored
Q2−ð2; 14Þ state. The quintet state is subsequently followed
through adiabatic passage to the Q2− anticrossing (point
M), as illustrated in the inset of Fig. 3(a), causing a
nonthermal occupation probability. Finally, the electron
is unloaded and the system reset via the reverse procedure.
To measure T1, we wait for a time twait at point M, during

which the Q2− state relaxes to the T− state with a character-
istic relaxation time T1 as indicated in the inset of Fig. 3(a).
When spending very little time (twait ≪ T1) at the meas-
urement point of the pulse sequence, the probability that the
Q2− state relaxes tends to 0, which leads to lifting of the
spin blockade and regeneration of the ICT phase shift
signal from the curvature of the Q2− state according to
Eq. (1). Contrarily, if twait ≫ T1, the probability that the

Q2− state relaxes to the noncurving T− state tends to 1, and
we therefore no longer measure the ICT signal, which is
averaged over the duration of the pulse.
We repeat the pulse sequence described above N >

2.4 × 105 times for various twait and with the rf drive
continuously on, thus measuring the average Δϕ of the
voltage region around the Q2− anticrossing. From fitting the
Δϕ line trace to Δϕ ∝ c1½ðε − ε0Þ2 þ ðΔQÞ2�−3=2 þ c2,
where ε0 and ΔQ are the detuning and the tunnel coupling
of the quintet anticrossing, respectively, and ci are constants
[36], themaximumphase shiftΔϕmax is extracted. In order to
obtain the Q2−-T− relaxation time,Δϕmax is then plotted as a
function of twait and fitted to a single exponential decay,

A1e−twait=T
Q→T
1 þ A2, where Ai are constants, as shown in

Fig. 3(b), whereby we find TQ→T
1 ¼ 4.26� 0.11 μs.

Setting the magnetic field to B ¼ 4.5 T, we now study
the quintet in the region of quintet-septet spin blockade,
illustrated in Fig. 3(c), which shows the simulated energy
levels at this magnetic field. While similar to the lower-field
triplet-quintet scenario, here the Q2− state is the ground
state at ε≲ −0.25 meV, i.e., in the (1,15) configuration,
rather than at ε≳ −0.25 meV. This change affects the
pulsing scheme required to determine the relaxation time.
The voltage pulses on Gmw are modified accordingly,
starting instead from the (2,15) state (I0) in order to initialize
the system in the energetically favored Q2−ð1; 15Þ before
moving via adiabatic passage to the measurement point
(M0) as shown in the insets of Figs. 1(b) and 3(c). As in the
quintet-triplet case, Δϕmax is extracted from the ICT phase
response and fitted against a single exponential decay,

A3e−twait=T
Q→X
1 þ A4, shown in orange in Fig. 3(d), which

results in a Q2−-X3− relaxation time TQ→X
1 ¼ 4.59�

0.11 μs that is comparable to TQ→T
1 . While there are no

other reported quintet relaxation timescales to benchmark
these results to, it is about 3 orders of magnitude smaller
than previously reported relaxation times in singlet-triplet
DQD systems [41,52,53]. The fast quintet relaxation calls
for the existence of a spin mixing mechanism such as spin-
orbit coupling.
Recent studies of singlet-triplet relaxation in a silicon

DQD reveal that the lifetime decreases monotonically with
decreasing Sð0; 2Þ-T−ð1; 1Þ splitting [52], which suggests
enhanced singlet-triplet mixing near the degeneracy point.
In silicon, the additional valley degree of freedom gives rise
to a general spin-valley-orbit coupling mechanism, and in
low-symmetry quantum dots, such as the corner dots
presented here, there is evidence that this mechanism can
be more pronounced than in conventional planar quantum
dots or dopants [46]. The degree of spin mixing also depends
on how close the energies of the different states are. Since
QDmw hosts a large number of electrons—up to 15 in this
case—the excited-state energy spectrum is quite dense
around the Fermi energy, as assessed experimentally, which
multiplies the opportunities for spin-valley-orbit mixing.

(a) (b)

(c) (d)

FIG. 3. Quintet relaxation. (a,c) Energy levels of the double
quantum dots at magnetic fields of B ¼ 2.5 T and B ¼ 4.5 T
simulated based on parameters extracted from magnetospectro-
scopy measurements presented in Fig. 2. The insets highlight the
pulsing into the quintet Q2− anticrossing and the subsequent
relaxation into the triplet T− and septet X3− ground states,
respectively. (b,d) Decay of the maximum ICT phase response
Δϕmax as a function of wait time twait at the Q2− anticrossing.
By fitting to a single exponential decay (orange line), we
observe quintet relaxation times of TQ→T

1 ¼ 4.26� 0.11 μs and
TQ→X
1 ¼ 4.59� 0.11 μs.
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A likely hypothesis for the significantly shorter quintet
relaxation time is therefore an enhanced spin-orbit mixing
within a dense energy spectrum.This hypothesis is supported
by Ref. [11], which shows that the relaxation rate can be
highly dependent on the filling and level of confinement of
the dots, in particular, in highly excited shells with increased
multiplicity.
In consideration of the aforementioned effects, we

suggest studying high-spin states in quantum dots with
reduced electron occupancy (N ¼ 4, 6 for quintets and
septets) and with tunable vertical electric fields (via top or
back gating) in order to obtain a more accurate represen-
tation of the high-spin relaxation time.

V. CONCLUSIONS AND OUTLOOK

In summary, we have demonstrated the formation of a
tunnel-coupled DQD in the channel of a split-gate silicon
transistor. By embedding the device in an LC electrical
resonator and performing gate-based dispersive sensing, we
havedetermined the charge state of theDQDdown to the last
electron. By tuning to the (1,15)-(2,14) interdot charge
transition and studying the quantum capacitance of the
system as a function of the magnetic field, we have found
evidence ofmultiparticle high-spin states not studied before,
namely, electron spin quintets (S ¼ 2) and spin septets
(S ¼ 3). We attribute the appearance of these high-spin
states in the DQD to a dense excited-state spectrum, which
may be of particular relevance to multielectron planar and
corner silicon quantumdots. From themagnetospectroscopy
measurements, we determined the energy spectrum as a
function of energy detuning between dots, as well as the
coupling energy between states with equal spin numbers.
Additionally, we have developed a model to describe the
magnetic field dependence of the dispersive response based
on the multistate quantum capacitance of the system. The
model reproduces the experimental results well and gen-
erally provides a tool for understanding the dispersive
response of systems with a complex spin configuration.
Finally, nonequilibrium studies measured under spin block-
ade and presented here demonstrate a typical quintet relax-
ation time,T1 ∼ 4 μs, at the hybridization point.Overall, our
results provide a way to reconstruct the energy spectrum of
complex spin systems and allow for the possibility of using
CMOS quantum dots as a tunable test bed for studying the
interactions and dynamics of high-spin systems.
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APPENDIX A: CHARGE STABILITY DIAGRAM
IN THE FEW-ELECTRON REGIME

Figure 4 presents the same data as Fig. 1(b) but with
no inset and with a zoom-in on the few-electron region.
By close inspection of the quasihorizontal (quasivertical)
lines that represent QDmw-to-reservoir (QDrf-to-reservoir)
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FIG. 4. Charge stability diagrams of the DQD recorded using
dispersive gate-based readout, where panel (a) is similar to
Fig. 1(b) without the inset and panel (b) is a zoom-in on the
few-electron regime showing the amplitude A instead of Δϕ of
the IQ demodulated response. The dotted white line indicates the
addition of the first electron to QDrf , its location determined by
mimicking the ð1; nÞ − ð2; nÞ line and placing it at the position of
the first visible ICT involving zero electrons in QDrf , i.e., (0,8)-
(1,7). Panels (a) and (b) are stitched together by 49 and 18
individual measurements, respectively.

SPIN QUINTET IN A SILICON DOUBLE QUANTUM DOT: … PHYS. REV. X 10, 041010 (2020)

041010-7



transitions, it is possible to observe kinks that, due to the
capacitive coupling between the QDs, indicate the addition
of one electron to QDrf (QDmw). In other words, we use the
dispersive signal of one QD exchanging electrons with a
reservoir as a sensor for detecting the charge of the other
QD. Thus, by counting the number of kinks, the electron
occupancy of the DQD can therefore be established as a
function of gate voltage. This is illustrated in Fig. 4(b),
where i (j) in ði; jÞ represents the charge occupancy of
QDrf (QDmw). The kinks in the charge stability diagram are
not to be confused with the discontinuities along vertical
and horizontal lines that are multiples of 0.1 V, e.g., at
(VGrf , VGmwÞ ¼ ð0.5; 0.063Þ, as these are due to stitching
of individual measurements, each 0.1 V × 0.1 V in size.

APPENDIX B: MANY-PARTICLE ENERGY
DIAGRAMS AT VARIOUS MAGNETIC FIELDS

Figure 5 plots the eigenenergies of the lowest-energy
S ≤ 3 spin states similar to Fig. 2(c) but here at various
nonzero magnetic fields (for simplicity, we include only the
lowest energy state of each spin manifold). Figure 5(a)
shows the energies at B ¼ 1.1 T, a point at which the
T− states (red) are energetically favorable compared to the
singlet state (blue) and give rise to the double-peak signal in
Figs. 6 and 7(c). We note that the Q2− state (green) already
blocks both the singlet and triplet states, which explains the
weak intensity of the phase response signal at this magnetic
field. At B ¼ 1.8 T in Fig. 5(b), the triplets are fully
blocked, and this panel thus illustrates the energy spectrum
under quintet-triplet spin blockade. Figure 5(c) shows a
magnetic field, B ¼ 3.5 T, where the anticrossing Q2−
states are now the ground state, thus leading to lifting of the
spin blockade. Finally, at B ¼ 5.0 T, the septet X3− state is
energetically favorable compared to the Q2− state, thereby
leading to septet-quintet spin blockade.

APPENDIX C: MAGNETOSPECTROSCOPY
OF THE LOW MAGNETIC

FIELD REGION

Figure 6 presents a high-resolution magnetospectro-
scopy measurement of the (1,15)-(2,14) interdot charge
transition at VGmw ¼ 0.440 V as a function of external in-
plane magnetic field focused on the region from B ¼ 0.5 T
to B ¼ 1.5 T. The dispersive signal at B ¼ 0.5 T arises
from the singlet states as described in Sec. III. It disappears
asymmetrically from the left and is superseded by the
signal from the T− and T�− anticrossings at around
B ¼ 0.9 T, which are shown in red in Figs. 2(c) and 5.
The left part of the double peak is attributed to the
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FIG. 5. Energy levels of the lowest-energy spin state of each
spin manifold with S ≤ 3 at various magnetic fields as a function
of detuning ε. The singlet states (S) are shown in blue, the triplet
states (T−) in red, the quintet states (Q2−) in green, and the septet
state (X3−) in yellow. Each panel shows the energy spectrum at
the magnetic field indicated in the upper left of the panel and has
the following physical relevance for the system: (a) Onset of
quintet-triplet spin blockade and origin of double peak in Fig. 6.
(b) Quintet-triplet spin blockade. (c) Lifting of spin blockade as
the quintet anticrossing becomes the ground state. (d) Septet-
quintet spin blockade.
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FIG. 6. Dispersive measurement of the (1,15)-(2,14) interdot
charge transition at VGmw ¼ 0.440 V as a function of external in-
plane magnetic field from B ¼ 0.5 T to 1.5 T. In the B ¼ 0.9 T to
1.2 T region, a double peak arising from the tunneling between
triplet states, T− and T�−, is visible.
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T�−ð1; 15Þ-T−ð2; 14Þ anticrossing, whereas the right part is
attributed to the T−ð1; 15Þ-T−ð2; 14Þ anticrossing.

APPENDIX D: METHOD FOR EXTRACTING
THE TUNNEL COUPLING

In this Appendix, we describe the protocol for extracting
the singlet, quintet, and triplet tunnel couplings quoted in
Sec. III. For an isolated coupled two-level system, the
equation that describes the quantum capacitance line shape
as a function of gate voltage is [36]

CQ ¼ C0

Δ3
i

ΔEðVGrfÞ3
tanh

�
ΔEðVGrfÞ
2kBT

�
; ðD1Þ

where C0 ¼ ðαeÞ2=2Δi, ΔEðVGrfÞ ¼ ðα2ðVGrf − V0
Grf;iÞ2 þ

Δ2
i Þ−1

2, Δi is the tunnel coupling of the spin branch i, and
V0
Grf;i is the gate voltage corresponding to zero detuning for

spin branch i. Furthermore, we recall the relation

Δϕ ¼ −
2QlCQ

CT
; ðD2Þ

where Ql is the loaded quality factor of the resonator and
CT is the total capacitance of the system. To extract the
singlet tunnel coupling ΔS, the quintet tunnel coupling ΔQ,
and the tunnel coupling between the T(1,15) [T*(1,15)] and
T(2,14) triplet states ΔT [ΔT�], we use Δϕ vs VGrf traces at
VGmw ¼ 0.440 V and at B ¼ 0, 3.71 and 1.02 T, respec-
tively (see Fig. 7). For the fits to the data, we use Eqs. (D1)
and (D2) as well as α ¼ 0.345, extracted from the slopes of
the asymmetrically vanishing ICT signals [dashed lines in
Fig. 2(a)], and T ¼ 175 mK, obtained from the comparison
between data and simulations in Figs. 2(a) and 2(d). The fits
allow us to extract Δi, which is directly related to the
FWHM of the peaks in Fig. 7.
In the case of the singlet branch [Fig. 7(a)], the symmetry

of the trough and the good fit to Eq. (D1) indicate that the
assumption of an isolated coupled two-level system holds.
From the fit, we obtain ΔS ¼ 80 μeV. Given the large ratio
ΔS=kBT > 5, the triplet states, closest in energy to the

singlet ground state [see Figs. 2(b) and 2(c)], are largely
unpopulated in the detuning region with nonzero energy
curvature of the singlet, and the measured signal hence
arises predominantly from the singlet ground-state branch.
For the quintet branch [Fig. 7(b)], the symmetry of the

trough again indicates an energetically isolated, coupled
two-level system. Looking at Fig. 5(c), which shows
simulated energy levels as a function of detuning at
B ¼ 3.5 T, we verify that this is indeed the case for the
hybridized quintets. From the fit, we obtain ΔQ ¼ 45 μeV.
Finally, considering now the triplet branch and meas-

urement at B ¼ 1.02 T [Fig. 7(c)], we note from Fig. 5(a)
that the triplet branch is not the ground state of the system
close to ε ¼ 0 at this magnetic field. Only a small thermal
population of the triplets is therefore responsible for the
measured quantum capacitance signal, which also explains
the smaller Δϕ amplitude of the troughs in Fig. 7(c). In this
case, the assumption of an energetically isolated two-level
system breaks down, but the linewidth of the peak is still
determined by the tunnel coupling to first order, thus
allowing estimation of ΔT ¼ 35 μeV (purple dashed line)
and ΔT� ¼ 20 μeV (blue dashed line) [36].

APPENDIX E: EFFECT OF HIGH-SPIN STATES
ON SINGLE SPIN AND SINGLET-TRIPLET

QUBIT IMPLEMENTATION

Figure 2(c) plots the energy spectrum of the double
quantum dot as a function of (1,15)-(2,14) detuning and
indicates the splitting δ between states of various spin
angular momenta. Given the density of the excited-state
energy spectrum, onemay consider howhigh-spin states can
affect the implementation of single-spin and singlet-triplet
qubits in double quantum dots with such energy spectra. In
the following, we assume a single-spin qubit implementa-
tion that employs one quantumdot for the qubit and the other
as an ancilla dot for readout, in which case the relevant qubit
states are j↓↓i and j↑↓i [the reader may find it helpful to
refer to the energy diagram of Fig. 2(a) in Ref. [23] ].
We first consider the manipulation stage of single-spin

and singlet-triplet qubits, during which the qubit is operated
in the (1,1) charge configuration. Here, the splitting
between the singlet and the Q2− quintet branch is
δ11SQ2−

ðBÞ ¼ δ11SQ − 2gμBB, where δ11SQ is the singlet-quintet
splitting at B ¼ 0 and the factor of 2 in the Zeeman splitting
comes from the magnetic spin number of the Q2− state.
Qubit manipulation may be compromised if the quintet Q2−
state ends at energies similar to or lower than the qubit
states as a result of the applied magnetic field. The critical
magnetic field at which this happens is given by Bm

c ¼
δ11SQ=ðηmgμBÞ, where ηm indicates the difference in Zeeman
splitting between the upper qubit state and the Q2− state;
hence, ηm ¼ 2 for ST0 qubits and single-spin qubits. It is
important to note that for singlet-triplet qubits, the magni-
tude of the magnetic field need only be on the order of a

-800

0

0.360 0.362
-400

0

0.360 0.362
-16

0

0.360 0.361
B = 0T B = 3.71T B = 1.02T

(b)(a) (c)

 (
m

de
g)

VGrf (V) VGrf (V) VGrf (V)

FIG. 7. Phase response as a function of VGrf at three magnetic
fields. The dashed lines indicate fits to the data enabling the
determination of Δi. (a)–(c) Singlet, quintet, and triplet signals,
respectively.
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few mT [40], which is unlikely to make the above
considerations experimentally relevant. However, in sin-
gle-spin qubits, which require magnetic fields of about 1 T
in order not to sacrifice coherence time [23], the above
considerations are important.
Next, we consider the impact of high-spin states on

single-spin and singlet-triplet qubit readout done via Pauli
spin blockade. In the case of readout with charge sensing,
the Q2− state may compromise readout by lifting the triplet
spin blockade at the chosen readout point εr, which lies in
the (2,0) charge configuration, i.e., εr > 0. Triplet spin
blockade may be lifted for magnetic fields larger than the
critical magnetic field for readout Br

c, which is given by the
condition EQ2-ðBr

c; εrÞ ¼ Ej↓↓iðBr
c; εrÞ for single-spin

qubits and EQ2-ðBr
c; εrÞ ¼ ET0

ðεrÞ for singlet-triplet qubits.
Solving for Br

c in the conditions above yields

Br
c ¼

3δ20SQ − 2δ20ST − εr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεr − δ20SQÞ2 þ Δ2

T

q
2ηrgμB

; ðE1Þ

assuming Br
c > ðδ20SQ − δ20STÞ=ðηrgμBÞ, which is required for

spin-blockade lifting and where ηr ¼ 1 for single-spin
qubits and ηr ¼ 2 for singlet-triplet qubits. If B > Br

c,
the point of spin-blockade lifting, εl, will occur at a
detuning smaller than the readout point, εr > εl > 0, and
if the readout integration time is also comparable to or

longer than T j↓↓i→Q
1 for single-spin qubits and TT0→Q

1 for
singlet-triplet qubits, charge sensing-based readout fidelity
will be negatively affected.
In the case of dispersive readout, the readout mechanism

relies on the fact that only the singlet produces a nonzero
phase response at ε ¼ 0, as described in the main text. If a
quintet state gets close in energy to the singlet state, i.e.,
ΔS=2þ δ20SQ − 2gμBB < 4kBT, and TS→Q

1 is comparable to
or shorter than the readout time, a proportion of the singlet
population will thermalize and populate the quintet state,

which generates no signal at ε ¼ 0. This will reduce the
singlet signal strength and thus the readout fidelity. As in
the case of qubit manipulation described above, single-spin
qubit implementations will suffer more from these readout
considerations given the relatively larger magnetic field
required. Additionally, we note that in order to maximize
the readout window in the Z valleys, the DQD may be
operated at a (3,1)-(4,0) transition, where the lowest-lying
excitation in the (4,0) readout state is an orbital splitting and
therefore presumably larger than the valley splitting [41].
While the above discussions focus on the quintet state,

the reasoning is equally valid for other high-spin states,
such as the septet.

APPENDIX F: MAGNETOSPECTROSCOPY
SIMULATIONS

In Fig. 2(c), we presented the minimal energy spectrum
of the DQD that explains the phase response of the
resonator Δϕ across an interdot charge transition as a
function of the magnetic field intensity B [see Fig. 2(a)]. In
this appendix, we describe the Hamiltonian of the DQD
that we used to obtain the eigenenergies and simulate the
resonator response.
We consider independent spin manifolds, i.e., small spin-

orbit and hyperfine couplings between states with different
total spin angular momentum S, and no coupling between
states with the same S but different magnetic numberms. In
that scenario, the Hamiltonian becomes separable, and for
the singlet manifold (S ¼ 0), it reads

HS ¼
� ε

2
ΔS
2

ΔS
2

− ε
2

�
; ðF1Þ

where ε is the energy detuning between dots and ΔS is the
tunnel coupling between singlet states. For the triplet
manifold (S ¼ 1), we have

HT ¼

0
BBBBBBBBBBBBBBBBBBBBB@

ε
2
− B̂ 0 0 ΔT

2
0 0 0 0 0

0 ε
2

0 0 ΔT
2

0 0 0 0

0 0 ε
2
þ B̂ 0 0 ΔT

2
0 0 0

ΔT
2

0 0 − ε
2
− B̂þ δ20ST 0 0

Δ
T
�

2
0 0

0 ΔT
2

0 0 − ε
2
þ δ20ST 0 0

Δ
T
�

2
0

0 0 ΔT
2

0 0 − ε
2
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Δ
T
�

2

0 0 0
Δ

T
�

2
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2
− B̂þ δ11

ST� 0 0
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Δ

T
�

2
0 0 ε

2
þ δ11

ST� 0

0 0 0 0 0
Δ

T
�

2
0 0 ε

2
þ B̂þ δ11

ST�

1
CCCCCCCCCCCCCCCCCCCCCA

; ðF2Þ
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where B̂ ¼ gμBB, g is the electron g factor, μB is the Bohr magneton, ΔT [ΔT�] is the tunnel coupling between the T(2,14)
and T(1,15) [T*(1,15)] triplet states, and δ20ST [δ

11
ST�] is the energy splitting between S(2,14) [S(2,15)] and T(2,14) [T*(1,15)]

at large positive [negative] detuning and B ¼ 0. Next, we have the quintet manifold with S ¼ 2:

HQ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

ε
2
−2B̂þδ11SQ 0 0 0 0

ΔQ

2
0 0 0 0

0 ε
2
−B̂þδ11SQ 0 0 0 0

ΔQ

2
0 0 0

0 0 ε
2
þδ11SQ 0 0 0 0

ΔQ

2
0 0

0 0 0 ε
2
þB̂þδ11SQ 0 0 0 0

ΔQ

2
0

0 0 0 0 ε
2
þ2B̂þδ11SQ 0 0 0 0

ΔQ

2

ΔQ

2
0 0 0 0 − ε

2
−2B̂þδ20SQ 0 0 0 0

0
ΔQ

2
0 0 0 0 − ε

2
−B̂þδ20SQ 0 0 0

0 0
ΔQ

2
0 0 0 0 −ε

2
þδ20SQ 0 0

0 0 0
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2
0 0 0 0 − ε
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ΔQ

2
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;

ðF3Þ

where ΔQ is the quintet tunnel coupling and δ11SQ [δ20SQ] is the energy splitting between S(1,15) [S(2,14)] and Q(1,15) [Q
(2,14)] at large negative [positive] detuning and B ¼ 0. Finally, the septet manifold (S ¼ 3) can be described by

HX¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ε
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2

0 0 0 0 0 0 −ε
2
þ2B̂þ δ̂0 0

0 0 0 0 0 0 ΔX
2

0 0 0 0 0 0 −ε
2
þ3B̂þ δ̂0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

ðF4Þ

whereΔX is the septet tunnel coupling, δ̂ ¼ δ11SX [δ̂0 ¼ δ20SX] is the energy splitting between the S(1,15) [S(2,14)] and X(1,15)
[X(2,14)] at large negative [positive] detuning, and B ¼ 0. In order to simulate the dispersive response of this system as a
function of B [Fig. 2(b)], we extract the total quantum capacitance from [36]

CQ ¼ −
X
i

ðeαÞ2 ∂
2Ei

∂ε2 Pth
i ; ðF5Þ

where Ei are the eigenenergies of the above Hamiltonians and Pth
i is the thermal probability of the state i,
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Pth
i ¼ expð−Ei=kBTÞ=Z: ðF6Þ

Here, kB is the Boltzmann constant, T is the DQD
temperature, and Z is the partition function over all states.
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Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, M. Vinet,
M. Sanquer et al., A CMOS Silicon Spin Qubit, Nat.
Commun. 7, 13575 (2016).

[15] M. Veldhorst, H. G. J. Eenink, C. H. Yang, and A. S.
Dzurak, Silicon CMOS Architecture for a Spin-Based
Quantum Computer, Nat. Commun. 8, 1766 (2017).

[16] A. Crippa, R. Ezzouch, A. Aprá, A. Amisse, L. Houtin, B.
Bertrand, M. Vinet, M. Urdampilleta, T. Meunier, M.
Sanquer et al., Gate-Reflectometry Dispersive Readout
and Coherent Control of a Spin Qubit in Silicon, Nat.
Commun. 10, 2776 (2019).

[17] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R.
Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi
et al., A Quantum-Dot Spin Qubit with Coherence Limited
by Charge Noise and Fidelity Higher than 99.9%, Nat.
Nanotechnol. 13, 102 (2018).

[18] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen,
R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang, F. E. Hudson,
K. M. Itoh et al., Fidelity Benchmarks for Two-Qubit Gates
in Silicon, Nature (London) 569, 532 (2019).

[19] T. F. Watson, S. G. Philips, E. Kawakami, D. R. Ward, P.
Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, M.
Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M.
Vandersypen, A Programmable Two-Qubit Quantum Proc-
essor in Silicon, Nature (London) 555, 633 (2018).

[20] A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y.
Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A.
Van Donkelaar, A. D. Alves, D. N. Jamieson, C. C. Escott,
L. C. Hollenberg, R. G. Clark, and A. S. Dzurak, Single-
Shot Readout of an Electron Spin in Silicon, Nature
(London) 467, 687 (2010).

[21] M. D. Schroer, M. Jung, K. D. Petersson, and J. R. Petta,
Radio Frequency Charge Parity Meter, Phys. Rev. Lett.
109, 166804 (2012).

[22] C. H. Yang, R. C. C. Leon, J. C. C. Hwang, A. Saraiva, T.
Tanttu, W. Huang, J. C. Lemyre, K. W. Chan, K. Y. Tan,
F. E. Hudson et al., Silicon Quantum Processor Unit Cell
Operation above One Kelvin, Nature (London) 580, 350
(2020).

[23] R. Zhao, T. Tanttu, K. Y. Tan, B. Hensen, K. W. Chan,
J. C. C. Hwang, R. C. C. Leon, C. H. Yang, W. Gilbert, F. E.
Hudson et al., Single-Spin Qubits in Isotopically Enriched
Silicon at Low Magnetic Field, Nat. Commun. 10, 5500
(2019).

[24] C. Kloeffel and D. Loss, Prospects for Spin-Based Quantum
Computing in Quantum Dots, Annu. Rev. Condens. Matter
Phys. 4, 51 (2013).

[25] M. A. Fogarty, K. W. Chan, B. Hensen, W. Huang, T. Tanttu,
C. H. Yang, A. Laucht, M. Veldhorst, F. E. Hudson, K. M.
Itoh et al., Integrated Silicon Qubit Platform with Single-
Spin Addressability, Exchange Control and Single-Shot
Singlet-Triplet Readout, Nat. Commun. 9, 4370 (2018).

[26] P. Harvey-Collard, B. D’Anjou, M. Rudolph, N. T. Jacobson,
J. Dominguez, G. A. Ten Eyck, J. R. Wendt, T. Pluym,

THEODOR LUNDBERG et al. PHYS. REV. X 10, 041010 (2020)

041010-12

https://doi.org/10.1038/nphys3909
https://doi.org/10.1038/nphys3909
https://doi.org/10.1021/cr1002613
https://doi.org/10.1021/cr1002613
https://doi.org/10.1126/sciadv.aao4513
https://doi.org/10.1126/sciadv.aao4513
https://doi.org/10.1103/PhysRevB.98.104514
https://doi.org/10.1103/PhysRevB.98.104514
https://doi.org/10.1021/jp049043i
https://doi.org/10.1021/jp049043i
https://doi.org/10.1021/ja993131c
https://doi.org/10.1021/ja993131c
https://doi.org/10.1021/ja001920k
https://doi.org/10.1021/ja001920k
https://doi.org/10.1103/PhysRevX.8.011045
https://doi.org/10.1103/PhysRevB.95.035408
https://doi.org/10.1126/sciadv.aat9199
https://doi.org/10.1126/sciadv.aat9199
https://doi.org/10.1038/s41467-019-14053-w
https://doi.org/10.1038/s41467-019-14053-w
https://doi.org/10.1038/nmat3182
https://doi.org/10.1038/nmat3182
https://doi.org/10.1126/science.1239584
https://doi.org/10.1038/ncomms13575
https://doi.org/10.1038/ncomms13575
https://doi.org/10.1038/s41467-017-01905-6
https://doi.org/10.1038/s41467-019-10848-z
https://doi.org/10.1038/s41467-019-10848-z
https://doi.org/10.1038/s41565-017-0014-x
https://doi.org/10.1038/s41565-017-0014-x
https://doi.org/10.1038/s41586-019-1197-0
https://doi.org/10.1038/nature25766
https://doi.org/10.1038/nature09392
https://doi.org/10.1038/nature09392
https://doi.org/10.1103/PhysRevLett.109.166804
https://doi.org/10.1103/PhysRevLett.109.166804
https://doi.org/10.1038/s41586-020-2171-6
https://doi.org/10.1038/s41586-020-2171-6
https://doi.org/10.1038/s41467-019-13416-7
https://doi.org/10.1038/s41467-019-13416-7
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1038/s41467-018-06039-x


M. P. Lilly, W. A. Coish et al., High-Fidelity Single-Shot
Readout for a Spin Qubit via an Enhanced Latching Mecha-
nism, Phys. Rev. X 8, 021046 (2018).

[27] A. C. Betz, R. Wacquez, M. Vinet, X. Jehl, A. L. Saraiva, M.
Sanquer, A. J. Ferguson, and M. F. Gonzalez-Zalba, Dis-
persively Detected Pauli Spin-Blockade in a Silicon Nano-
wire Field-Effect Transistor, Nano Lett. 15, 4622 (2015).

[28] D. Culcer, A. L. Saraiva, B. Koiller, X. Hu, and S. Das
Sarma, Valley-Based Noise-Resistant Quantum Computa-
tion Using Si Quantum Dots, Phys. Rev. Lett. 108, 126804
(2012).

[29] A. P. Higginbotham, F. Kuemmeth, M. P. Hanson, A. C.
Gossard, and C. M. Marcus, Coherent Operations and
Screening in Multielectron Spin Qubits, Phys. Rev. Lett.
112, 026801 (2014).

[30] E. Nielsen, E. Barnes, J. P. Kestner, and S. D. Sarma, Six-
Electron Semiconductor Double Quantum Dot Qubits,
Phys. Rev. B 88, 195131 (2013).

[31] D. Weinmann, W. Häusler, and B. Kramer, Spin Blockades
in Linear and Nonlinear Transport through Quantum Dots,
Phys. Rev. Lett. 74, 984 (1995).

[32] K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson,
G. A. C. Jones, and D. A. Ritchie, Charge and Spin State
Readout of a Double Quantum Dot Coupled to a Resonator,
Nano Lett. 10, 2789 (2010).

[33] J. I. Colless, A. C. Mahoney, J. M. Hornibrook, A. C.
Doherty, H. Lu, A. C. Gossard, and D. J. Reilly, Dispersive
Readout of a Few-Electron Double Quantum Dot with Fast
rf Gate Sensors, Phys. Rev. Lett. 110, 046805 (2013).

[34] I. Ahmed, J. A. Haigh, S. Schaal, S. Barraud, Y. Zhu, C. M.
Lee, M. Amado, J. W. A. Robinson, A. Rossi, J. J. L.
Morton, and M. F. Gonzalez-Zalba, Radio-Frequency
Capacitive Gate-Based Sensing, Phys. Rev. Applied 10,
014018 (2018).

[35] B. Voisin, R. Maurand, S. Barraud, M. Vinet, X. Jehl, M.
Sanquer, J. Renard, and S. De Franceschi, Electrical
Control of g-Factor in a Few-Hole Silicon Nanowire
MOSFET, Nano Lett. 16, 88 (2015).

[36] R. Mizuta, R. M. Otxoa, A. C. Betz, and M. F. Gonzalez-
Zalba, Quantum and Tunneling Capacitance in Charge and
Spin Qubits, Phys. Rev. B 95, 045414 (2017).

[37] The charge stability diagram in Fig. 1(b) is stitched together
by 49 individual diagrams, each of dimension 0.1 V × 0.1 V.

[38] W. V. D. Wiel, S. D. Franceschi, J. Elzerman, T. Fujisawa, S.
Tarucha, and L. Kouwenhoven, Electron Transport through
Double Quantum Dots, Rev. Mod. Phys. 75, 1 (2002).

[39] N. S. Lai, W. H. Lim, C. H. Yang, F. A. Zwanenburg, W. A.
Coish, F. Qassemi, A. Morello, and A. S. Dzurak, Pauli Spin
Blockade in a Highly Tunable Silicon Double Quantum Dot,
Sci. Rep. 1, 110 (2011).

[40] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A.
Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and
A. C. Gossard, Coherent Manipulation of Coupled Electron
Spins in Semiconductor Quantum Dots, Science 309, 2180
(2005).

[41] A. West, B. Hensen, A. Jouan, T. Tanttu, C.-H. Yang, A.
Rossi, M. F. Gonzalez-Zalba, F. Hudson, A. Morello, D. J.

Reilly et al., Gate-Based Single-Shot Readout of Spins in
Silicon, Nat. Nanotechnol. 14, 437 (2019).

[42] M. G. House, T. Kobayashi, B. Weber, S. J. Hile, T. F.
Watson, J. Van Der Heijden, S. Rogge, and M. Y. Simmons,
Radio Frequency Measurements of Tunnel Couplings and
Singlet-Triplet Spin States in Si:P Quantum Dots, Nat.
Commun. 6, 8848 (2015).

[43] A. J. Landig, J. V. Koski, P. Scarlino, C. Reichl, W.
Wegscheider, A. Wallraff, K. Ensslin, and T. Ihn, Micro-
wave-Cavity-Detected Spin Blockade in a Few-
Electron Double Quantum Dot, Phys. Rev. Lett. 122,
213601 (2019).

[44] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.10.041010 for magneto-
spectroscopy showing evidence of quintet spin states in a
different, similar device.

[45] D. J. Ibberson, L. Bourdet, J. C. Abadillo-Uriel, I. Ahmed,
S. Barraud, M. J. Calderón, Y. M. Niquet, and M. F.
Gonzalez-Zalba, Electric-Field Tuning of the Valley Split-
ting in Silicon Corner Dots, Appl. Phys. Lett. 113, 053104
(2018).

[46] A. Corna, L. Bourdet, R. Maurand, A. Crippa, D. Kotekar-
Patil, H. Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud,
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