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ABSTRACT

We present in this paper the results of the Russian Academy of Sciences North Atlantic Atmospheric

Downscaling (RAS-NAAD) project, which provides a 40-yr 3D hindcast of the North Atlantic (108–808N)

atmosphere at 14-km spatial resolution with 50 levels in the vertical direction (up to 50 hPa), performed

with a regional setting of theWRF-ARW3.8.1 model for the period 1979–2018 and forced by ERA-Interim

as a lateral boundary condition. The dataset provides a variety of surface and free-atmosphere parameters

at sigma model levels and meets many demands of meteorologists, climate scientists, and oceanographers

working in both research and operational domains. Three-dimensional model output at 3-hourly time

resolution is freely available to the users. Our evaluation demonstrates a realistic representation of most

characteristics in both datasets and also identifies biases mostly in the ice-covered regions. High-resolution

and nonhydrostatic model settings in NAAD resolve mesoscale dynamics first of all in the subpolar lati-

tudes. NAAD also provides a new view of the North Atlantic extratropical cyclone activity with a much

larger number of cyclones as compared with most reanalyses. It also effectively captures highly localized

mechanisms of atmospheric moisture transports. Applications of NAAD to ocean circulation and wave

modeling are demonstrated.

1. Introduction

Subsynoptic and mesoscale atmospheric dynamics

over the North Atlantic Ocean are of great interest for

understanding the mechanisms of highly localized pre-

cipitation, heat and moisture transports, and low-level

baroclinicity in the atmosphere. Changes in the intensity

and location of the North Atlantic storm tracks are

critically important for the quantification of the impact

of highly variable atmospheric processes onto air–sea

fluxes and associated ocean signals and for understand-

ing the responses of cyclone activity to those ocean

signals (Minobe et al. 2008, 2010; Woollings et al. 2012;

Tilinina et al. 2018). Many works hint at the critical role

of mesoscale dynamics in air–sea interaction in the

North Atlantic, first of all in forming cold-air outbreaks

(Zolina and Gulev 2003; Bond and Cronin 2008; Papritz

et al. 2015; Kim et al. 2016) over the Gulf Stream, the

Labrador Sea, and the Greenland–Iceland–Norwegian

(GIN) Seas and in generating polar lows characterized

by small scales and extreme surface fluxes in the sub-

polar regions (Kolstad 2011; Condron and Renfrew

2013; Stoll et al. 2018, among others). Extremely high

turbulent heat and momentum surface fluxes associated

with these phenomena are highly localized in space and

in time and require high temporal and spatial resolution

for their adequate representation in models (Gulev and

Belyaev 2012; Vihma et al. 2014).

Many lower-troposphere responses to the ocean sig-

nals are also associated with mesoscale processes, includ-

ing the low-level baroclinicity over the western boundary

currents (Nakamura et al. 2012; Ogawa et al. 2012;

Small et al. 2014; Ma et al. 2017; DuVivier et al. 2016;
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Parfitt et al. 2016, 2017) and anomalous convective

precipitation in warm seasons (Minobe et al. 2008;

Hand et al. 2014). High-resolution regional model ex-

periments demonstrated the responses of the lower

atmosphere to the ocean signals at length scales of less

than 30–50 km, suggesting ocean–atmosphere coupling

at mesoscales and submesoscales (Small et al. 2008,

2014, 2019; Ma et al. 2017; Parfitt et al. 2016; Bishop

et al. 2017). Subsynoptic and mesoscale processes are

also crucial for better understanding themechanisms of

atmospheric moisture transports, first of all in the at-

mospheric rivers (ARs; Lavers et al. 2011; Lavers and

Villarini 2015; Gimeno et al. 2014) providing strong

ocean-to-continent moisture intrusions associated with

abundant precipitation. All of these phenomena can-

not always be adequately captured by global rean-

alyses, such as ERA-Interim, JRA-55, MERRA-2,

and ERA5 (Dee et al. 2011; Kobayashi et al. 2015;

Gelaro et al. 2017; Copernicus Climate Change

Service 2017; for definitions of acronyms, see https://

www.ametsoc.org/PubsAcronymList), partly because

of their relatively coarse resolution but also because

of the use of hydrostatic model configurations.

Remarkably, the Arctic System Reanalysis (ASR;

Bromwich et al. 2016, 2018) performed with the polar

Weather Research and Forecasting (WRF) Model

(Bromwich et al. 2009) demonstrated a considerable

improvement of the representation of many phe-

nomena in the Arctic atmosphere (Tilinina et al. 2014;

Moore et al. 2015, 2016; Smirnova and Golubkin 2017;

Boisvert et al. 2018; Justino et al. 2019, among others).

Ongoing ocean modeling activities also require high-

resolution forcing functions accounting for mesoscale atmo-

spheric features. Existing datasets used for forcing

model experiments such as Drakkar forcing set (DFS4/5),

Coordinated Ocean-Ice Reference Experiments (CORE),

and JRA-55-do are based on global reanalyses (Large and

Yeager 2004, 2009; Brodeau et al. 2010; Danabasoglu et al.

2014, 2016; Tsujino et al. 2018) with a spatial resolution of

approximately 50–100km. At the same time, modern

eddy-resolving ocean general circulation models use

resolutions finer than 1/108, equivalent to a few kilo-

meters at subpolar latitudes (Deshayes et al. 2013;

Sérazin et al. 2015; Guo et al. 2014; Rudnick et al. 2015;

Behrens et al. 2017), and up to 1/508–1/608 in some re-

gional simulations (Chassignet and Xu 2017; Fresnay

et al. 2018; Fallmann et al. 2019). These experiments are

focused on essentially small-scale ocean features. The

role of small-scale atmospheric processes, however, re-

mains unclear when using relatively coarse-resolution

forcing. Similarly, modern spectral wavemodels account

for highly nonlinear wave generation and development

processes strongly dependent on the submesoscale wind

structure (Ardhuin et al. 2012; Hanley et al. 2010;

Semedo et al. 2011; Zieger et al. 2015; Markina et al.

2019). At the same time, in most cases these advanced

configurations are forced with relatively coarse-resolution

reanalysis winds.

In summary, there is a high demand from different

communities for long-term high-resolution atmospheric

hindcasts performed with high-resolution model con-

figurations for the North Atlantic where mesoscale and

submesoscale processes are of high relevance. Facing

this challenge, the P.P. Shirshov Institute of Oceanology

of the Russian Academy of Sciences (IORAS) in

cooperation with the Institut des Géosciences de

l’Environnement (IGE) developed a high-resolution

(14km) atmospheric downscaling experiment for the

North Atlantic Ocean [North Atlantic Atmospheric

Downscaling (NAAD)]. In NAAD, the nonhydrostatic

WRFModel was forced at the lateral boundaries by the

ERA-Interim reanalysis over the 40-yr period (1979–

2018). In the following, we describe the NAAD model

configuration and production strategy in section 2 fol-

lowed by a short description of NAAD products and

data availability (section 3). Then we turn to the NAAD

evaluation (section 4) and pilot applications (section 5).

In the conclusive section 6 we discuss the NAAD added

value and perspectives of further developments of the

product.

2. NAAD model configuration and production
strategy

In NAAD we used the nonhydrostatic WRF Model,

version 3.8.1 (Skamarock et al. 2008; Powers et al. 2017).

The domain covers the North Atlantic from 108 to 808N
and from 908W to 58E (Fig. 1), with the center at 458N,

458W. The initial and lateral boundary conditions [in-

cluding sea surface temperature (SST)] were provided

by the ERA-Interim reanalysis (Dee et al. 2011) at

0.78 3 0.78 spatial resolution and 60 levels in the vertical

direction. The spatial resolution in the basic NAAD

high-resolution experiment (HiRes) was 14km (551 3
551 points) and 50 terrain-following, dry hydrostatic

pressure levels, starting from around 10–12m above the

ocean surface to 50hPa with;15 levels in the boundary

layer (http://www.naad.ocean.ru). Besides the HiRes

experiment, we also conducted a moderately low reso-

lution experiment (LoRes) with the hydrostatic setting

of the WRF Model at 77-km resolution (110 3 110

points) with 50 vertical levels (as in HiRes). The

LoRes experiment (with resolution comparable to

ERA-Interim) will be used to quantify the added

value of the HiRes experiment, which cannot be di-

rectly compared with ERA-Interim (constrained by
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data assimilation and using a very different model

configuration). All experiments were run for the 40-yr

period from January 1979 to December 2018. Details

of the model settings for the HiRes and LoRes ex-

periments are presented in Table 1.

Most parameterizations were used in both HiRes

and LoRes NAAD experiments. We used the Kain–

Fritsch (KF) convective parameterization scheme

(Kain 2004). The RRTMG longwave and shortwave

radiation schemes (Iacono et al. 2008) were used for

terrestrial and solar radiation processes, which addi-

tionally utilize effective cloud water, ice and snow

radii from the single-moment 6-class (WSM6) scheme

for microphysics (Hong and Lim 2006) in HiRes, and

subgrid convective cloud information from KF for a

more accurate estimation of atmospheric optical depth.

The surface layer was parameterized by the MM5

scheme of (Skamarock et al. 2008) based upon similarity

theory, accounting for a viscous sublayer and incorpo-

rating the COARE 3.0 algorithm (Fairall et al. 2003) for

calculating thermal and moisture roughness lengths (or

exchange coefficients for heat and moisture) over the

ocean surface. For the planetary boundary layer (PBL)

we used the Yonsei University (YSU) nonlocal scheme

(Hong et al. 2006) and the Noah land surface model

(Chen and Dudhia 2001). An important issue is the

number of vertical levels captured by the PBL. In

NAAD (see the specification of vertical levels at http://

www.naad.ocean.ru), 15 vertical levels are below 850hPa.

Computation of the PBL height (not shown) reveals the

highest PBL exceeding 1000m over the regions with active

convection and the lowest PBL of less than 200m in the

polar regions. This implies that the number of vertical levels

in PBL range from as few as 5–6 to as many as 15–16 over

the NAAD domain. In this respect, for example, version 2

ofASR(ASRv2;Bromwich et al. 2018)with approximately

10–12 levels in the PBL (implied by 25 levels below

TABLE 1. NAAD HiRes and LoRes experimental design (see text for details).

Attribute Setting

General

Model WRF-ARW 3.8.1

Name of expt LoRes HiRes

Dynamical core Hydrostatic Nonhydrostatic

Grid and time configuration

Horizontal grid type Arakawa C grid staggered

Horizontal resolution 77 km 14 km

Vertical coordinate type Terrain-following, dry hydrostatic pressure

Vertical resolution, no. of levels 50

Time-stepping scheme Time-split integration using a third-order Runge–Kutta scheme

Time step (s) 240 30

Physical parameterizations

Microphysics scheme WSM5 (Hong et al. 2004) WSM6 (Hong and Lim 2006)

Cumulus scheme Kain–Fritsch (Kain 2004)

PBL scheme YSU (Hong et al. 2006)

Surface-layer scheme MM5 (Skamarock et al. 2008)

Radiative transfer (short- and longwave) RRTMG (Iacono et al. 2008)

Land surface model Noah LSM (Chen and Dudhia 2001)

Boundary conditions

Initial and boundary conditions ERA-Interim (spectral nudging

longer than 1100 km)

SST ERA-Interim

FIG. 1. NAAD computational domain and map-scale factor for the

HiRes simulation.
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850 hPa) is more effective in polar latitudes; however,

ASRv2 is based on the local Mellor–Yamada–Janjić

PBL scheme, which may not necessarily be effective

over the whole North Atlantic region.

Since the Noah scheme updates deep soil temperature,

the skin sea surface temperature is calculated using the

Zeng and Beljaars (2005) formulation. The PBL scheme is

responsible for vertical subgrid-scale fluxes due to eddy

transports in the whole atmospheric column, and not only

in the boundary layer. Horizontal eddy viscosity coeffi-

cients are obtained in the WRF dynamic core indepen-

dently using the Smagorinsky first-order closure approach.

Parameterizations of microphysics were nevertheless

different in HiRes and LoRes. Thus, the WSM6

scheme for microphysics (Hong and Lim 2006) was

used in the NAAD-HiRes and WSM 5-class (WSM5;

Hong et al. 2004). Additionally, employing entrain-

ment information from KF was applied in the NAAD-

LoRes case. For the long-term runs with WRF in both

HiRes and LoRes experiments, the RRTMG scheme

uses climatological ozone and aerosol data. The ozone

data were adapted from the Community Atmospheric

Model radiation scheme with latitudinal (2.828 step),
height, and temporal (monthly) variation. The aerosol

data were based on the Tegen et al. (1997) dataset

with relatively coarse spatial (58 in longitude and 48 in
latitude) and temporal (monthly) resolution.

The WRF settings used for NAAD HiRes, with some

modifications, was applied in a number of applications. In

the Polar WRF used in ASRv2 (Bromwich et al. 2018) the

major difference was in the use of the Mellor–Yamada–

Nakanishi–Niino (Nakanishi 2001; Nakanishi and Niino

2004, 2006) 2.5-level PBL parameterization. However, the

nonlocalYSUschemeused inNAADis effective to resolve

strong convective processes in themidlatitudes and tropical

regions. This parameterization was used in a number of

RCM simulations (Bukovsky and Karoly 2009; Otte et al.

2012; Gao et al. 2015; Tang et al. 2017).

At the ocean surface, we used ERA-Interim SST and

sea ice, which was updated every 6h during the simulation.

ERA-Interim SST is combined from different sources

(Dee et al. 2011). Kumar et al. (2013) demonstrated that in

different reanalyses, the intraseasonal SST–precipitation

relationship is dependent on the SST used. In this respect

we understand that the relatively coarse (with respect to

HiRes) resolution ofERA-InterimSSTmayhave an effect

on the atmospheric surface layer and PBL. Currently,

several high-resolution SST datasets, while limited in time

coverage, are available (Chelton and Wentz 2005; Chao

et al. 2009; Ricchi et al. 2016). Nevertheless, for the 40-yr-

long NAAD experiments we used ERA-Interim SST,

which is considered to be homogeneous and adequate for

multidecadal scales.

To reduce unrealistic atmospheric dynamics in the

regional domain in both LoRes and HiRes experiments,

we applied throughout the 40-yr period the procedure of

spectral interior nudging (Jeuken et al. 1996; Miguez-

Macho et al. 2004). The spectral nudging technique

optimizes the adjustment of the large-scale dynamics

inside the domain to that implied by the boundary

conditions. The nudging procedure was applied to the

zonal and meridional wind components, air tempera-

ture, and the perturbation of the geopotential height.

We did not nudge the moisture fields because their

variability is not always represented adequately in the

coarse-resolution ERA-Interim (Miguez-Macho et al.

2004; Otte et al. 2012). Configuration of nudging was set

according to the sensitivity study of Markina et al.

(2018), which implied the optimal wavelength cutoff

being 1100 km, applied only above the PBL. For de-

termining the optimal nudging strength, we performed

sensitivity experiments with the nudging strength co-

efficients increasing from 3 3 1025 to 3 3 1023 s21.

These experiments implied an optimal value of the

nudging strength coefficient of 3 3 1024 s21 (equivalent

to a damping scale of about 1h). This value is also con-

sistent with other studies (Miguez-Macho et al. 2004;Otte

et al. 2012; Tang et al. 2017, among others). Note also that

the ASRv2 (Bromwich et al. 2018) used spectral nudging

with the strength 33 1023 s21 (i.e., an order of magnitude

stronger relative to NAAD) for all levels in the outer do-

main and above 100hPa in the inner domain. However, a

direct comparison is unlikely to be possible here, as the

ARSv2 assimilates a lot of observational data in the surface

layer using the same technique (Newtonian relaxation, also

called ‘‘observational nudging’’; Jeuken et al. 1996).

The dynamical solver ofWRF uses a Cartesian grid. The

difference between the geographical and the model hori-

zontal distance (map-scale factor) should not deviate sig-

nificantly from unity in order to match the CFL criterion.

The NAAD grid is based on a cylindrical equidistant pro-

jection (lat-lon in the namelist; http://www.naad.ocean.ru)

with the rotated pole in order to locate the equator at the

middle of the domain (pole_lat 5 45; pole_lon 5 180;

stand_lon 5 245). For this projection, the maximum

map-scale factor amounts to 1.2 in the northernmost

and southernmost regions of the domain (Fig. 1). This

allowed for keeping a constant third-order Runge–

Kutta time step of 30 s in HiRes and 240 s in LoRes.

In NAAD we used the USGS topography data with

10min spatial resolution.

3. NAAD products and data availability

NAAD products (see http://www.naad.ocean.ru for

the parameter identification and namelist) include

796 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 59

http://www.naad.ocean.ru
http://www.naad.ocean.ru


surface and upper-troposphere variables provided at the

native NAAD grid for HiRes and LoRes products with

resolutions of 14 and 77km, respectively, for the period of

1979–2018. Since the NAAD core model (WRF-ARW)

uses a staggered Arakawa C grid, all 3D fields are

preinterpolated from the C grid on the mass points

(unstaggered grid). No interpolation was applied for

surface variables and fluxes, provided at the mass points.

The entire archive of the NAAD data amounts to 150

terrabytes (TB) with individual annual files ranging from

approximately 140MB in LoRes to 3.3GB in HiRes

for surface variables on to 165GB for HiRes 3D

fields. The whole NAAD data output is organized as

annual NetCDF files by variable and is available online

(http://www.naad.ocean.ru) for download using FTP and

Network Data Access Protocol (OPeNDAP) accesses.

4. NAAD evaluation

a. Surface

Surface-state variables and fluxes are particularly

significant as they are used for forcing ocean models and

for the diagnostics of extreme events. Figures 2a and 2b

show that surface air temperature diagnosed by NAAD

HiRes is colder than in LoRes. The differences between

LoRes and HiRes are smaller than 0.28C over most of

the domain and increase to 0.48C in the western mid-

latitude North Atlantic. Larger surface air temperatures

in HiRes compared to LoRes, amounting to 18C, are
observed over the ice-covered regions and occur pri-

marily in the winter months. This regional bias can be

explained by using a coarse-resolution sea icemask from

ERA-Interim in both HiRes and LoRes NAAD simu-

lations. Compared to ERA-Interim (Fig. 2c), HiRes

shows 0.28 to 0.48C lower surface air temperatures over

most of the North Atlantic and considerably colder

surface air temperatures in the ice-covered regions in

the subpolar North Atlantic. A similar pattern of dif-

ferences in surface air temperature is revealed for

ASRv2 (Fig. 2d) for the area of overlap of the two do-

mains. Surface relative humidity (Figs. 2e,f) over open

ocean midlatitudes and subtropics is slightly smaller

in HiRes compared to LoRes with the differences ex-

ceeding 1% identified in the western tropics. At the

FIG. 2. (a) Annual mean (1979–2018) 2-m air temperature in NAAD HiRes and differences in the annual mean 2-m air temperatures

(b) betweenNAADHiRes andNAADLoRes, (c) betweenNAADHiRes andERA-Interim, and (d) betweenNAADHiRes andASRv2.Also

shown is (e) annual mean (1979–2018) 2-m relative humidity in NAAD HiRes and differences in the annual mean 2-m relative humidity

(f) betweenNAADHiRes andNAADLoRes, (g) betweenNAADHiRes andERA-Interim, and (h) betweenNAADHiRes andASRv2. For

LoRes and ERA-Interim, the differences are for the period of 1979–2018; for ASRv2, the differences are for the period of 2000–16.
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same time, somewhat more humid surface conditions

in HiRes compared to LoRes are identified in the

subpolar western North Atlantic and in the offshore

region of the subtropical eastern Atlantic. Here the

differences amount to 0.6%–0.8%. Compared to ERA-

Interim and ASRv2 (Figs. 2g,h), NAADHiRes shows a

relative humidity higher by 2%–3% over the North

Atlantic with the strongest differences (.6%) in the

eastern North Atlantic subtropics.

Figure 3 shows the evaluation of climatological

winter winds in NAAD HiRes and LoRes. NAAD

HiRes and LoRes surface winds are consistent south

of 458N with the differences within 60.15m s21. At

the same time, in the Irminger Sea NAAD HiRes

shows stronger mean winds by 0.2–0.6m s21, thus

likely reflecting a better representation of the meso-

scale features such as tip jets and katabatic winds

in this area. The comparison with ERA-Interim

(Fig. 3c) shows stronger trade winds in the NAAD

HiRes experiment, somewhat lower wind speeds in

the western midlatitude North Atlantic, and also

stronger winds in the subpolar North Atlantic along

the eastern Greenland coast. North of 408N, differences

betweenHiRes andASRv2 (Fig. 3d) are consistent with

those for ERA-Interim. Dukhovskoy et al. (2017)

noted differences between high-resolution satellite

wind products and reanalyses attributing them to the

subsynoptic and mesoscale processes. The impact of

high-resolution and nonhydrostatic setting onto the

wind field is especially evident for extreme winds

(Figs. 3e–h). We note much stronger katabatic winds

and tip jets along the Greenland coast, with the dif-

ferences in surface winds between HiRes and LoRes

experiments being locally over 4ms21 (about 20% of

mean values of 99th percentile of wind speed). Relative

to ERA-Interim, the HiRes experiment shows extreme

winds stronger by more than 7ms21. Important is that

HiRes also shows much better localization of kata-

batic winds near the coast in HiRes compared to

LoRes and ERA-Interim. Figure 3d shows the local-

ization of maximum extreme winds much closer to the

Greenland coast in agreement with the case studies

(Moore and Renfrew 2005; Moore et al. 2015). Extreme

wind speed differences between NAAD HiRes and

ASRv2 in the Irminger Sea (Fig. 3h) amount to 1.5–

2m s21. Comparison of NAAD winds with QuikSCAT

winds (Ricciardulli andWentz 2015) (Fig. 4) indicates that

both NAAD HiRes and LoRes have considerably

FIG. 3. (a) January mean (1979–2018) scalar 10-m wind speed (colors) in NAAD HiRes and wind vectors in NAAD HiRes (red) and

ERA-Interim (black), along with differences in 10-m wind speed (b) between NAADHiRes and LoRes, (c) between NAADHiRes and

ERA-Interim, and (d) between NAAD HiRes and ASRv2. Also shown is (e) the January 99th percentile of 10-m wind speed over

subpolar North Atlantic in NAAD HiRes and differences in 99th percentile of 10-m wind speed (f) between NAAD HiRes and LoRes,

(g) between NAADHiRes and ERA-Interim, and (h) between NAADHiRes and ASRv2. For LoRes and ERA-Interim, the differences

are shown for the period of 1979–2018; for ASRv2, differences are shown for the period of 2000–16.
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smaller errors with respect to QuikSCAT when com-

pared with ERA-Interim, which clearly demonstrates a

systematic negative bias of 0.5–2ms21.

Surface turbulent fluxes (sensible plus latent, Fig. 5)

in NAAD HiRes show the structure to be consistent

with reanalyses and blended climatologies such as

OA-FLUX (e.g., Yu and Weller 2007) with the locally

strong fluxes over the Gulf Stream (primarily due

to latent heat) and in the Labrador Sea (mostly due

to sensible heat). NAAD HiRes turbulent fluxes

are generally larger than those of NAAD LoRes by

0–10Wm22 in the open ocean regions and by;30Wm22

over the Gulf Stream and in the Labrador and Irminger

Seas. In the subpolar latitudes, the stronger HiRes

fluxes are explained by the differences in wind speed

(Fig. 3) with a significant contribution from surface

temperature and humidity gradients, especially for

sensible heat flux (no figure shown). In the midlatitudes

and subtropics, the differences in turbulent heat

fluxes between HiRes and LoRes are associated with

surface temperature and humidity vertical gradients,

as wind speed differences here are close to zero

(Fig. 3). Differences with ERA-Interim (Fig. 5c) are

30%–50% larger than those with NAAD LoRes,

while the direct comparison here is difficult because

of the differences between the ERA-Interim surface

flux algorithm and the COARE 3.0 flux algorithm

(Fairall et al. 2003) used in NAAD (Brodeau et al.

2017). Of interest is also the evaluation of extreme

surface turbulent fluxes, which might be strongly de-

pendent on mesoscale processes (Ma et al. 2015) and

demonstrate differences between different products

not consistent with those for mean values (Gulev and

Belyaev 2012; Bentamy et al. 2017). Figures 5d–f

presents extreme fluxes quantified by the 99th per-

centile of the modified Fisher–Tippett distribution

(Gulev and Belyaev 2012). Relative to LoRes, HiRes

shows stronger extreme fluxes over the Gulf Stream

and the North Atlantic Current where differences

may locally exceed 30Wm22 (up to 5%–10% of the

mean values). In the Irminger Sea the differences

amount to 200Wm22, being more than 20%–25% of

the mean values of extreme turbulent fluxes. Extreme

fluxes diagnosed by HiRes are also considerably

stronger than in ERA-Interim (Fig. 5f), with maxi-

mum differences locally exceeding 300Wm22.

b. Storm tracks and cyclone dynamics

NAADopens a new avenue in the analysis of cyclone

dynamics and storm tracks. Cyclone tracks were diag-

nosed using the IORAS algorithm (Zolina and Gulev

2002; Tilinina et al. 2013), tested within the IMILAST

project (Neu et al. 2013). Tracking was performed on

the NAAD HiRes grid. For tracking cyclones in the

limited area over the North Atlantic we applied an

approach that accounts for the so-called entry–exit

uncertainties (Tilinina et al. 2014). Postprocessing was

further applied to cutoff cyclones with migration dis-

tances smaller than 1000 km and lifetimes shorter than

24 h (Tilinina et al. 2013).

NAAD HiRes (Fig. 6a) captures well the main

North Atlantic storm tracks that are consistent with

cyclone climatologies based on the global reanalyses

(e.g., Neu et al. 2013; Tilinina et al. 2013). NAAD

HiRes shows 30%–60% larger local cyclone numbers

compared to LoRes. Also, NAAD LoRes shows

slightly larger number of cyclones compared to ERA-

Interim while the differences are within 3%–5%.

Over the North Atlantic storm track, the number of

cyclones in NAAD HiRes is close to that in ERA5

(Fig. 6d) with slightly larger cyclone counts over the

storm formation region in the Northwest Atlantic and

slightly smaller counts in the central North Atlantic

and the subpolar regions.

Figure 7 shows the winter [December–February

(DJF)] time series of the domain integrated number

of cyclones with different intensities (quantified by

central pressure). NAAD HiRes allows for identifi-

cation of ;2 times more cyclones compared to LoRes,

which indicates a high consistency with the global

reanalyses, except for ERA5, which reveals practi-

cally the same number of cyclones as NAAD HiRes

(Fig. 7a). Importantly, these differences between

HiRes and all other products (including LoRes) are

formed mostly by moderately deep and shallow cy-

clones (Figs. 7b,d). At the same time, the number of

deep cyclones in HiRes is more consistent with LoRes

and reanalyses showing 10%–15% higher counts.

Overall, the winter cyclone activity in NAAD is very

close to that in ERA5 and considerably more intense

compared to the other reanalyses. Summer results

FIG. 4. Histograms of the differences between NAAD HiRes

(red), NAAD LoRes (orange), and ERA-Interim (blue) winds

with respect to QuikSCAT winds for 2005.
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(not shown) are qualitatively similar with even higher

differences especially for shallow cyclones dominat-

ing during the warm season.

Figure 6 demonstrates relatively strong differences

between cyclone counts in NAAD and in all reanalyses

over the North American continent. This is likely asso-

ciated with the fact that the finer-resolution NAAD

HiRes is capable of identifying cyclone generation

events at an earlier stage than the global reanalyses. Our

analysis of cyclogenesis events (not shown) demon-

strates considerably larger counts of cyclone generation

events over the North American storm track in NAAD

when compared with even ERA5, while the total num-

ber of tracks is close in both products (Fig. 7). Also, we

note that the cyclone effective radius, characterizing

cyclone size (Rudeva and Gulev 2007) is smaller in

NAAD HiRes by about 50–100km as compared with

NAAD LoRes and is also smaller by 100–150 km rela-

tive to ERA-Interim (no figure shown). NAAD HiRes

also demonstrates capabilities in capturing characteris-

tics of extreme cyclones. Thus, our analysis of extremely

deep cyclones shows that the 100 deepest cyclones in

NAADHiRes have a central pressure about 4hPa lower

than those in LoRes and ERA-Interim. Similar con-

clusions were drawn from WRF-based high-resolution

ASR in comparison with global reanalyses (Tilinina

et al. 2014).

c. Hydrological cycle

Evaluation of the North Atlantic hydrological cycle in

the NAAD is of special interest. Figure 8a shows time

series of annual mean precipitation over the NAAD

FIG. 5. (a) January (1979–2018) sensible plus latent turbulent heat fluxes in NAADHiRes and differences in sensible plus latent

turbulent heat flux (b) between NAAD HiRes and LoRes and (c) between NAAD HiRes and ERA-Interim. Also shown is the

(d) January (1979–2018) 99th percentile of sensible plus latent turbulent heat flux in NAAD HiRes and differences in 99th

percentile of sensible plus latent turbulent heat flux (e) between NAAD HiRes and LoRes and (f) between NAAD HiRes and

ERA-Interim.
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domain as computed from NAAD HiRes and LoRes

experiments, as well as from ERA-Interim, the Global

Precipitation Climatology Project (GPCP1DD) (Huffman

et al. 2001), and, starting from 2013, the Global

Precipitation Measurement (GPM) mission (Skofronick-

Jackson et al. 2017). NAAD HiRes shows slightly higher

domain integrated total precipitation values compared to

NAAD LoRes before the early 2000s and slightly smaller

precipitation during the last 15 years. Both HiRes and

LoRes domain integrated values are 4%–7% less than

ERA-Interim and 5%–10% less thanGPCP. Starting from

2013, NAAD HiRes is in a very good agreement with

GPM, demonstrating very small (relative to the other

products) differences for all seasons (Fig. 8b). The

consistency with GPM is, however, somewhat better in

autumn–winter than in spring–summer, likely because

of a stronger contribution of the convective precipi-

tation (requiring even higher resolution than that in

HiRes) during the warm season.

Figures 9a–c shows annual mean total precipitation

in NAAD HiRes and the differences with LoRes and

ERA-Interim. NAAD HiRes when compared with

FIG. 6. (a) Winter (DJF; 1979–2018) number of cyclones in NAAD HiRes and the differences in the DJF

number of cyclones (b) between NAAD LoRes and ERA-Interim, (c) between NAAD HiRes and ERA-

Interim, and (d) between NAADHiRes and ERA5. Units are cyclone tracks per season (DJF) per circle with

a radius of 28 latitude [equivalent to approximately 155 000 km2; see Tilinina et al. (2013, 2014) for the

mapping metrics].
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LoRes shows stronger precipitation in the western

Atlantic tropics and over the Gulf Stream by up to

1mm day21 and lower, by 0.3–0.5mm day21, precip-

itation in the North Atlantic subpolar gyre. Relative

to ERA-Interim (Fig. 9c), NAADHiRes shows stronger

precipitation over the Gulf Stream (up to 2mm day21)

and weaker precipitation over the subpolar latitudes.

The precipitable water content (PWC) (Figs. 9d,e) is

lower in NAAD HiRes than in LoRes by 4%–6%, with

the strongest absolute differences in the western tropics.

ERA-Interim, however, shows a slightly higher PWC

than NAAD HiRes over most of the domain except for

the western tropics and subtropics (Fig. 9e). Differences

in precipitation and PWC suggest stronger tropical

water recycling in NAADHiRes and somewhat weaker

recycling in mid- and subpolar latitudes relative to

LoRes and ERA-Interim.

Representation of summer precipitation over the

western North Atlantic is important for quantifying the

lower-atmosphere responses to the ocean frontal signals

in the Gulf Stream (Minobe et al. 2008, 2010; Parfitt

et al. 2016). Precipitation responses in summer are

typically associated with convective processes and

mostly located over the westernmost part of the Gulf

Stream. In winter, precipitation responses are associated

with the atmospheric frontal activity and enhanced pre-

cipitation over the central and eastern Gulf Stream proper

(Minobe et al. 2010). Figure 10 demonstrates precipitation

for July 2015 as revealed by NAAD HiRes and LoRes as

well as by ERA-Interim, ERA5, GPM, and GPCP.

NAAD HiRes with its capability to capture convective

processes shows the best agreement with GPCP in the

structure of precipitation pattern and in magnitude.

NAAD LoRes and ERA-Interim tend to underestimate

precipitation rates by 2–4 and 3–6mmday21, respectively.

ERA5 is most consistent with HiRes in spatial structure

but shows smaller precipitation rates of 2–3mm day21.

Comparison with ASRv2 (no figure shown) is somewhat

difficult as theASR domain boundary cuts a considerable

part of the region analyzed.However, for the overlapping

part of the domain the precipitation pattern in ASRv2 is

comparable in structure to that of NAAD HiRes.

Capabilities of the high-resolution NAAD in repre-

senting moisture transports can be analyzed through the

FIG. 7. Time series of the seasonal (DJF) (a) total number of cyclones, as well as numbers of (b)moderately deep,

(c) deep, and (d) shallow cyclones in NAAD HiRes, NAAD LoRes, and different reanalyses. Thin lines show

winter (DJF) annual values, and thick lines show 5-yr running means.
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diagnostics of ARs (Lavers and Villarini 2015; Ralph

et al. 2017; Shields et al. 2018), representing narrow

synoptic-scale jets transporting an abundant amount of

water vapor from the ocean to the continents. ARsmay

be responsible for more than 90% of poleward mois-

ture transport (Zhu and Newell 1998) and also result in

extreme precipitation events over continental coastal

areas (Viale and Nuñez 2011; Lavers and Villarini

2015; Gershunov et al. 2017; Waliser and Guan 2017).

For the detection of ARs, we used the 85th percentile

of the integrated water vapor transport (IVT) along with a

fixed lower IVT limit of 100kgm21 s21 (Guan andWaliser

2015). The 85th percentile of IVT was computed from the

20-day sliding windows in the NAAD-HiRes and LoRes

outputs, andmoisture transports were computed according

to Dufour et al. (2016). Figure 11 shows the case study for

5 December 2015, with an AR associated with the deep

cyclone east of Iceland and clearly seen in IVT fields.

Associated daily accumulated precipitation in the NAAD

HiRes closely matches that diagnosed by GPM, while, for

example, ERA-Interim shows the shift in the location of

the AR with respect to GPM. NAADHiRes precipitation

in theAR landfall areas over theU.K. andNorway coasts is

over 66mm day21. This is greater than the values diag-

nosed by NAAD LoRes and ERA-Interim by up to

30mm day21 (Fig. 11f). We also note an accurate location

of the coastal precipitation maxima in the landfall areas in

NAAD HiRes (Fig. 11f). The maximum of water vapor

transport in theAR (Fig. 12a) at 2.5-kmheight is associated

with locally strong winds amounting tomore than 40ms21.

Figure 12b shows that the AR core in HiRes is character-

ized by 10%–15% stronger transports relative to LoRes,

reflecting the fact that ARs in the HiRes experiment are

narrower. In climatological context, this reduces the time

during which western Europe coasts are exposed to

ARs; however, this makes the impact of individual ARs

stronger and highly localized. Our estimate for 2015,

performed using a method similar to Guan and Waliser

(2015), shows that AR landfalls in HiRes happen during

10%–15% of the time, which is less than in LoRes and

MERRA (15%–20%).

d. Mesoscale features

To demonstrate the representation of mesoscale fea-

tures in the NAAD, we use kinetic energy (KE) wave-

number spectra (SKE) derived from thewind speed data

and averaged over the layer between 3- and 5-km height

over the whole domain (Figs. 13a,b). These spectra

characterize the atmospheric turbulence at different scales

by the power law SKE(k) ; k2g, where k is the wave-

number and g is changing from approximately 23 to

approximately 25/3 between the ranges of space scales

larger and smaller than 500km (Waite and Snyder 2009;

Condron and Renfrew 2013; Dukhovskoy et al. 2017).

Figure 13 demonstrates marked differences in the wave-

number spectra forHiRes andLoRes experiments. For the

total and geostrophic KE, the HiRes spectrum is better

matching k23 than LoRes is. It is important, however, that

the spectral decay rate for both geostrophic and ageo-

strophic components at smaller scales (,500km) is con-

siderably smaller in HiRes than in LoRes. This reflects

stronger pressure gradients (and, thus, stronger winds) in

synoptic and mesoscale transients in the HiRes experi-

ment.Dukhovskoy et al. (2017) noted a similar tendency in

FIG. 8. Time series of the (a) annual mean domain-averaged precipitation (mm day21) for 1979–2017 and

(b) monthly mean domain-averaged precipitation (mm day21) for 2014–17 in NAADHiRes (red), NAAD LoRes

(orange), ERA-Interim (blue), ERA5 (cyan), GPCP (green), and GPM (magenta).

MAY 2020 GAVR IKOV ET AL . 803



ASR relative to global coarser-resolution reanalyses in the

subpolar North Atlantic.

Figure 13c shows the wavenumber kinetic energy

spectra near the surface using data from NAAD

HiRes and ASRv2 over the overlapping part of the

two domains. As in the case of the free troposphere

(Figs. 13a,b), the NAAD HiRes spectrum built from

the surface data closely matches k25/3 decay rate in the

range of scales less than 700 km. The ASRv2 spectrum

demonstrates a very similar behavior in terms of change

in g from;23 to;25/3 and the decay rate in the range

from 700 to at least 100–150km.

In this respect it is of interest to consider the repre-

sentation of polar lows in NAAD. Polar lows represent

highly localized maritime atmospheric phenomena as-

sociated with extreme winds and advection of very dry

cold air, playing an important role in high-latitude at-

mospheric dynamics and air–sea interaction processes

(Zahn and von Storch 2008; Condron et al. 2008;

Condron and Renfrew 2013, among others). They are

hardly detectable in global reanalyses primarily due to

their small size (Zappa et al. 2014; Stoll et al. 2018).

Many publications, however, report the capability of

the WRF Model even without data assimilation to ef-

fectively simulate polar lows (Wagner et al. 2011; Wu

et al. 2011; Føre et al. 2012; Kolstad et al. 2016). Kolstad

(2011) developed a unique database of 63 polar lows

(1999–2009) in the subpolar and subarctic North Atlantic

and Arctic using AVHRR and QuikSCAT winds. Of the

21 events identified by Kolstad (2011) in the NAAD

domain, NAAD HiRes was able to successfully detect

20 polar lows.

Figure 14 shows a case study for the polar low that

developed on 2March 2008 in the Irminger Sea. NAAD

HiRes detects well the location of the pressure mini-

mum identifying a 978-hPa central pressure, which is

deeper than that in ERA-Interim (986 hPa) and even in

ERA5 (984hPa). Also, NAADHiRes demonstrates the

well-detectable comma-type structure not present in

ERA-Interim and ERA5 and less evident in ASRv2.

FIG. 9. (a) Annual (1979–2018) mean precipitation (mm day21) in NAAD HiRes and differences in the annual mean precipitation

(b) betweenNAADHiRes andNAADLoRes and (c) betweenNAADHiRes and ERA-Interim. Also shown are (d) annual (1979–2018)

mean atmospheric precipitable water content (kg m22) in NAAD HiRes and differences in the annual mean precipitable water content

(e) between NAAD HiRes and NAAD LoRes and (f) between NAAD HiRes and ERA-Interim (f).
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Note that NAAD LoRes results (no figure shown) are

very close to ERA-Interim for this case. The associated

maximum surface wind speed in the polar low amounts

in HiRes to 32m s21, with 26–27m s21 in ERA-Interim

and ERA5, and nearly 30m s21 in ASRv2 (Fig. 14).

Note that Gutjahr and Heinemann (2018) clearly dem-

onstrated that an accurate representation of the tip jets

and associated extreme winds around Greenland re-

quires resolutions of at least 15 km. Remarkably, it is

also the case that surface turbulent fluxes (sensible

plus latent) are considerably stronger in HiRes (up to

900Wm22) than in ERA-Interim (600Wm22) and are

comparable to both ERA5 and ASRv2. We note that the

direct comparison of surface fluxes between these prod-

ucts should be taken with caution because of the use of

somewhat different flux algorithms. However, the anal-

ysis of surface flux PDFs and the surface flux relative

extremeness (Gulev and Belyaev 2012; Tilinina et al.

2018) show that the strong flux event during 2March 2008

in NAAD HiRes contributed more to the total monthly

flux as compared with ERA5 and ASRv2.

The capability of the NAAD to capture the mesoscale

dynamics in the tropics is evaluated in Fig. 13d showing

wavenumber spectra of the kinetic energy near the

surface (10m) and at 1500m in HiRes and LoRes sim-

ulations. Remarkably, the spectra near the surface and

at 1500m are qualitatively close to each other for both

simulations and are also close to the spectra for the free

troposphere (Figs. 13a,b) and to the surface spectra in

the subpolar region (Fig. 13c). At the same time, tropical

spectra for HiRes demonstrate a k25/3 decay rate for the

wave lengths from 200 to 1000km, while LoRes spectra

follow k23 and a slightly stronger decay rate in this

range. This implies more energetic mesoscale features of

the same size in the tropics in HiRes than in LoRes.

NAAD is also capable of identifying tropical cyclones

generated and propagating north of the southernmargin

of the domain. Figure 15 shows the diagnostics of

Hurricane Gaston, which developed over the North

Atlantic between 22 August and 2 September 2016. At

the moment of maximum development, NAAD HiRes

diagnoses the lowest central pressure (6 hPa deeper

when compared with ERA5 and more than 15hPa deeper

than NAAD LoRes and ERA-Interim) as well as winds

stronger by 5–8ms21 than in ERA5. Associated precipi-

tation in NAAD HiRes is considerably stronger than in

LoRes and ERA-Interim and consistent in magnitude with

ERA5. However, the precipitation pattern in HiRes more

accurately captures the shape implied byGPMthanERA5.

5. Pilot ocean applications

a. Effects in modeled ocean circulation

To demonstrate the NAAD capabilities for driving

long-term experiments with regional configurations of

ocean general circulation models, we developed surface

FIG. 10. July 2015 monthly precipitation rates (mm day21) in (a) NAAD HiRes, (b) LoRes, (c) ERA-Interim, (d) GPM, (e) GPCP,

and (f) ERA5.
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forcing functions for the ocean based upon NAAD

HiRes and NAAD LoRes and used them to drive a

northern North Atlantic regional configuration of the

NEMO (version 3.6) ocean and sea ice general circula-

tion model (Madec et al. 2016). This configuration (re-

ferred to as NNATL12) covers the subpolar gyre of the

North Atlantic (Verezemskaya et al. 2020, manuscript

submitted to J. Geophys. Res.) at a resolution of ap-

proximately 4.5km. The model configuration setup in-

cluding configuration geometry (1/128 grid, 75 vertical z

levels with fine separation (1m) near the surface, coast-

lines, and bathymetry), numerical schemes and physical

process parameterizations are those commonly used for

the global 1/128 eddy-resolving global ocean circulation

model ORCA12 for the operational forecasts (Lellouche

et al. 2018) as well as for climate-oriented long-term

simulations (e.g., Sérazin et al. 2018; Hewitt et al.

2016) and process studies (e.g., Akuetevi et al. 2016).

At the open northern and southern boundaries as well

as at the western boundary of Hudson Bay, the model

is driven by monthly mean temperature, salinity, ve-

locity, and sea ice from the Global Ocean Reanalysis

Simulation (GLORYS12), version 4 (v4) (Garric and

Parent 2018). The model was tested in a set of sensi-

tivity experiments and validated against the high-

resolution the 1/128 GLORYS12 reanalysis of the

Copernicus Marine Environment Monitoring Service

(Fernandez and Lellouche 2018), satellite observa-

tions, and repeated full-depth hydrographic sections at

608N (Sarafanov et al. 2012; Gladyshev et al. 2018;

FIG. 11. Representation of AR on 5 Dec 2015: (a) vertically integrated water vapor transport in NAADHiRes and daily accumulated

precipitation diagnosed by (b) GPM, (c) NAAD HiRes, (d) LoRes, and (e) ERA-Interim, along with (f) the difference in precipitation

between NAADHiRes and ERA-Interim over the area of AR landfall. The zoomed-in area in (f) is shown by the black-outlined box in

(c). Line AB in (a) shows the cross section displayed in Fig. 12, below.
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Verezemskaya et al. 2020, manuscript submitted to

J. Geophys. Res.).

Comparative model experiments were performed with

NAADHiRes and NAADLoRes atmospheric forcings;

the experiments are referred to as NAAD-OHR and

NAAD-OLR, respectively. Significant differences in

characteristics of turbulent and radiative heat fluxes as

well as momentum fluxes between the two forcings at

the ocean surface result in large differences in the sim-

ulated ocean mean state. Thus, the domain-averaged

simulated SST is approximately 0.68C lower in NAAD-

OHR, with summer differences amounting to more than

1.58C (Fig. 16), in close agreement with European Space

Agency (ESA) SST (http://www.esa-sst-cci.org). Note

that trends in SST are highly consistent in both NAAD-

OHR and NAAD-OLR. The strongest SST negative

differences of 18–1.58C and lower sea surface salinity

(0.15–0.2 psu) in NAAD-OHR relative to NAAD-

OLR are observed in the Labrador and Irminger

Seas. Consistent with SST, NAAD-OHR shows a lower

ocean heat content for both the upper (0–700m) and

intermediate ocean (700–1500m), suggesting a more

intense ventilation of the ocean by convective pro-

cesses in NAAD-OHR (Fig. 16). Since almost all ocean

models in noncoupled experiments have a tendency

toward a warmer and saltier ocean (Tréguier et al.

2005; Rattan et al. 2010), the colder upper-ocean tem-

peratures in NAAD-OHR should be considered as an

improvement. The OHR forcing also appears to drive

significant changes in the boundary currents around

Greenland and in the different branches of the central

North Atlantic Current, which were found to be more

intense and more variable in NAAD-OHR than in

NAAD-OLR, as revealed by the partition of eddy ki-

netic energy (not shown). NAAD-OHR also shows a

somewhat deeper mixed layer depth (MLD) relative to

NAAD-OLR (not shown) in regions known for being

strongly ventilated by winter convection (the southwest

sector of the Labrador Sea and the central Irminger Sea).

A lesser ventilation is noticed in the areas where ocean

eddies are known to counterbalance the effects of strong

surface fluxes onto MLD (e.g., Chanut et al. 2008).

b. Effects in ocean wind-wave modeling

NAAD can be also effectively used for forcing spec-

tral wave models whose solutions are critically depen-

dent on the quality and spatial resolution of atmospheric

forcing (Cavaleri 2009; Ardhuin et al. 2012). In this re-

spect, the mesoscale activity in the lower atmosphere

might be of critical importance for capturing extreme

wind waves (Condron et al. 2006; Zappa et al. 2014;

Markina et al. 2019).

We used NAAD HiRes and LoRes outputs for the

WAVEWATCH III spectral wave model (WW3DG

2016) over the NAAD domain. Experiments (referred

to as NAAD-WHR and NAAD-WLR for HiRes and

LoRes forcing, respectively) were performed with the

spatial resolution of 0.28 and spectral model resolution

being 36 directions and 25 frequencies spanning from

0.04Hz with an increment of 1.1. TheWAVEWATCH–

III configuration included ST6 parameterization for

wave energy input and dissipation (Zieger et al. 2015;

Liu et al. 2019) calibrated forWRFwinds (Markina et al.

2018) and the ice source term package (IC0; Tolman

FIG. 12. (a)Moisture transport across the AB section (see Fig. 11a) on 5 Dec 2015 in NAADHiRes (colors) and the component of wind

speed orthogonal to the section (contours) as well as (b) the difference in the moisture transport across the AB section on 5 Dec 2015

between NAAD HiRes and NAAD LoRes.
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2003) implying the exponential attenuation of waves in

partially sea ice–covered regions. To account for the

ocean surface current impact on growing waves we used

daily surface current velocities from the NEMO-based

Ocean Reanalysis System 5 (ORAS5; Zuo et al. 2019).

Cavaleri (2009) argued that the increase in spatial res-

olution of forcing per se does not necessarily result in the

increase in significant wave height (SWH); rather, the

formation of high waves is associated with higher winds,

changes in the duration of wind action, and the length of

fetch. In this sense, NAAD HiRes with its stronger

winds (Fig. 3), smaller cyclone sizes and larger number

of synoptic transients (Figs. 5 and 6) likely acts locally

rather than on a larger scale.

Figures 17a and 17b show winter (January–March)

climatological SWH for 1979–2018 inNAAD-WHRand

the differences between NAAD-WHR and NAAD-

WLR. In NAAD-WHR the highest SWH amounts to

5.4m in the eastern subpolar North Atlantic in very

close agreement with VOS observations (Gulev et al.

2003; Gulev and Grigorieva 2006). Differences between

NAAD-WHR and NAAD-WLR SWHover most of the

FIG. 13. Wavenumber kinetic energy spectra derived from wind speed data and averaged over the layer between

3- and 5-km height over the whole NAAD domain for (a) NAAD HiRes and (b) NAAD LoRes. In (a) and (b),

spectra for the total (black), geostrophic (green), and ageostrophic (yellow) kinetic energy are shown. Dotted lines

show power laws of k23 and k25/3, as labeled. (c) Wavenumber kinetic energy spectra derived from surface wind

speed diagnosed by NAAD HiRes (green) and ASRv2 (blue) for the area of overlap of the NAAD and ASRv2

domains. The area of overlap of NAADandASRv2 is outlined in red in the inlay map, and the gray line in the inlay

shows the southern boundary of the ASRv2 domain in the Atlantic region. (d)Wavenumber kinetic energy spectra

derived from NAAD HiRes (black) and NAAD LoRes (gray) for the surface (solid lines) and 1500m (dashed

lines) for the tropical domain outlined in red in the inlay map.
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North Atlantic midlatitudes and subtropics are gen-

erally within 0.3m but strongly increase in the sub-

polar North Atlantic where they amount to 0.8m in

the Irminger Sea. The highest extreme strong waves

quantified as 95th percentile amount in winter in

NAAD-WHR to 9m (Fig. 17c), being higher than in

NAAD-WLR by 0.2–0.5m in the central and eastern

subpolar North Atlantic (Fig. 17d). At the same time

the most distinctive differences between the NAAD-

WHR and NAAD-WLR experiments are identified

along the southeast Greenland coast where the ex-

treme SWH in NAAD-WHR is higher than that in

NAAD-WLR by more than 1m (up to 20% of mean

values). This likely reflects a more accurate repre-

sentation of katabatic winds and tip jets in this area in

NAAD-WHR.

6. Summary and outlook

We presented NAAD—a new 3D multidecadal at-

mospheric dataset for the North Atlantic produced

with a WRF nonhydrostatic model at mesoscale reso-

lution (NAAD HiRes). In parallel, a coarser-resolution

dataset (NAAD LoRes) was produced with a spatial

resolution close to ERA-Interim used in both experi-

ments as a lateral boundary condition.

Our evaluation demonstrates reasonably realistic re-

presentations of most climatological characteristics in

both NAAD HiRes and NAAD LoRes datasets. The

main differences are identified in the ice-covered sub-

arctic regions, especially for surface air temperature and

partly for surface humidity. At the same time, atmo-

spheric dynamics was quite adequately represented. The

major purpose of the NAAD at this stage was not to

provide extremely close comparability of NAADLoRes

with, for example, ERA-Interim. This is hardly achiev-

able because ERA-Interim (as well as the other rean-

alyses) is largely constrained by data assimilation. The

major NAAD focus was rather to develop a high-

resolution atmospheric dataset that allows a better

analysis of subsynoptic and mesoscale features—the

task still not resolved by global reanalyses over the

NorthAtlantic. In this respect, the objectives forNAAD

are similar to those posed for the other regional rean-

alyses (e.g., ASR; Bromwich et al. 2018). The NAAD

model configuration was quite close to the one used

in ASR, the lateral conditions are the same (ERA-

Interim) and the resolutions of the two products are

FIG. 14. Diagnostics of the polar low on 2Mar 2008. Shown is the surface 10-m wind speed (colors) andmean sea level pressure (MSLP;

contours) as revealed by (a) NAAD HiRes, (b) ERA-Interim, (c) ERA5, and (d) ASRv2. Also shown is sensible plus latent heat flux

(colors) and MSLP (contours) diagnosed by (e) NAAD HiRes, (f) ERA-Interim, (g) ERA5, and (h) ASRv2.
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similar. At the same time ASR (both ASRv1 and

ASRv2) used extensive data assimilation input that ex-

ceeds data assimilation in the global reanalysis (e.g.,

ERA-Interim). Our capabilities for the direct compari-

sons of NAAD with ASR were limited to the subpolar

latitudes. However, the analysis of kinetic energy spec-

tra and extreme winds and fluxes associated with polar

lows (Figs. 13 and 14) clearly demonstrated that the

differences between NAAD HiRes and ASRv2 are the

smallest relative to the other reanalyses, and this is re-

assuring. The comparative analysis of surface fluxes,

winds, and precipitation in the North Atlantic midlati-

tudes is not representative, as these regions are close to

the boundary of the ASR domain.

Extensive evaluation of ASR (e.g., Moore et al. 2015;

Bromwich et al. 2016; Tilinina et al. 2014) demonstrated

the added value of high-resolution nonhydrostatic model

settings in improving the representation of polar lows and

tip jets, as well as extratropical cyclones. In this respect,

our comparison of HiRes and LoRes simulations confirms

the conclusions drawn from the ASR evaluation. It also

clearly demonstrates the added value of high-resolution

and nonhydrostatic model settings in NAAD over the

whole North Atlantic. Specifically, NAAD HiRes pro-

vides the possibility to resolve mesoscale dynamics as-

sociated with high winds, first of all in the NorthAtlantic

subpolar latitudes characterized by small-scale polar

lows and tip jets. Here NAAD HiRes demonstrated

stronger extreme winds and their better localization

compared to the LoRes version and modern reanalyses.

Much higher resolution of the WRF Model in NAAD

HiRes provides a new view of the North Atlantic ex-

tratropical cyclone activity with 2 times as large a total

number of cyclones counted in NAADHiRes relative to

LoRes and most reanalyses. This difference was pri-

marily due to cyclones that are smaller in size and rel-

atively shallow, which were poorly simulated in the

LoRes experiment and in global reanalyses.

FIG. 15. Diagnostics of Hurricane Gaston in the moment of maximum development on 0000 UTC 31 Aug 2016, showing (a) the pre-

cipitation pattern diagnosed byGPMand theMSLP (contours), 10-mwind speed vectors (arrows), and precipitation (colors) as diagnosed

by (b) NAAD HiRes, (c) NAAD LoRes, (d) ERA-Interim, and (e) ERA5.
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Higher extreme turbulent fluxes in NAAD HiRes

and a better representation of the convective precipi-

tation over the Gulf Stream make NAAD potentially

useful for quantifying ocean–atmosphere interactions

at mesoscales and depicting ocean impacts on the

lower atmosphere and associated responses in the

dynamics of midlatitude storm tracks. NAAD is also

capable of capturing highly localized mechanisms of

atmospheric moisture transports such as ARs, more

accurately locating them, and quantifying their inten-

sity and impacts. In the tropics, NAAD HiRes also

effectively captures mesoscale features, including an

improved representation of tropical cyclones, espe-

cially in terms of central pressure, wind, and precipi-

tation. Applications of NAAD to ocean modeling

demonstrated the effect of HiRes onto the modeled

ocean state and eddy kinetic energy distribution,

specifically showing smaller surface temperature and

upper-ocean heat content consistently with observa-

tions. Being applied to wind-wave modeling, NAAD

HiRes resulted in higher simulated extreme wind waves

in the eastern subpolarNorthAtlantic, reflecting stronger

extremeness of surface winds.

Further near-time developments of the NAAD will

include the adaptation of ERA5 as a source for lateral

boundary conditions and changing to a finer spatial

resolution of at least ;3 km with a higher number of

vertical layers. This will also include at least for the

period after 2000 the use of high-resolution SST and

sea ice data, available from the Operational Sea

Surface Temperature and Sea Ice Analysis (OSTIA)

system (Roberts-Jones et al. 2012; Donlon et al. 2012)

as well as from Multisensor Analyzed Sea Ice Extent

(MASIE) AMSR2 (MASAM2; Fetterer et al. 2015).

Improved representation of sea ice will help to min-

imize biases in temperature and humidity in the

northern North Atlantic. Also planned is the domain

extension to the full coverage of the North Atlantic

tropics that will make it possible to provide accurate

diagnostics of tropical cyclone dynamics including

FIG. 16. (top) Domain-averaged simulated ocean SST in NAAD-OHR (orange) and

NAAD-OLR (magenta), along with ESASST (green). Time series of ESA SST are shown only

for the period of data availability (1993–2010). (bottom) Domain-averaged ocean heat content

for the 0–700-m layer (upper curves) and the 700–1500-m layer (lower curves) in NAAD-OHR

(orange) and NAAD-OLR (magenta). The inlay map shows the domain of the NNATL12

ocean general circulation model. Thick lines in the bottom panels show monthly means, and

dashed lines show annual means.
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the poleward shift in the trajectories (Studholme and

Gulev 2018; Sharmila and Walsh 2018). Finer spatial

and vertical resolution will also provide a better

representation of mesoscale features and will better

demonstrate the value added by nonhydrostatic model

configurations. For selected years (provisionally in the

2010s), we are also planning to develop ensemble

simulations (up to 10 members). In parallel, on a

midterm scale we will work on the transition of

NAAD to the North Atlantic regional reanalysis with

assimilating all available information over the do-

main that will make it possible to develop the product

for assessing the impact of mesoscale processes onto

longer-term climate variability in the atmosphere and

the ocean.
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