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Abstract

Heterogeneous Cloud Radio Access Network (H-CRAN) is a promising network architecture
for the future 5G mobile communication system to address the increasing demand for mobile
data traffic. In this work, we consider the design of efficient joint beamforming and user
clustering (user-to-Remote Radio Head (RRH) association) in the downlink of a H-CRAN
where users have different mobility profiles. Given the rapidly time-varying nature of such
wireless environment, it becomes very challenging to enable optimized beamforming and user
clustering without incurring large Channel State Information (CSI) and signaling overheads.
The main objective of this work is to investigate and evaluate the trade-off between system
throughput and the incurred costs in terms of complexity and signaling overhead, including
the impact of different CSI feedback strategies given different user mobility profiles. We
propose the Adaptive Beamforming and User Clustering (ABUC) algorithm which adapts
its feedback parameters, namely the period of dynamic user clustering and the type of CSI
feedback, in function of user mobility. Furthermore, we design a reinforcement-learning
framework which enables the proposed ABUC algorithm to optimize its scheduling parame-
ters on-the-fly, given each user mobility profile. Based on computer simulations, an analysis
of the effect of mobility on system performance metrics is presented and conclusions are
drawn regarding the algorithm’s adequate parameter tuning for different mobility scenarios.
1
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1. Introduction

Next generation of mobile and wireless communications system (5G) will revolutionize
the way people communicate and extend the boundaries of the wireless industry. 5G will
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move beyond networks that are purpose-built for mobile broadband alone, toward systems
that connect far more different types of devices at different speeds. The Internet of Things
(IoT) is one of the primary contributors to global mobile traffic growth and this progression
will lead to a huge mobile and wireless traffic volume predicted to increase a thousand-fold
over the next decade [2]. Besides sustaining the tremendous growth of the traffic load,
5G system will be designed to fulfill diverse application requirements: far more stringent
latency and reliability levels are expected to be necessary to support applications related to
healthcare, security, logistics, automotive applications, or mission-critical control; Network
scalability and flexibility are required to support a large number of devices with very low
complexity and to enable long battery lifetimes [3].

5G system is envisioned to meet such challenges thanks to the combination of several
breakthroughs and technological advances such as ultra-dense small-cell deployments, intel-
ligent multi-antenna, full duplex radios, millimeter wave transmissions, and cloud computing
abilities. Particularly, the Cloud Radio Access Network (CRAN) is a network architecture
based on cloud computing and centralized processing. It has been shown to provide high
spectral and energy efficiencies while reducing both capital and operating expenditures [4].
At the same time, Heterogeneous Networks (HetNets) have emerged as another core feature
for 5G network to enhance the capacity/coverage while saving energy consumption. Het-
Nets are constituted by conventional macro cells and overlaying small cells. With small cells
deployment, wireless links to end-users become shorter, thereby improving the link quality
in terms of spectrum efficiency as well as energy efficiency. Therefore, combining both cloud
computing and HetNet advantages results in the so-called Heterogeneous-Cloud Radio Ac-
cess Networks (H-CRAN) depicted in Fig. 1 and which is regarded as one of the possible
network architectures to meet 5G system requirements [5].

The technical challenges of 5G H-CRAN have been pointed out in a number of works, in
particular regarding resource allocation, interference management and fronthaul constraint
alleviation [6, 7, 8]. Particularly, the heterogeneous feature of access points in H-CRAN gen-
eralizes the problem of beamforming and user-to-RRH association compared to its CRAN
counterpart. Many studies solved the scheduling problem by jointly optimizing the beam-
forming and user clustering in order to maximize network performance such as sum-rate,
spectral efficiency and energy efficiency, etc. [9, 10, 11, 11, 12]. However, these solutions
generate a large amount of control signaling and Channel State Information (CSI) over-
head. Furthermore, most of these works did not consider the influence of user mobility and
resulting time-varying wireless environment over the long-term scheduling performance.

To alleviate the problem of control signaling and CSI overhead costs, we have proposed
in [1] a hybrid user clustering and beamforming algorithm aiming at weighted sum-rate
maximization. This hybrid scheme is able to leverage the advantages of both dynamic
and static user clusterings in CRAN, where the dynamic clustering performs optimally at
the expense of maximum signaling overhead, while static clustering performs worse but
drastically reduces the amount of overhead. The proposed hybrid algorithm was shown to
achieve a good performance compared to dynamic clustering, while greatly reducing the
required computational complexity, amount of CSI feedback and re-association signaling
overhead over the long-term allocation process. However, in [1] we did not consider any user
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mobility issues.
In [13], we have considered the impact of more realistic channel variations due to different

user velocities, but for a different optimization problem. Namely, we proposed a heuristic
algorithm for minimizing a cost function in terms of computational complexity and CSI
overhead for a given targeted sum-rate (minimum Quality-of-Service (QoS) requirement).
However, the proposed algorithm required an initial empirical analysis for its feedback pa-
rameters’ selection, and all users were assumed to have a homogeneous mobility profile.

Therefore in this paper, we investigate cost-efficient joint beamforming and user clus-
tering methods for weighted sum-rate maximization in the downlink of a H-CRAN serving
mobile users. More specifically, we investigate and evaluate the trade-off between network
sum-rate and incurred costs in terms of complexity and signaling overhead, including the
impact of different Channel State Information (CSI) feedback strategies. We propose an
Adaptive Beamforming and User Clustering (ABUC) algorithm which extends the algo-
rithm in [1] to cope with different types of user mobilities. The proposed algorithm is shown
to be able to balance between the optimality of the beamforming and association solutions
while being aware of practical system constraints, namely complexity and signaling over-
head as well as the mobility behavior of users. Moreover, we identify the best feedback
parameters such as type of CSI feedback and clustering period T, depending on the class of
user mobility. Furthermore, we propose a reinforcement learning framework based on the
Q-learning method for optimizing these feedback parameters on-the-fly, according to each
user mobility profile. Indeed, reinforcement learning is especially suited for dealing with
such intricate long-term resource allocation optimization, under dynamically varying wire-
less environments. Simulation results show the effectiveness of our proposed algorithm and
approach, as it enables to select the best feedback parameters tailored to each user mobility
profile, even in the difficult case where each user has a different mobility profile.

The rest of this paper is structured as follows: Section II presents the state of the art of
CRAN, H-CRAN and most relevant works related to the beamforming and user scheduling
issue. Section III describes the system model and Section IV gives the problem formulation
and reference schemes. Next, we describe in Section V our proposed ABUC scheme and
conduct its cost analysis in section VI. Section VII presents the Q-learning based clustering
and beamforming framework. The simulation results are shown in section VIII. Finally,
Section IX concludes the paper.

2. State of the art

To achieve the expected high performance, 5G system will rely on several advanced
technologies such as heterogeneous small cell deployment, millimeter wave communications,
massive Multiple Input Multiple Output (MIMO), Network Function Virtualization (NFV),
Software-Defined Networking (SDN), Device-to-Device (D2D) communications, and cloud
computing concept [14].

The concept of CRAN was first proposed in [15] and described in details in [16]. In
a CRAN system, all Baseband Units (BBUs) are shifted into the cloud to constitute a
centralized processing pool. The radio frequency signals from geographically distributed
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Figure 1: H-CRAN system model

users are collected by Remote Radio Heads (RRHs) and transmitted to the cloud platform
through fronthaul links. This means that the system is able to adapt to non-uniform traffic
and utilizes the resources more efficiently. Due to that fact that fewer BBUs are needed in
CRAN compared to the traditional architecture, CRAN has also the potential to decrease
the cost of network operation by reducing power and energy consumption. New BBUs can be
added and upgraded easily, thereby improving scalability and easing network maintenance
[17].

Different from CRANs, H-CRANs are proposed as a cost-efficient solution by incorporat-
ing the cloud computing into HetNets. The motivation behind H-CRANs is to enhance the
capabilities of High Power Nodes (HPN, e.g., macro or micro base stations) with massive
multiple antenna techniques and simplify the Low Power Nodes (LPN, e.g., small cells such
as pico or femto cells) while connecting them to a ”baseband signal processing cloud” with
high speed optical fibers or RF (Radio Frequency) links [18]. As such, the baseband data
processing as well as the radio resource control for LPNs are moved to the cloud server
so as to take advantage of the cloud computing capabilities [6]. Similarly with the tradi-
tional CRAN, H-CRANs include a large number of RRHs with low energy consumption and
which are coordinated with each other through the centralized BBU pool to achieve high
cooperative gains.

Many scientific challenges ahead for H-CRANs may be listed as resource allocation opti-
mization, interference management and fronthaul constraint alleviation. In [7], resource al-
location solutions for H-CRAN are investigated, and different schemes are proposed, namely,
coordinated scheduling and multicloud association. In the coordinated scheduling, the main
issue is to maximize the network-wide utility subject to user connectivity constraints. The
search space is exponentially large and makes such exhaustive search clearly infeasible. Then,
the authors proposed a graph-theoretical-based approach to solve the problem. In addition,
multicloud H-CRAN is proposed to overcome the main limitations of single cloud RAN
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such as the distance separating BSs in the network and also the computation burden when
connecting multiple BSs to the same cloud. In [8], the authors provided a framework for
downlink resource allocation for D2D communications underlaying H-CRAN to maximize
the system performance while guaranteeing the QoS requirements. The resource allocation
problem is formulated into a many-to-one matching game and is solved by constrained De-
terministic Annealing (DA) algorithm to achieve low computational complexity. Another
critical challenge in H-CRAN that may prevent the RRHs from fully utilizing available radio
resources is the insufficient backhaul capacity. Therefore, efficient planning of the H-CRAN
is important for its RRH deployment. Load balancing has been noticed as an efficient
way to optimize factors such as resource utilization, fairness, waiting/processing delays, or
throughput [19]. In [20], the authors proposed a novel method that allocates almost equal
traffic load to each access point to minimize the number of activated RRHs and reduce the
burden of backhauls in the C-RAN. The RRHs deployment strategy is able to minimize the
system-wide power consumption while providing QoS-guaranteed performance with relative
low capital expenditure (CAPEX) and operating expenditure (OPEX).

In H-CRANs architecture, users can benefit from the coverage diversity provided by
several heterogeneous nodes leading to a user-centric architecture [7]. Determining the
optimal user-to-RRH association that offers the best performance becomes a combinatorial
optimization problem of high complexity. Exhaustive search is infeasible for any reasonably
sized network, even with very powerful processors at the cloud. Consequently, this problem
has been addressed in many research works [21] [22] [23]. The problem is equivalent to
the joint beamforming and user-to-RRH clustering problem which by solving the sparse
beamforming issue indirectly decides which users should be served by which RRHs.

In [24], the authors studied the user clustering problem and evaluated the appropriate
number of associated RRHs per user to balance throughput gain and implementation cost.
In [9], the advantages of small cells clustering are evaluated in a dense heterogeneous network
for downlink MIMO. It is shown that by giving reasonable cluster sizes, each cluster can form
a virtual MIMO network wherein users are separated via spatial multiplexing using jointly
designed downlink beamforming vectors. In [10] [11], a Weighted Minimum Mean Square
Error (WMMSE) method is used for solving joint beamforming and user clustering prob-
lems for sum-rate maximization. In [10], the authors implemented a greedy RRH clustering
algorithm and compared it to two transmit precoding schemes, Zero-Forcing Beamforming
(ZFBF) and WMMSE-based coordinated beamforming. They showed that WMMSE out-
performs other reference beamforming approaches. In [11], the Weighted Sum-Rate (WSR)
maximization problem is solved using similar WMMSE approach under dynamic and static
user clusterings. It is shown that dynamic clustering significantly improves the system per-
formance over other naive clustering schemes, while static clustering also achieves substantial
performance gain. Due to the lack of convergence guarantee for the algorithm in [11], the
same authors propose a new algorithm in [25] which is proved to converge to a local optimum.
Different to previous works, whose aim is to solve the weighted sum rate maximization prob-
lem with backhaul constraints in CRANs, the paper [12] applies the generalized WMMSE
approach to solve the average weighted energy efficiency (EE) utility objective function
with each RRH’s transmit power, individual fronthaul capacity, and inter-tier interference
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constraints. The majority of these previous works did not fully consider the required com-
putational complexity and the incurred signaling costs over a long-term scheduling process.
In particular, such beamforming techniques rely on accurate CSI feedback for all user-to-
RRH links, which may create excessive burden on fronthaul links. Moreover, most of these
works did not consider the cost in terms of computational complexity at the BBU side and
user-to-RRH re-association cost during successive scheduling frames. To the best of our
knowledge, there are very limited works considering the time-dimension and the induced
complexity and signaling costs in their user clustering and beamforming design problems.
z Unlike the above-mentioned works that presented algorithms optimizing a certain objec-
tive, such as power consumption and sum-rate, for the current time frame, some recent
works began to consider the scheduling process in the long-term. Moreover, the scheduling
in mobility environment is a substantial problem due to its strong stochastic characteristic
and the non-deterministic variables. Therefore, machine learning is known as an effective
solution for resource allocation in time-variant dynamic systems, such as wireless networks
and cloud computing systems [26].

Reinforcement learning is an important branch of machine learning, in which an agent
makes interactions with an environment trying to control the environment to its optimal
states that receive the maximal rewards. Usually in reinforcement learning, the problem
to resolve can be described as a Markov Decision Process (MDP) without mandatory re-
quirement of state space, explicit transition probability and reward function [27]. Therefore,
reinforcement learning is expected to handle tough situations that approach real-world com-
plexity [28]. In [29], a reinforcement learning technique is applied to dynamic resource
allocation in CRAN. The authors present a Deep Reinforcement Learning (DRL) frame-
work which is able to reach the objective of minimizing power consumption and meeting
demands of wireless users over a long operational period. The model defines the state space,
action space, and reward function for the DRL agent. The proposed framework not only
achieves significant power savings while satisfying user demands but also well handles highly
dynamic cases. The authors of [30] propose a centralized resource allocation scheme using
online Q-learning, which guarantees interference mitigation and maximizes energy efficiency
while maintaining QoS requirements for all users in 5G H-CRAN. Their simulation results
confirm that the proposed Q-learning solution can mitigate interference, increase energy
and spectral efficiencies significantly, and maintain users’ QoS requirements. In [26], the
authors consider the problem of cache-enabled opportunistic interference alignment (IA) in
wireless networks. The finite-state Markov channel is used instead of block-fading channel
or invariant channel which are not realistic in high mobility environments. To reduce the
system complexity of finite-state Markov channel, the authors formulated the system as
a DRL problem. Simulation results show that DRL is an effective approach to solve the
optimization problem in cache-enabled opportunistic IA wireless networks. In [31], a DRL
based algorithm is proposed for the joint mode selection and resource management problem
in Fog Radio Access Network (Fog-RAN). Each user can operate either in C-RAN mode or
in device-to-device mode, and the resource managed includes both radio and computation
resources. The DRL agent makes smart decisions on user communication modes and proces-
sors’ on-off states to minimize long-term system power consumption while considering the
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varying states of edge caches.

3. System Model

We consider a H-CRAN model which consists of a BBU Pool, L macro and pico RRHs
and K users (see Fig. 1). Each RRH and user are equipped with M and N antennas,
respectively, and users are randomly located in the network area.

Let L = {1, 2, ..., L} and K = {1, 2, ..., K} be the sets of RRHs and of users, respectively.
The propagation channel from all RRHs to the kth user is represented by matrix Hk ∈
CN×ML,∀k ∈ K which includes the impacts of path loss and Rayleigh fading. We denote
by hnq, the (n, q) − th element of matrix Hk, where q = (l − 1)M + m, where l ∈ [1, L]
and m ∈ [1,M ]. Hence, hnq is the channel gain between the m-th antenna of the l-th RRH
and the n-th antenna of user k. Given the user mobility profile, channel correlations will be
assumed between the consecutive scheduling frames, as detailed later in Section 5.

Let wk ∈ CML×1 be the transmit beamforming vector from all RRHs to the kth user,

wk =
[
wH

1k, · · · ,wH
lk , · · · ,wH

Lk

]H
,

where wlk ∈ CM×1.
Let sk ∈ C be the encoded information symbol for user k with E

[
|sk|2

]
= 1. The received

signal at user k, yk ∈ CN×1, is expressed as

yk = Hkwksk + Hk

K∑
j=1,j 6=k

wjsj + nk,

where nk ∼ CN (0, σ2
kIN) is the additive white Gaussian noise and IN is the identity matrix

of size N ×N .
The Signal-to-Interference-plus-Noise Ratio (SINR) at user k can be expressed as

SINRk =
|uH

k Hkwk|
2

K∑
j=1,j 6=k

|uH
k Hjwj|

2
+ σ2

k‖uk‖22
, (1)

where uk ∈ CN×1 is the receive beamforming vector of user k.
Then, the achievable rate of user k under MMSE criterion can be expressed as [25]

rk = log2(1 + wH
k H

H
k (

K∑
j=1,j 6=k

Hkwjw
H
j H

H
k + σ2

kIN)−1Hkwk). (2)

Fig. 2 illustrates an example of a user k clustering configuration with user-to-RRH
associations determined by the derived wlk beamforming vector variables.
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Figure 2: System model

4. Problem Formulation and Reference Schemes

We focus on the following WSR maximization problem [25], i.e., maximize the WSR of
all users in the network under the fronthaul link capacity contraints and per-RRH power
constraints. This problem is formulated as,

max
{wlk,l∈L,k∈K}

∑K
k=1 αkrk (1a)

s.t. Pl =
K∑
k=1

‖wlk‖22 ≤ Pmax
l (1b)

K∑
k=1

1{‖wlk‖22}rk ≤ Cmax
l (1c)

(P1)

where αk is the scheduling priority weight associated with user k. In (P1), the first constraint
(1b) corresponds to the transmit power constraint of RRH l, i.e., Pl should be smaller than
the maximum transmit power Pmax

l . The second constraint (1c) expresses that the sum-
rate of users connected to RRH l should be smaller than its fronthaul link capacity Cmax

l .
Problem (P1) is a non-convex Mixed-Integer Non-Linear Programming (MINLP) proven to
be NP-hard [25], and hence cannot be solved in polynomial time.

It was shown in [10] [11] that this WSR optimization problem is equivalent to a WMMSE
problem with variables wk, uk and ρk defined below while being convex with respect to
each of the variables. This enables to resolve the WMMSE problem through the block
coordinate descent method by iteratively optimizing over each variable [32] while keeping
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the others fixed. For finding the optimal beamformer wk under fixed uk and ρk, the following
Quadratically Constrained Quadratic Programming (QCQP) problem is considered,

min
{wlk,l∈L,k∈K}

∑
k w

H
k (
∑

j αjρjH
H
j uju

H
j Hj)wk

−2
∑

k αkρkRe{uH
k Hkwk} (2a)

s.t.
K∑
k=1

‖wlk‖22 ≤ Pmax
l (2b)

K∑
k=1

βlkr̂k‖wlk‖22 ≤ Cmax
l (2c)

(P2)

In QCQP problem (P2), r̂k is the achievable rate from the previous iteration and βlk is
a constant weight associated to RRH l and user k and is updated iteratively according to

βlk =
1

‖wlk‖22 + τ
,∀k, l, (5)

where τ is a small constant regularization factor. ek is the corresponding Mean Square Error
(MSE),

ek = uH
k (

K∑
j=1,j 6=k

Hkwjw
H
j H

H
k + σ2

kIN)uk − 2Re{uH
k Hkwk}+ 1, (6)

and ρk is the MSE weight for user k,

ρk = e−1k . (7)

uk is the optimal receive beamforming vector under fixed wk and ρk,

uk = (
K∑

j=1,j 6=k

Hkwjw
H
j H

H
k + σ2

kIN)−1Hkwk. (8)

Finally, the derived problem (P2) can be resolved using the Algorithm 1 given below
[32].

To achieve the optimal performance, Algorithm 1 solves the beamforming problem by
considering all possible user to RRH links, i.e., wk is of size LM in each scheduling frame,
for each user k. The beamforming solution implicitly resolves the clustering problem since
the user to RRH associations are updated according to the solution wk, i.e., the assignment
of each link is identified by a non-zero element of the beamforming vector. This case, where
wk is of size LM , is referred as the dynamic clustering algorithm. However, this global
optimization requires intractable computational complexity and tremendous amounts of sig-
naling and CSI overheads. Therefore, an alternative approach is to limit the computational
burden by reducing the considered user to RRH links, i.e., wk would be of size Lk where
Lk ≤ L for each user k, at the expense of reduced sum-rate performance. This approach is
referred as the static clustering algorithm.
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Algorithm 1: Dynamic Algorithm

initialize frame βlk, r̂k,wk,∀l, k
repeat

1) Fix wk and compute the MMSE receiver uk and the corresponding MSE ek
according to (8) and (6)

2) Update MSE weight ρk according to (7)
3) Find the optimal transmit beamformer wk under fixed uk and ρk, by solving
problem (P2)

4) Compute the achievable rate rk
5) Update r̂k = rk and βkl according to (5)

until convergence

Different to dynamic algorithm, in static scheduling, we consider only a fixed subset of
RRHs in each cluster, i.e. l ∈ Lk, where Lk is the fixed cluster of RRHs serving user k.
Likewise, we define Kl as the subset of users associated with RRH l. The WSR maximization
problem (P1) can now be re-formulated as

max
{wlk,l∈Lk,k∈K}

∑K
k=1 αkrk (3a)

s.t. Pl =
∑
k∈Kl

‖wlk‖22 ≤ Pmax
l (3b)∑

k∈Kl

rk ≤ Cmax
l (3c)

(P3)

We can see that problem (P3) is much simplified as compared to problem (P1), as the
constraints (3b) and (3c) consider only a fixed subset of users Kl, while the variable wlk

covers only the beamforming vectors from a subset of RRHs to each user since wlk = 0 for
l 6∈ Lk. Therefore, problem (P3) can be solved by applying a method similar to that of
dynamic algorithm but under fixed Lk instead of L.

The WSR problem under static clustering can be resolved by Algorithm 2 given below
[32]. The variables wLk

k and HLk
k denote the beamforming vector and the channel matrix to

user k from the RRHs of its fixed cluster Lk, respectively. They have the same sizes as wk

and Hk, respectively, but only their elements corresponding to RRHs within their cluster
Lk are non-zeros.

5. Proposed Adaptive Beamforming and User Clustering (ABUC) Algorithm

ABUC is based on the hybrid clustering concept that we introduced in [1] and in which
we proposed to alternate dynamic and static clustering approaches in a periodic way. We
define a period T and apply the dynamic algorithm at each T scheduled frames as illustrated
in Fig. 3, while in the intermediate frames, a static algorithm is executed using the cluster
subsets obtained from the previous dynamic frame. By doing so, we can narrow down the
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Algorithm 2: Static Algorithm

initialize frame Lk, βk, r̂k,wk,∀k
repeat

1) Compute (6), (7), (8) by replacing wk and Hk by wLk
k and HLk

k , respectively
2) Fix Lk during the whole process
3) Call Dynamic Algorithm to solve (P3) under fixed Lk

until convergence

performance gap with the optimal dynamic solution, while reducing the required compu-
tational complexity, CSI feedback and re-association signaling overhead over the long-term
allocation process. It is worth noting here that in the static intermediate frames the optimal
beamforming vectors are updated upon receiving new CSI feedback information.

Figure 3: ABUC clustering scheme with T = 3

Our approach has the benefit to consider the temporal dimension of the allocation pro-
cess, while being aware of the practical feasibility of the solution in terms of complexity and
signaling costs. The motivation behind this approach lies in the fact that performing the
optimal dynamic algorithm in each frame is not only computationally expensive but also
unnecessary whenever the channel, user and network states stay more or less stable over few
successive frames.

The goal of ABUC algorithm is to enable a high weighted sum-rate performance, while
reducing the induced costs in terms of CSI feedback and signaling overhead, given channel
time-variations. Compared to [1], in this paper we extend our algorithm to cope with
different types of user mobility profiles. In consequence, the CSI estimation method is also
improved such that it is tailored to time-varying channels reflecting user mobility.

User mobility causing inevitably CSI imperfectness at the cloud, we make use of a CSI
estimation model which is aware of user mobility. The proposed approach is based on [33]

11



for modeling the Estimated CSI matrix Ĥk ∈ CN×ML,∀k ∈ K. We denote by ĥnq, the

(n,q)-th element of matrix Ĥk, where q = (l−1)M+m. Hence, ĥnq is the estimated channel
gain between the m-th antenna of the l-th RRH and the n-th antenna of user k, which is
estimated as

ĥnq = λhnq + (
√

1− λ2)vnq. (12)

In (12), vnq ∼ CN (0, Flk) where Flk is the large-scale fading gain of the downlink channel

from RRH l to user k, and λ is the correlation coefficient between ĥnq and hnq which is
expressed as

λ = J0(2πfd,lkTdl) (13)

where J0(.) is the zero-th order Bessel function, Tdl is the fronthaul delay of the RRH l and
fd,lk is the maximum Doppler frequency of the channel between the RRH l and user k. If
the user moves at speed v (m/s), then the maximum Doppler frequency is calculated as
fd = vf

c
, where f is the carrier frequency in Hertz and c is the speed of light. Therefore, we

can express λ as function of v,

λv = J0

(
2πfTdl
c

v

)
. (14)

In ABUC, we consider different CSI feedback strategies during the scheduling process,
namely: Full CSI, Partial CSI and Estimated CSI which are defined as follows:

• Full CSI: CSIs are assumed to be perfect at each frame and can be fully used in all
scheduling frames.

• Partial CSI: CSIs are only known and perfect at dynamic frames (each period T ), while
at intermediate frames the channel gains are set equal to the last Full CSI received in
the previous dynamic frame.

• Estimated CSI: CSIs are only known and perfect at dynamic frames (each period T )
and at each intermediate frame CSIs are estimated according to the model given by
Eq. (12).

Note that unlike Partial and Estimated CSI approaches, the Full CSI assumption is
impractical in real systems due to the fronthaul delays and the signaling burden, which
justifies our assumption of imperfect CSI knowledge at the BBU pool.

Combining these CSI feedback strategies and the periodicity T results into the following
variants of the proposed ABUC algorithm:

• (T , Full CSI): Full CSI fedback every frame for beamforming; dynamic clustering
optimisation every T frames,
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• (T , Partial CSI): CSI fedback every T frames, reused in all intermediate frames for
beamforming; dynamic clustering optimisation every T frames,

• (T , Estimated CSI): CSI fedback every T frames, estimated for all intermediate frames
for beamforming; dynamic clustering optimisation every T frames.

The detailed description of the proposed ABUC algorithm is given in Algorithm 3.

Algorithm 3: Proposed ABUC Scheme with different types of CSI

initialize frame t = 0, user velocity v
repeat

if t mod T = 0 then
Get perfect CSI Hk(t) for all users k
Call Dynamic Algorithm

else
if Full CSI then

Get perfect CSI Hk(t) for all users k
else if Partial CSI then

Use imperfect CSI Ĥk(t) = Hk(t− mod (t, T )), for all users k
else

Estimate CSI Ĥk(t) following (12) for all users k
Call Static Algorithm

Set clustering solution as the initial clusters for frame t+1
Move to next frame

until convergence

6. Cost analysis of the proposed ABUC algorithm

In this section, we elaborate a cost analysis of ABUC algorithm in terms of the previously
mentioned cost parameters.

6.1. Signaling Costs

6.1.1. CSI overhead

As aforementioned, we consider three cases for CSI feedback for the proposed ABUC
algorithm. In the Full CSI case, the CSI is fed back by every user to each of their serving
RRH for every frame. In the Partial CSI case, CSIs are returned only for dynamic frames,
i.e., every T frames, and used for all successive intermediate static frames. In Estimated CSI
case, CSIs are estimated from the Full CSIs by a correlation coefficient presented in equation
(12). Based on these considerations, we can easily derive the amount of CSI overhead for
each period T in each of the following cases to be considered in the numerical evaluations:
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• dynamic algorithm with Full CSI:

Of
dyn = KLMNT, (15)

• ABUC algorithm with Full CSI:

Of
ABUC =

∑
k

(L+ (T − 1)Lk)MN, (16)

• ABUC algorithm with Partial CSI and Estimated CSI:

Op,e
ABUC = KLMN. (17)

6.1.2. User-to-RRH re-association overhead

Signaling overhead is generally neglected in most of the related works, although it may
be a serious issue in practical systems, especially for the dynamic clustering strategy as
it continuously updates the user-to-RRH associations for each scheduling frame. In this
work, we consider the total number of signaling messages generated by the re-association
process following the derived beamforming and clustering solutions. More specifically, we
denote by S this signaling cost. Re-associations are counted for all newly established user-
to-RRH links, or for released links between two successive frames. A simple calculation of
the re-association cost S averaged over all frames I is given as follows:

S =
1

I

∑
i

∑
k

Si
k (18)

where Si
k is the re-association cost of user k at frame i and which can be formulated as

Si
k = (|{Li

k ∪ Li−1
k }| − |{L

i
k ∩ Li−1

k }|), (19)

where Li
k is the number of RRHs serving user k at frame i.

6.2. Computational complexity cost analysis

As in [11], we assume a typical network model where K > L > M > N . In the proposed
hybrid algorithm, the complexity required for dynamic frames is given as O(K4L3M3) [11].
For static frames, the complexity of the algorithm is dominated by problem (P2). By solving
the problem via interior point method, the complexity of this problem will be similar to that
of a linear program. The complexity in practice is in order of n2m (assuming m ≥ n), in
which n is the dimension of the solution and m is the dimension of the constraint. In

our problem, the total number of variables wk and Rk is (
K∑
k=1

LkM + K), while the largest

dimension of constraints is given by (2c), i.e., K
K∑
k=1

LkM . Thus, the complexity of static

frames may be expressed as
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O((
K∑
k=1

LkM +K)2(K
K∑
k=1

LkM)), (20)

whose dominating term is given by

O(K3

K∑
k=1

LkM). (21)

7. Optimizing ABUC’s feedback parameters using Q-learning

In this section, we design a reinforcement learning framework which enables the proposed
ABUC algorithm to optimize its scheduling parameters on-the-fly, given each user mobility
profile. Different to the initial ABUC presented above where the algorithm parameters, i.e.
period T and CSI feedback strategy, are fixed during the whole scheduling process, this Q-
learning framework enables to activate dynamic and static clustering schemes under different
CSI feedback strategies adaptively depending on the individual user mobility profile. To do
that, we formulate the optimization problem as a Q-learning model in which an agent learns
from the environment to manage it-self the feedback parameters, i.e. period T and CSI
feeedback type.

Q-learning is a reinforcement learning technique which goal is to learn a policy that
informs an agent what action to take under what circumstances. It does not require a
model of the environment and can handle problems with stochastic transitions and rewards,
without requiring adaptations. The learning agent maximize its total (future) reward by
adding the maximum reward attainable from future states to the reward for achieving its
current state, effectively influencing the current action by the potential future reward. This
potential reward is a weighted sum of the expected values of the rewards of all future steps
starting from the current state.

In each decision epoch, the agent decides to make an action and observes the results
from this action. Each action-state pair produces a Q-value that will be updated in a table
in which the columns and the rows represent the actions and the states, respectively. The
updated value of Q∗(st, at) is computed by the Bellman function as presented in [34]:

Q∗(st, at) = Q(st, at) + α
[
Rwdt(st, at) + γmax

st+1

Qt+1(st+1, at+1)

−Q(st, at)
] (22)

where Q(st, at) denotes Q-value at state st when executing action at in time slot t, Rwdt is
the system reward at state st and action at. α and γ are learning rate and discount rate of
the future expected reward, respectively.

In order to obtain the optimal policy, it is necessary to identify the actions, states and
reward functions in the Q-learning model.
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1) System State: The current system state st is jointly determined by the states of all K
users. Due to the relationship of the received SINR and the channel coefficient, we model
the channel coefficient, |hlk|2, as a Markov random variable. We partition and quantize the
range of |hlk|2 into N levels. Each level corresponds to a state of the Markov channel. Each
user k state is defined as the quantized CSI level nt

k, where 1 ≤ nt
k ≤ N, nt

k ∈ N. The system
state at time slot t is defined as,

st = {nt
1, n

t
2, . . . , n

t
k}

2) System Action: In the system, the central scheduler has to decide which feedback
parameters to be selected. Let T and F denote the set of possible values of T and CSI
feedback schemes, respectively.

T = {T1, . . . , Tp, . . . , TP}

F = {f1, . . . , fq, . . . , fQ}

where P ∈ N and Q represents the set dimension of all possible CSI feedback strategies.
The current composite action at is denoted by

at = {at1, at2, . . . , atk}

where atk = (T t
k, f

t
k) represents the feedback parameters of user k at time slot t, where period

T t
k ∈ T and CSI feedback type f t

k ∈ F.
3) Reward Function: The system reward needs to represent the optimization objective,

that is to simultaneously reduce the system cost and satisfy the sum-rate demands. Here,
we define the overall system reward at state st and action at as

Rwdt(st, at) = ρ1

K∑
k=1

rk(st, at)− ρ2
K∑
k=1

Ck(st, at) (23)

where the first term is the system achieved sum-rate at state st and action at, and the second
one denotes the CSI signaling overhead induced by the same state and action, ρ1 and ρ2
are weighting parameters representing the trade-off between the sum-rate and the cost, and
ρ1 + ρ2 = 1.

The CSI overhead cost Ck(Tk, fk) of each user k is computed over Tk frames and can be
expressed as follows:

- If Full CSI: Ck(Tk, f) = 1
Tk

[[
L+ (Tk − 1)Lk

]
MN

]
- If partial or Estimated CSI : Ck(Tk, p) = Ck(Tk, e) = LMN

Tk

The Q-learning based framework uses an ε-greedy strategy [35] in which the amount of
exploration is globally controlled by the parameter ε, that determines the randomness in
action selections. In the ε-greedy method, the agent selects a random action with a fixed
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Algorithm 4: Proposed ABUC’s Q-learning framework

initialize user mobility profile set U
Fmax: number of learning episodes
F0: number of frames for each learning episode
ε: exploration rate, ε← 1
for episode i = 1: Fmax do

if i = 1 then
With probability ε, randomly select an action

else
Randomly generate a probability ξ
if ξ ≤ ε then

randomly select an action
else

choose action ai = argmaxQ(si, ai)
end

end
for frame t=1:F0 do

Execute ABUC with aik parameter
Obtain beamforming and clustering solutions for each frame t
Compute average sum-rate of episode i over all F0 frames

end
Compute the reward Rwdi using (23) and observe the new state si+1

Update entry (si, ai) of Q-table using (22)
Update CSI quantization state {ni

k}
Reduce exploration rate ε by 0.1 %

end

probability ε, 0 ≤ ε ≤ 1. At first, this rate must be initiated to its highest value, i.e. ε = 1,
as we don’t have any knowledge about the values in the Q-table. At each time step, a
uniform random number ξ is drawn, where ξ ∈

[
0, 1
]
. If ξ > ε, the action that gives the

greatest value in the Q-table will be chosen, otherwise we select greedily one of the learned
actions set. We reduce ε progressively as the agent becomes more confident at estimating
Q-values. The Q-learning framework is detailed in Algorithm 4.

8. Simulation Results

In this section, we numerically evaluate the performance of the proposed ABUC al-
gorithm. We consider a 7-cell wrapped around two-tier H-CRAN. Each cell has a single
macro-RRH and 3 pico-RRHs equally separated in space. The number of mobile users is
varied between 5 and 30, uniformly distributed per macro-cell. We assume a Random Way-
point model to represent users’ movements. The fronthaul constraints for macro-RRH and
pico-RRH are 683.1 Mbps and 106.5 Mbps, respectively [25]. All channels undergo Rayleigh
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Simulation parameters
Cellular layout Hexagonal 7-cell wrapped-around two-tier model
Channel bandwidth 10MHz
Intercell distance 0.8km
TX power for macro/pico RRH (43, 30) dBm
Antenna gain 15 dBi
Background noise -169 dBm/Hz
Path-loss from macro RRH to user 128.1 + 37.6 log10(d)
Path-loss from pico RRH to user 140.7 + 36.7 log10(d)
Log-normal shadowing 8 dB
CSI error variance -20 dB
User priority weights αk 1 ∀k

Table 1: Parameter settings for simulation

small scale fading and log-normal shadowing. The other parameter settings are presented
in Table 1.

To evaluate the performance of the proposed ABUC algorithm and its behavior with
regards to user mobility, we consider different mobility profiles represented by the parameter
λ which is a function of velocity. In (14), we set the carrier frequency f and the fronthaul
delay Tdl for all RRH l as 900 MHz and 2 ms [36], respectively.

8.1. ABUC algorithm performance

The performance of ABUC algorithm is compared to two baseline schemes, namely dy-
namic and static algorithms with Full CSI as in [11, 25]. Note that considering Full CSI
for static and dynamic algorithms guarantees their best sum-rate performance. For ABUC
scheme, we varied both CSI feedback strategy and the period value T . We focus on three
representative types of mobility profiles: low, medium and high with velocities 6 km/h, 36
km/h and 72 km/h, respectively.

In Fig. 4, we show the average sum-rate convergence of reference dynamic and static
algorithms for K = 10 users per macrocell, and the proposed ABUC algorithm with periods
T = 2 and T = 3 for all CSI feedback strategies. It is worth noting that ABUC with
T = 1 is equivalent to the dynamic algorithm with Full CSI, and setting T ≥ 4 induced
excessive sum-rate degradation compared to baseline algorithms. This justifies our choice of
limiting the appropriate period values to T = 2 and T = 3. As we can observe, the dynamic
algorithm outperforms the static one, while ABUC algorithm with Full CSI is closer to the
optimal sum-rate performance of the dynamic algorithm. As expected, the larger the period,
the lower the performance of our proposed solution since it uses a more outdated clustering
solution (derived in the last dynamic frame). In addition, ABUC scheme with Estimated
CSI shows a very close performance to ABUC with Full CSI case under low mobility (see
Fig. 4 (a)). However, its performance degrades with higher velocities as the Estimated CSI
quality looses accuracy as shown in Figs. 4 (b),(c). Under high mobility, Fig. 4 (c) shows
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Figure 4: Average sum-rate convergence against number of iterations

that the Estimated CSI strategy degrades even below the Partial CSI scheme. This behavior
will be further discussed in the next subsection.

Fig. 5 evaluates the sum-rate performance as a function of the number of users and their
mobility profile. We can observe the same tendency in performance with the increasing
number of users. ABUC algorithm with Full CSI offers a close performance to the dynamic
optimal solution for all mobility scenarios. Again, ABUC with Estimated CSI exhibits a
good performance for lower mobility while Partial CSI outperforms it for high mobility.
From these figures, we can also observe the effect of period T on the sum-rate: ABUC with
T = 3 and Full CSI behaves better than with T=2 and Partial CSI. With T = 3 and Partial
CSI, the proposed method is outperformed by the static algorithm with full (perfect) CSI,
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Figure 5: Sum-rate performance as function of the number of users per macro cell

showing the importance of accurate CSIs.
In Fig. 6, we plot the cumulative distribution function (CDF) of per user data rates for

proposed ABUC variants and baseline dynamic and static algorithms. The figure emphasizes
the fairness among users in terms of instantaneous rate distribution. We notice that the
ABUC algorithm shows a near performance to the dynamic algorithm in case of Full CSI,
i.e. it reaches up to 91.3% and 86.8% of the optimal performance with T = 2 and T = 3
at the 50-th percentile, respectively, for low mobility scenario. We can also point out the
behavior of the proposed ABUC with Full CSI which tends to allocate more resources to low
CSI quality users unlike the dynamic algorithm which concentrates the allocation towards
best CSI users to maximize the global sum-rate. Therefore, ABUC scheme provides a better
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Figure 6: Cumulative distribution function of user data rate

fairness for all users while approaching the optimal sum-rate.
Another important analysis concerns the costs induced by all the compared schemes.

We first plot in Fig. 7 the amount of generated CSI feedback overhead as a function of the
number of users. We can see that all variants of ABUC algorithm provide an important
reduction in CSI overhead compared to the dynamic scheme (43-48% for T=2 and 63-66%
for T=3). For the ABUC Full CSI case, this gain comes from smaller cluster sizes (Lk ≤ L
(16)) in intermediate static frames. Moreover, the performance in terms of CSI overhead
can be significantly improved by employing Partial CSI or Estimated CSI instead of Full
CSI. Note that the amount of CSI feedback for partial and Estimated CSI is equal as shown
in (17).
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Figure 7: CSI overhead as function of the number of users per macro cell

Furthermore, the ABUC algorithm enables a large reduction of the number of user-to-
RRH association messages. We plot in Fig. 8 the re-association cost of proposed ABUC
algorithm compared to the dynamic one for the three mobility profiles and different user
loads (10 and 20 users per macro cell). In this figure, we observe a significant reduction
of re-association messages for ABUC scheme compared to the dynamic one, which is even
more under high user load. Note that as shown in section 6.1.2, the re-association cost of
the proposed algorithm depends only on period T and is unaffected by the CSI feedback
strategy. With T = 2 and T = 3 ABUC achieves 54.3% and 74% reduction compared to
the dynamic scheme, respectively. In addition, the results show that the mobility acts on
the generated re-association cost as high user mobility requires more frequent changes of
serving RRHs over successive scheduling frames. However, this increase in re-association
cost is marginal proving the robustness of the proposed schemes against varying user loads
and velocities.

Number of users/macro cell 10 20 30
Dynamic algo 4.2× 1012 6.7× 1013 3.4× 1014

ABUC algo T=2 5.4× 107 4.7× 108 1.8× 109

ABUC algo T=3 5.1× 107 4.4× 108 1.7× 109

Table 2: Computational complexity as function of the number of users per macro cell

8.2. Performance-cost tradeoff analysis: a mobility perspective

In this section, we discuss the performance-cost tradeoff under different mobility condi-
tions. To characterize the different variants of ABUC algorithm, we define the parameters
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Figure 8: Re-association cost as function of number of users per macro cell

(T, f), where T is the period of dynamic frames, and f is the CSI feedback strategy used
for intermediate frames, i.e., T ∈ {2, 3} and f may be chosen among Full CSI, Partial CSI
and Estimated CSI.
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Figure 9: Sumrate performance against lambda
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Fig. 9 summarizes the sum-rate behavior of all algorithms against users velocities rep-
resented by the correlation coefficient λ. As we can see, λ approaching 1 corresponds to the
static case and hence the Estimated CSI is very close to the real channel state, explaining
why our ABUC scheme with Estimated CSI closely approaches its performance with Full
CSI. On the other end, when λ tends to 0, the user velocity is very high leading to very
dynamic channel variations. This can be observed on the performance of ABUC with Esti-
mated CSI which degrades even lower than the case with Partial CSI given the poor quality
of the CSI estimation. In addition, we observe that unlike ABUC with full and Partial
CSI strategies, the performance of ABUC with Estimated CSI is strongly dependent on
user mobility. In light of these considerations and the performance tendencies noticeable in
Fig. 9, we identify three mobility regions: low mobility, medium mobility and high mobility
corresponding to the velocity and λ ranges (0-18 km/h ; 0.96 ≤ λ ≤ 1), (18-54 km/h ;
0.7 ≤ λ ≤ 0.96), (v ≥ 54 km/h ; λ ≤ 0.6), respectively. For each range of velocity, we can
find the most suitable algorithm with its parameters (T, f) that can balance the tradeoff
between sum-rate performance and the incurred costs.

• Low mobility scenario: from Fig. 9, ABUC scheme with Estimated CSI for both values
of T (T = 2 and T = 3) closely approaches ABUC sum-rate performance with Full CSI,
while largely reducing the CSI feedback overhead and re-association costs compared
to the baseline dynamic algorithm (as shown in Fig. 7 and Fig. 8). In addition, Fig.
6a reveals that ABUC with estimated and Full CSI achieve similar user fairness levels
for each T . Moreover, regarding the computational complexity, we can see in Table 2
that ABUC with both values of T drastically decreases the computation complexity
owing mainly to the smaller cluster sizes Lk used in intermediate static frames. Note
that we can also observe that the reduction in complexity for ABUC is proportional to
the period T . Therefore, we can conclude that ABUC with (T = 3 ; Estimated CSI)
provides the best trade-off for low mobility users.

• Medium mobility scenario: for medium velocities, ABUC with Estimated CSI looses
some performance compared to Full CSI but still outperforms Partial CSI case and
performs close to baseline static algorithm with Full CSI. Here again, considering the
balance between the loss of sum-rate performance and the gain in complexity and
signaling costs (Fig. 7 and Fig. 8), we can infer that ABUC with (T = 2 ; Estimated
CSI) provides the best trade-off performance for medium mobility. However, if the
system can afford a higher overhead consumption, ABUC with (T = 2 ; Full CSI)
offers the best sum-rate performance.

• High mobility scenario: In high mobility environments, it is clear that the Estimated
CSI becomes obsolete and hence ABUC with Estimated CSI has no more benefits. As
a consequence, ABUC with (T = 2 ; Partial CSI) is preferred as the best option to
realize the sum-rate and cost trade-off.

From the above discussion, given that the set of parameters which provide the best
performance-cost trade-off are highly dependent on the mobility profile of users, a Q-learning
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based method enabling the dynamic selection of parameters (T, f) is investigated in the next
section.

8.3. Performance of ABUC with Q-learning

Our goal in this section is to derive some preliminary performance results of the proposed
ABUC’s Q-learning based feedback parameter selection framework on a simple network
which consists of 1 macro-RRH and 3 pico-RRHs and 3 users. The agent will learn over
1200 episodes for a state space of 64 states, corresponding to 4 states of CSI quantization
for each user. The action set for each user consists of 4 actions: T=1 with Full CSI and
T=2 with Full CSI, Partial CSI and Estimated CSI, resulting in a Q-table of size 64 × 64.
The value of channel coefficients |hlk|2 are quantized into 4 ranges which are bounded by
the following values: 6 × 10−6, 1.8 × 10−5 and 8 × 10−5. The other simulation parameters
are the same as in Table 1.

We consider two different scenarios: in the first one, all users have the same velocity
while in the second, each user has its own individual velocity.
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Figure 10: Converged reward as function of weight ρ1

Firstly, we evaluated the proposed algorithm in the first scenario where all users undergo
the same velocity which is varied over the three mobility profiles, namely: low, medium and
high mobility corresponding respectively to 6 km/h, 36 km/h and 72 km/h. We plot in Fig.
10 converged value of the reward against different values of sum-rate weight ρ1 which varies
between 0 and 1. We observe that when ρ1 approaches 1, the reward tends toward the sum-
rate and all users whatever their velocity converge to take the same optimal action (T = 1,
Full CSI). Inversely, when ρ1 approaches 0, the CSI cost factor becomes more dominating on
the reward value, then the users choose the optimal action that minimizes the CSI cost, i.e.
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(T = 2, Estimated CSI) for low and medium velocities, and (T = 2, Partial CSI) for high
velocities. In addition, we also observe that the reward slightly decreases as the mobility
become higher due to the CSI degradation.
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Figure 11: Reward convergence over the learning episodes
Individual velocities: user 1 = 6 km/h, user 2 = 36 km/h, user 3 = 72 km/h

We varied the value of weights (ρ1, ρ2) to three cases (0.3, 0.7), (0.7, 0.3) and (0.9, 0.1)
representing different situations of tradeoff between the sum-rate and the induced costs.
We can see in Fig. 11 that the three users having different velocity converge individually
to different optimal actions which are highly dependant on their respective velocities. We
observe that for weight ρ1 = 0.3 or ρ1 = 0.7, the users with low and medium velocity
take the action (T = 2, Estimated CSI), while the user with high mobility converges to
(T = 2, Partial CSI). The selection of these actions confirms the effectiveness of the learning
algorithm. Indeed, in case of low and medium mobility, the CSI estimation is accurate
enough to be used when ρ1 = 0.3 and ρ1 = 0.7 for a balanced trade-off between sum-rate
and cost, while the high mobility user no longer maintains an acceptable CSI estimation
and then prefers selecting Partial CSI. Moreover, coupled with the fact that T = 2 is very
effective for cost reduction, the users converge to T = 2 instead of T = 1. Finally, in case of
ρ1 = 0.9 which corresponds to a predominant sum-rate performance, the learning algorithm
wisely converges to (T = 1, Full CSI) action regardless the user velocity as Full CSI and
dynamic clustering at all frame presents the best action for sum-rate maximization.

9. Conclusion

In this paper, we investigated the trade-off between throughput gain and complex-
ity/signaling overhead costs of the joint beamforming and user clustering problem in the
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downlink of a H-CRAN. We proposed ABUC, an algorithm that periodically activates dy-
namic and static clustering strategies for leveraging both the optimality of the dynamic
solution and the low-complexity of its static counterpart. The key benefit of the proposed
ABUC algorithm is to take into account the temporal dimension of the allocation process
while being aware of practical system operation metrics, namely CSI feedback overhead,
re-association cost, and computation complexity. We also propose to use a mobility-aware
channel estimation model to better predict the channel variations when CSI feedback reduc-
tion is applied. The numerical results show that the proposed solution narrows significantly
the performance gap with the optimal dynamic solution, while considerably reducing the
required computational complexity, CSI feedback and re-association signaling overhead over
the long-term allocation process. Moreover, we have identified the best parameter sets for
different mobility scenarios. Furthermore, we designed a Q-learning framework which en-
ables the proposed ABUC algorithm to optimize its scheduling parameters on-the-fly, given
each user mobility profile. Our proposed framework is able to learn about the system dy-
namics and predict the best parameter set to apply for each user depending on its mobility
behavior.

As a future work direction, the dynamic selection of algorithm parameters for a large
scale H-CRAN network can be optimized through a more sophisticated machine learning
techniques, e.g. deep reinforcement learning. The resource allocation and scheduling prob-
lem in Fog-RAN will be also considered.
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