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Metabolomics is based on cutting-edge analytical methods that provide a “snapshot” of all the 10 

detectable metabolites, small molecules generally weighing under 1200 Da, present in complex 11 

biological samples. It presents a wide scope of applications and has allowed considerable progress to 12 

be made in health and disease research,1,2 pharmaceutical sciences,3–5 personalized medicine,6–10 13 

microbiome research,11,12 but also in food and nutrition,13–16 agriculture,17,18 marine environmental 14 

research19,20 or exposome research.21–23 Metabolomics can be undertaken through two different 15 

approaches. Untargeted methods aim at capturing a broad view of all the metabolites present in a 16 

biological sample, without any a priori, up to the limit of the accessible metabolites which depends on 17 

the detection limit of the applied analytical method, the physicochemical properties of the analytes, 18 

as well as the sample handling or preparation applied. An untargeted assay often aims to identify one 19 

or several new biomarkers of a particular phenotype, which can be for instance markers of interest of 20 

a specific disease, or markers of effect following an exposition to a physical or a chemical stress or a 21 

therapeutic treatment, and to elucidate their structures. It can also help to build a model capable to 22 

predict a specific condition, such as in foodomics. Once untargeted analyses have been performed and 23 

that effect biomarkers have been discovered, or if there are known exposure biomarkers of interest 24 

(e.g., xenobiotic such a specific drug or a chemical contaminant and their metabolites), a targeted 25 

approach will make it possible to perform a quantitative analysis of those compounds. In the case of 26 

biomarker discovery, quantitative insights through targeted analysis are often needed to validate that 27 

a metabolite is indeed a real biomarker. Halfway between untargeted and targeted approaches stands 28 

a slightly different strategy, where compounds from the same class of metabolites or a particular 29 

biochemical pathway (e.g., bile acids or amino acid metabolism) need to be broadly captured and if 30 

possible in a quantitative way but when the rest of the metabolome is not relevant to the research 31 

problem.  32 

Currently, the two main analytical techniques used to apply those approaches are nuclear 33 

magnetic resonance (NMR) spectroscopy, based most of the time on the detection of 1H or 13C nuclei, 34 

and mass spectrometry (MS), often coupled with separation techniques such as liquid or gas 35 

chromatography (LC or GC), capillary electrophoresis (CE), or ion mobility (IM). NMR spectroscopy is a 36 

noninvasive technique, as the sample can be recovered and used in a following experiment (providing 37 

that the sample preparation needed for NMR analysis such as D2O addition, does not interfere with 38 

the following experiment). In contrast, MS analysis, due to the nature of the technique, is destructive 39 

but, as only relatively small volumes are required (as low as few microliters of an often very diluted 40 

sample), this does not necessarily cause problems. NMR spectroscopy also presents the advantage of 41 

providing accurate quantitative results, making possible the quantitation of multiple analytes with a 42 

single internal or external reference.24 Furthermore, 1H NMR spectroscopy has the strong advantage 43 
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of being a robust and reproducible technique, both through time and between laboratories.25 44 

However, the main drawback of NMR spectroscopy is its relative lack of sensitivity, together with 45 

ubiquitous signal overlap in the 1H NMR spectrum of biological samples, which limits the identification 46 

of metabolites and the discovery of significant biomolecular changes and biomarkers. Recent progress 47 

has been made to overcome such limitations. The overlap issue has been solved by including the 48 

acquisition of 2D NMR data sets in metabolomics workflows to reduce signal overlap while providing 49 

crucial information to elucidate the structure of metabolites.26,27 While 2D NMR suffers from long 50 

acquisition times, numerous methodological developments made it possible to reduce acquisition 51 

times to a few minutes for biological samples, and the quantitative issues associated with 2D NMR 52 

have also been addressed through pulse sequence developments or calibration strategies.28–30 More 53 

recently, proof-of-concept developments have been addressing the sensitivity issues of NMR 54 

metabolomics, notably through hyperpolarization strategies such as dissolution dynamic nuclear 55 

polarization (d-DNP)31–33 or para-hydrogen induced polarization (PHIP).34,35 These techniques offer an 56 

unprecedented boost in NMR sensitivity by several orders of magnitude; however, they are very recent 57 

and not yet implemented in routine for metabolomics.  58 

MS-based techniques are the most widely implemented strategies for metabolomics purposes 59 

(Figure 1), especially UPLC-MS with electrospray ionization (ESI), thanks to the greater sensitivity that 60 

this technique offers. This fact has been reinforced in recent years thanks to the development of high-61 

resolution (HR)-MS techniques and the possibility to determine the accurate mass of a compound. 62 

However, these techniques are somewhat less robust than NMR ones, and although targeted assays 63 

are generally comparable between laboratories,36,37 untargeted methods require careful quality 64 

control (QC, biological pool sample) procedures to assess robustness and repeatability over time.38–41 65 

Also, the important sensitivity that MS and especially HRMS techniques offer comes with its drawback, 66 

such as ion suppression. However, using multiple ionization modes (positive and negative) for ESI and 67 

several chromatographic systems (reversedpPhase [RP] and hydrophilic interaction chromatography 68 

[HILIC]), as well as any other strategy enabling signals deconvolution such as IM,42 are clear advantages 69 

to increase metabolite coverage.  70 

Metabolomics greatly benefits from the tremendous progress made in both MS and NMR in the 71 

past couple of decades, in terms of sensitivity, resolution, and rapidity, but also from advances in 72 

statistical analysis and bioinformatics methods. However, most of these recent advances are costly, 73 

time-consuming, and require advanced technical skills, which makes them not easily accessible. 74 

Furthermore, none of the analytical methods existing today allow a full capture of the metabolome. 75 

This is due to multiple factors, such as sensitivity limitations, loss of metabolites during sample 76 

collection, handling, preparation, and analysis (e.g., nonretention/nonelution, ionization efficiency, 77 



4 
 

signal overlapping…). In consequence, the use of both routine NMR spectroscopy and MS-based 78 

techniques through an integrated platform is a sensible and powerful option to maximize metabolome 79 

coverage, facilitate metabolite identification and biomarkers discovery, and build more robust models 80 

through the use of multiple data set integrations.43,44  81 

The combined use of NMR and MS has been long exploited for the structural characterization of 82 

new metabolites of interest, especially in the natural products field.45 Analysis of 1D and 2D NMR 83 

spectra to extract chemical shift and coupling information, as well as direct infusion MS to obtain an 84 

exact m/z ratio and fragmentation patterns, help to identify and structurally define new metabolites 85 

following several steps of purification. In metabolomics, many published studies relied on only one of 86 

the two techniques, mainly for opportunistic reasons, i.e., researchers focusing on metabolomics 87 

studies were using the closest available technique in their laboratory or institute. Figure 1 shows that 88 

the proportion of MS versus NMR in metabolomics has been increasing over time, mainly for cost and 89 

sensitivity reasons. However, Figure 1 also sheds light on a still modest but substantial increase of the 90 

number of studies that make use of both techniques, suggesting that the combination of MS and NMR 91 

for metabolomics could be highly valuable. This review focuses on the description of such powerful 92 

combination, which can be done through various ways. NMR and MS can be combined at the hardware 93 

level through physical association of the two techniques. However, in most cases, it relies on 94 

integrating the respective data sets in a common chemometric software and multivariate statistical 95 

analysis pipeline. Such integration can be performed at different levels, through cross-comparison, 96 

correlation, or multiblock integration. In the review herein, we describe the principles of such 97 

combination, highlighting how it has provided a considerable paradigm shift in metabolomics in the 98 

past few years. The benefits of gathering these techniques in postmetabolomics workflow through 99 

more targeted approaches to improve metabolite identification, quantitative assays, and fluxomic 100 

analysis are also exposed, before discussing the perspectives of integrating several metabolomics and 101 

omics methods in general. Individual methodological advances made in NMR or MS metabolomics are 102 

excluded from the scope of this review, but they have been thoroughly reviewed recently46,47 and will 103 

certainly benefit to combined MS and NMR approaches. 104 
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 105 

Figure 1. (a) Results obtained by searching through pubmed.ncbi.nlm.nih.gov in [Title/Abstract], the following 106 

terms: “(nuclear magnetic resonance OR NMR) AND (metabolomics OR metabonomics OR metabolic profiling)”, 107 

shown in orange; “(mass spectrometry OR MS) AND (metabolomics OR metabonomics OR metabolic profiling)”, 108 

shown in blue; “(nuclear magnetic resonance OR NMR) AND (mass spectrometry OR MS) AND (metabolomics OR 109 

metabonomics OR metabolic profiling)”, shown in gray. Research was done on September 18, 2020. (b) 110 

Schematic representation of the advantages and the drawbacks of NMR and MS-based analytical methods and 111 

the benefits of combining them.  112 

NMR and MS Hardware Combination  113 

As stated above, the combination of several NMR (e.g., 1D/2D, 1H/13C) or MS platforms (e.g., 114 

LC/GC, ESI+/-, RP/HILIC) increases the metabolic coverage, and the combined use of both NMR and MS 115 

platforms can also help toward that same objective. Such a combination was initially applied in the 116 

natural products research field, in order to help with structural elucidation, through an off-line 117 

platform based on the comparison of NMR chemical shifts and coupling constants as well as HRMS to 118 

obtain exact m/z and fragmentation patterns. This hyphenation led to the development of online 119 

platforms including both NMR and MS hardware, often preceded by an LC system. This type of system 120 

found applications in drug metabolism research or drug discovery from natural products, especially to 121 

help with dereplication, consisting of identifying known natural compounds from active fractions to 122 

avoid spending time on compounds which had already previously been discovered.48 The hyphenated 123 

use of LC-MS-NMR was achieved thanks to postcolumn splitters, which send 10% of the outgoing flow 124 

from the LC column to the MS system and the remaining 90% to the NMR system.44 A commercial 125 

NMR-MS interface was also developed, composed of a splitter controlled by the operator and a double 126 

dilutor.44 The latter allows, on the one hand, the prevention of an extensive use of deuterated solvent 127 

as the sample is mixed in D2O just before entering the NMR system rather than before entering the LC 128 

system and, on the other hand, to dilute the sample in the appropriate solvent for ionization and MS 129 

detection.44  130 
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Three different ways exist to set up such a combined platform, namely, through a continuous-flow 131 

mode, a stop-flow mode or a storage mode (Figure 2).49 By using the dynamic continuous-flow mode, 132 

the sample already mixed with deuterated solvent is sent to the LC system before flowing separately 133 

and continuously in the MS and the NMR systems. One of the first examples of this continuous-flow 134 

mode was made by Shockcor and co-workers in 1996 to analyze a urine sample from an individual 135 

administrated with paracetamol, in order to identify with more confidence paracetamol metabolites 136 

and urinary endogenous compounds.50 Phenylacetylglutamine, not previously detected by 1H NMR 137 

spectroscopy alone due to spectral overlapping but usually detected by HPLC-MS and confirmed by 138 

the use of a standard, was well identified thanks to the good resolution obtained by this HPLC-NMR-139 

MS system.50 The NMR data set made it possible to clearly define which paracetamol-glucuronide 140 

isomer was observed, and this would not have been possible by the unique use of HPLC-MS or HPLC-141 

MS/MS alone without comparison to an internal standard. However, this technique is limited by the 142 

time-evolving LC gradient composition which induces a bias in the NMR measurement. Indeed, this 143 

leads to an evolution of the position of the solvent peaks which makes it difficult to maintain an 144 

efficient solvent signal suppression over time.49 Most importantly, the short residence time of nuclear 145 

spins in the NMR detection cell strongly limits signal averaging, which in turns impacts the resulting 146 

NMR signal-to-noise ratio (SNR). This issue can be addressed by using a static analysis such as the stop-147 

flow mode, during which a valve pauses the LC flow when a peak is detected or selected and that the 148 

corresponding analyte has reached the NMR detection cell. This approach provides enough time for 149 

the NMR measurement to be performed with a satisfactory SNR. However, stop-flow broadens the LC 150 

peaks thus limiting the chromatographic resolution. As a consequence, a storage mode has often been 151 

preferred, either performed through an online or off-line setup. For this mode, the different fractions 152 

coming out from the LC system can be collected and stored in a loop while the NMR analysis is running. 153 

The sample collection can also be done in a cartridge, most of the time a solid-phase extraction (SPE) 154 

cartridge, which receives 95% of the LC eluent (the other 5% being sent toward the MS system) and 155 

which efficiently retains and concentrates analytes before NMR characterization, preventing an 156 

extended use of deuterated solvent.51  157 
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 158 

Figure 2. Schematic setups of the different LC–NMR working modes with parallel mass spectrometer (MS) 159 

detection: (a) online/continuous-flow mode, (b) stop-flow mod,e and (c) loop/cartridge storage mode. Figure 160 

reproduced from ref. 49 under Creative Commons Attribution 4.0 International License 161 

(http://creativecommons.org/licenses/by/4.0/). 162 

LC-MS-SPE-NMR has been elegantly applied to help with the structural elucidation of urinary 163 

phenolic compounds in humans following tea consumption, once classical off-line LC-Orbitrap Fourier 164 

transform MS (LC-FTMS) and 1D 1H NMR analysis were performed separately to select features of 165 

interest for further characterization.52 This approach efficiently provides comprehensive structural 166 

confirmation of the fragmentation patterns of the selected feature, while simultaneously providing 167 

quantitative data based on the 1H NMR spectroscopy part of the system. This hyphenated system has 168 

found successful applications in natural product research, especially when it comes to structural 169 

elucidation or to differentiate isomeric or isobaric compounds.49 However, several drawbacks still limit 170 

its widespread use, such as the bulky and expensive equipment, associated with a limited sensitivity. 171 

The latter drawback has pushed toward the development of integrated microprobe technologies and 172 

capillary separation.49,53 Lin and co-workers reported an LC-MS-NMR platform with microscale 173 

instruments, namely, a nanoSplitter LC-MS and a microdroplet NMR, for increased sensitivity.54 The 174 

use of a highly sensitive instrument such as a nanoelectrospray MS, requested only 2% of the LC 175 

column eluent, driving away the rest to a UV-guided collection for concentration prior to be stored 176 

waiting for an off-line NMR analysis. This setup limited the use of deuterated solvent as it was added 177 

just before the NMR analysis, which can thus be done retrospectively once the LC-MS analysis have 178 

been performed. However, it reintroduced an additional step of sample handling prior to NMR 179 

http://creativecommons.org/licenses/by/4.0/
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analysis. And although the sensitivity was further optimized in this application by using a microcoil 180 

NMR probe,54 the robustness of such equipment is questionable,53 which is a major bottleneck to 181 

create high-quality databases aiming to accelerate structural characterization of low concentration 182 

analytes in complex matrices.55 183 

Beyond its ability to help with structural elucidation in natural product research and the efforts 184 

made to minimize sample handling and preparation while increasing its sensitivity, the hyphenated LC-185 

MS-NMR system did not receive the success expected by some in the past decade. The known 186 

limitations of such a platform, namely, the incompatibility of the solvents for MS and NMR or the 187 

extended use of expensive deuterated solvent, the low flow rate for efficient ionization and MS 188 

detection, and the long acquisition time requested for a sufficient NMR sensitivity,56 were not 189 

overcome. As such, it seems unlikely that such a system will be further encouraged by the 190 

metabolomics community, especially when promising computed-based combination solutions are 191 

being developed. 192 

NMR and MS Data Set Combination for Metabolomics Analysis 193 

Cross-Comparison of NMR and MS Data Sets to Increase Metabolic Coverage 194 

Although good convergence was found between different techniques in interlaboratory studies,57 195 

individual analytical techniques do not necessarily cover the same types of metabolites. The parallel 196 

use of NMR and MS methods can highly improve the quality of metabolomics studies in a variety of 197 

ways. The most obvious case where the combination of the two techniques can be beneficial is the 198 

increase of metabolic coverage.58 This was illustrated, for instance, in a study aiming to investigate the 199 

biomolecular processes behind the mycotoxins production of cereals infected by the plant pathogen 200 

Fusaium graminearum.59 In this work, NMR spectroscopy and LC-QTOF-MS (based on a reversed-phase 201 

stationary phase) analyses were performed to measure polar and semipolar compounds, respectively. 202 

In total, 15 amino acids or derivatives, 3 sugars and polyols, 4 tricarboxylic acid (TCA) organic acid 203 

derivatives and 4 nucleosides and nucleotides were identified or putatively annotated by NMR or 2D 204 

NMR, while 55 sesquiterpenes and 10 polyketides were highlighted by MS or MS/MS.59 None of the 205 

metabolites identified or annotated by one technique were claimed to be identified by the other. More 206 

studies with key numbers highlight the advantage of combining NMR and MS method to increase the 207 

metabolic coverage. Goulitquer et al. combined one 1H NMR, one GC-MS, and seven LC-MS data sets 208 

to explore the changes induced in the metabolome and the lipidome of human gastric cancer cells 209 

following treatment with anticancer drugs.60 The LC-MS data sets were acquired on three different 210 

instruments (UHPLC-LTQ-Orbitrap, UHPLC-Exactive, UPLC-HRMSe Q-TOF) and provided analyses in 211 

both positive and negative modes. Out of the 111 metabolites and lipids annotated, only 9 were 212 
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common to the LC-MS and the GC-MS data sets, 4 between the LC-MS and the NMR, 2 between the 213 

GC-MS and the NMR, and 6 were concordant between the three platforms. A recent study successfully 214 

attempted to capture the broadest picture of the human serum metabolome.61 To do so, five analytical 215 

platforms were used, namely, 1H NMR, GC-MS, LC-ESI-MS/MS, TLC/GC-FID-MS and DI-MS. Over 3500 216 

distinct metabolites were identified, and from those, only 29 were commonly identified by NMR and 217 

GC-MS, 13 by NMR and DI-MS, 14 between GC-MS and DFI-MS, 8 between the three analytical 218 

methods just cited, and 53 between DFI-MS and TLC/GC-FID-MS.61 It should be noted that the 219 

spectacular effort made through this study was complemented with an extensive literature research, 220 

called “bibliomic”, which found 665 other serum metabolites already reported in the literature but not 221 

detected by the five analytical platforms applied. Quantitative data were also reported for a portion 222 

of the over 4000 metabolites, showing acceptable agreement between the concentrations obtained 223 

from the different analytical methods but still with some exceptions.61 In a similar way, the combined 224 

use of NMR, FIA-MS/MS, GC-MS, and LC-HRMS was applied to explore the skeletal muscle 225 

metabolome,62 in order to assess their performance as well as different sample extraction protocols. 226 

Here again, only 2 metabolites were commonly detected by the four analytical methods, 2 metabolites 227 

common to LC-HRMS, GC-MS, and NMR, 3 common ones between FIA-MS, GC-MS, and NMR, and 4 228 

common ones between LC-HRMS, FIA-MS, and NMR (Figure 3).62 The GC-MS covered 7 unique 229 

metabolites, against 13 ones for the NMR, 26 for the FIA-MS and 58 for the LC-HRMS. Although these 230 

numbers suggest that GC-MS was the less efficient tool to study such samples,62 some of the 7 231 

metabolites detected by GC-MS could be of crucial importance to understand key metabolic pathway 232 

alterations or biomarker discovery. 233 

 234 
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Figure 3. Venn diagram representing specificity and overlap of metabolites reliably detected by each analytical 235 

method. Red, blue, green, and black circles represent metabolites analyzed respectively, by NMR, FIA-MS, GC-236 

MS, and LC-HRMS. Crossed zone represents overlaps between methods. Figure reprinted from J. Pharm. 237 

Biomed. Anal., Vol. 148, Bruno, C.; Patin, F.; Bocca, C.; Nadal-Desbarats, L.; Bonnier, F.; Reynier, P.; 238 

Emond, P.; Vourc’h, P.; Joseph-Delafont, K.; Corcia, P.; Andres, C. R.; Blasco, H. The Combination of 239 

Four Analytical Methods to Explore Skeletal Muscle Metabolomics: Better Coverage of Metabolic 240 

Pathways or a Marketing Argument?, p 273-279 (ref 62). Copyright 2018, with permission from Elsevier. 241 

Several examples have shown how increasing the metabolic coverage with a second metabolomics 242 

approach can help gaining a deeper understanding of a biological process. For instance, Allwood et al. 243 

used this strategy to understand fragrance and maturity development in five melon cultivars,63 mainly 244 

depending on volatile organic compounds (VOCs). As it is often the case to measure VOCs, GC-MS was 245 

used, with thermal desorption. Optimization of the sampling method based on the use of a 246 

polydimethylsiloxane membrane allowed the detection of 58 VOCs.63 Principal component analysis 247 

(PCA), heatmap, and relative changes highlighted clear differences between five melon cultivars, which 248 

were further supplemented with quantitative measures of amino-acids, known precursors of certain 249 

VOCs, by 1H NMR spectroscopy. Reverse correlations between amino acids concentrations and VOCs 250 

levels were observed, clearly showing that consumption of amino acids to produce VOCs directly 251 

influence melon fragrance and maturity.  252 

 Still, contradictory results are sometimes encountered when both techniques are applied to the 253 

same matrix. For instance, different concentrations can be measured in the NMR and the MS data set, 254 

or a compound can be detected by one technique and not by the other, which is actually the reason 255 

why using both in combination increases the metabolic coverage. A typical example of this problematic 256 

has been reported by Atherton et al. in 2006,64 where metabolic profiling of several tissues from 257 

control or peroxisome proliferator-activated receptor-alpha (PPAR-alpha) null mice were explored by 258 

using 1H NMR spectroscopy, high-resolution magic angle spinning (HR-MAS) 1H NMR spectroscopy, GC-259 

MS, and LC-MS. In this study, significant changes were observed in the cardiac metabolic profile of the 260 

control vs muted mice by 1H NMR, HR-MAS 1H NMR, and GC-MS, but the order of magnitude of these 261 

changes were different from one method to the other. Indeed, as 1H NMR spectroscopy has limited 262 

sensitivity, only the most concentrated compounds appeared significantly different in the PCA model, 263 

while the number of metabolites significantly impacting the GC-MS partial least-square discriminant 264 

analysis (PLS-DA) model were 5 times more numerous.64 This was explained by the fact that 265 

metabolites with hydroxyl and amine functional groups were easily detected by GC-MS, even though 266 

they might not be the most concentrated metabolites. This constitutes a perfect representation of how 267 

difficult it is to catch, within a complex biological sample, metabolites present in a broad variety of 268 

concentration, polarity, and mass range.64 On a side note, in order to increase the number of 269 

metabolites detected by both NMR and MS techniques, an elegant approach is to use a smart isotope 270 
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tag, such as 15N-cholamine, which present the advantage of being a sensitive isotope for NMR and of 271 

having a permanent charge for MS efficient detection.65 Chemical derivatization with this smart tag 272 

allows the simultaneous detection of carboxylic acid derivatives without ambiguity. However, this 273 

approach is restricted to metabolites containing a carboxyl group and thus covers a limited part of the 274 

metabolome.  275 

Correlation of NMR and MS Data Sets 276 

Rather than taking into consideration the different variables within a sample, correlation analysis 277 

is based on taking into consideration the intensities of the same variable across different samples.66 278 

The first correlation tools that appeared in metabolomics focused on the 2D correlation of vibrational 279 

spectroscopic data, such as IR or Raman.67 Numerous statistical tools for spectroscopic correlation 280 

arose from it but mainly for the interpretation of NMR data sets.68 One of the most common tools is 281 

based on statistical total correlation spectroscopy (STOCSY), which correlates signals showing similar 282 

variations across samples within 1D 1H NMR spectra, in order to better extract individual metabolite 283 

spectral patterns and facilitate the identification of biomarkers.69 It was further adapted to several 284 

other statistical tools,68 such as Het-STOCSY, to correlate heteronuclear NMR signals, STOCSY-editing, 285 

which aimed to correlate only the endogenous compounds without taking into consideration the 286 

exogenous ones, or also statistical heterospectroscopy (SHY), which aimed to correlate signals from 1H 287 

NMR with LC-MS ones. Through this tool, the intrinsic covariance of the NMR chemical shifts and the 288 

m/z signal intensities of the same features is analyzed to help biomarker discovery and achieve a 289 

deeper understanding of the biological alterations due to a specific drug treatment or disease. The 290 

efficiency of the SHY method was illustrated through a proof-of-concept study measuring the effect of 291 

hydrazine treatment in rat urine samples.70 Prior to the correlation, the data sets need to be formatted. 292 

As such, a cubic spline was used to smooth the NMR spectra, and MS spectra were binned to produce 293 

2D histograms which were further summed by a specific retention time window to create pseudo 294 

direct infusion spectra and prevent the loss of the LC-MS signals eluting closely to the chromatographic 295 

dead volume.70 Subsequent normalization was required to take into consideration the different 296 

dilution factors of the urinary metabolites. Correlation coefficients were calculated by using a Pearson 297 

correlation and visualized according to a specified cutoff.70 This powerful tool was then applied to 298 

human urine samples within an epidemiological study where the studied population was not 299 

controlled or selected.71 Even so, the use of therapeutic treatment was easily detected in the samples, 300 

and the additional use of MSE (the combined used of low and high collision energy to simultaneously 301 

detect the precursor and the fragments m/z) data allowed the annotation of unreported drug 302 

metabolites (Figure 4). Together with the detection of more common endogenous metabolites, it 303 
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showed that SHY is a useful statistical tool to explore the xenometabolome and its effect on metabolic 304 

phenotypes.71   305 

 306 

Figure 4. SHY plots: (a) Correlation (cutoff 0.7) of a hippurate NMR signal (doublet at 3.97 ppm) with the hippurate 307 

parent ion (m/z 180, neutral molecule shown as inset a) and a fragment due to cleavage of glycine in-source (m/z 308 

105). Also shown are correlations due to creatine (singlet at 3.93 ppm, m/z 132, neutral molecule shown as inset 309 

b) and acetaminophen-related signals (doublet at 3.89 ppm, multiplet at 3.62 ppm, m/z 152). The inset NMR 310 

spectra are the mean spectrum and the spectrum for the sample with the highest concentration of 311 

acetaminophen. The inset MS spectrum is the mean. (b) Correlation (cutoff 0.7) between aromatic NMR signals 312 

for acetaminophen and ibuprofen metabolites and various nominal m/z values. Those for acetaminophen can be 313 

immediately identified as belonging to the unmodified drug (m/z 152), its cysteinyl conjugate (m/z 271), and its 314 

acetylcysteinyl conjugate (m/z 313, neutral molecule shown as inset). Those for ibuprofen require investigation 315 

of the MSE spectra. The inset NMR spectra are for those samples having the highest respective NMR intensities, 316 

and the inset mass spectrum is the sum of the corresponding mass spectra. Some trace of previous 317 

acetaminophen usage is present in the NMR spectrum illustrating ibuprofen. (c) Correlation (cutoff 0.8) between 318 

some aliphatic NMR signals for ibuprofen metabolites and m/z values in a higher range than given in Figure 1b. 319 

The inset spectrum is for the sample having the highest ibuprofen intensity. Correlations due to the first 13C 320 

isotope can be distinguished for the strong signal at m/z 421. (d) Correlation (cutoff 0.8) of disopyramide-related 321 

NMR signals with m/z values for disopyramide (m/z 340) and its known metabolite N-dealkyldisopyramide (m/z 322 

298). The first 13C isotope correlations are visible. The inset NMR spectra are for a disopyramide standard (top) 323 

and for the urine sample giving the highest relevant signal intensities (bottom). The inset mass spectrum is for 324 

the same urine sample. It is clear that the urine NMR signals do not match the NMR signals for the disopyramide 325 
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standard (although in UPLC-MS an exact match to the standard was obtained). The NMR signals must therefore 326 

be due to an unidentified disopyramide metabolite, a covarying endogenous metabolite, or an additional 327 

(unknown) drug that was being taken by the single subject who was taking disopyramide. Figure reproduced 328 

from Crockford, D. J.; Maher, A. D.; Ahmadi, K. R.; Barrett, A.; Plumb, R. S.; Wilson, I. D.; Nicholson, J. K. 329 

Anal. Chem. 2008, 80 (18), 6835–6844 (ref 71). Copyright 2008 American Chemical Society. 330 

SHY also found applications in other fields than toxicology, as illustrated by Marti et al., who used 331 

this statistical tool to assess the authenticity and geographical metabolic differences of cold-pressed 332 

lemon oil.72 In this study, the NMR/MS correlation complemented by the use of geranial and neral 333 

isomer standards, helped to determine the presence of both isomers but showed that the geranial one 334 

was present in the samples at a higher concentration.72 SHY was also used in the natural product field 335 

to identify bioactive compounds while avoiding a time-consuming isolation process.73 To do so, 336 

microfractionation of samples prior to LC-MS (positive and negative ionization mode) and NMR 337 

analyses were performed, as well as bioactivity assays. The selection of active NMR compounds, often 338 

made difficult by the important overlap with inactive compounds was facilitated by the correlation 339 

with LC-MS signals, making SHY a powerful tool for the deconvolution of natural products.73 340 

Correlation analyses between NMR and MS data sets can also be used to confirm the annotations of 341 

the discriminative features previously identified by PCA applied to one of the methods, as it was done 342 

to study biological processes underlying the urine samples of patients with inborn errors of 343 

metabolism.74 In this particular example, unsupervised PCA analysis was first performed on a NMR 344 

data set and the features that significantly impacted the distribution of the samples were annotated. 345 

Second, NMR spectra and MS spectra, from a DESI-MS data set, were bucketed into the same number 346 

of bins (594) to obtain a square matrix that was subjected to a Pearson correlation.74 With this 347 

approach, a common list of discriminant features can be annotated with more confidence when a MS 348 

feature is positively correlated to an NMR annotation. Furthermore, it can also help to gain a better 349 

understanding of the biochemical reactions lying behind a specific condition, as a negative correlation 350 

can be explained by the consumption of the precursor compound and the production of another 351 

compound.74 However, since the metabolic coverage of two analytical methods is different, it makes 352 

sense to assume that a list of common features between the NMR and the DESI-MS data sets will 353 

capture only a restricted portion of the urinary metabolome and that important biomarkers could be 354 

missed. Still, statistical analysis based on correlation coefficients can be easily implemented while 355 

allowing a straightforward interpretation of the results.  356 

Although SHY seems to be the most widely correlation tool used in metabolomics to correlate 357 

NMR and MS data sets, another statistical correlation tool based on networks was also reported. In a 358 

first example, correlation networks were used to visualize the relationships between melon fruit 359 

analytes that were identified and for some quantified by various analytical techniques (namely 1H NMR 360 
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spectroscopy and GC-MS analyses of polar compounds, HPLC analysis of lipophilic isoprenoids, 361 

untargeted LC-MS analysis of semipolar compounds, untargeted GC-MS analysis of volatile compounds 362 

and elemental profiling for mineral elements).75 This extensive metabolic profiling allowed the 363 

identification or annotation of about 1932 features and 15 mineral elements. Within these features, 364 

only a small proportion were detected by several analytical methods, which proves the essential need 365 

of using several complementary analytical techniques to increase metabolic coverage. Following 366 

feature selection based on a two-way ANOVA, Spearman correlation coefficients were calculated and 367 

a cutoff (> 0.90) was applied, which set the number of features or mineral elements in the correlation 368 

network at 715.75 A network cartography was then created based on the Fruchterman-Reingold 369 

algorithm, where analytes were represented by the nodes and the Spearman correlation coefficients 370 

by the distance of the link between the nodes. This correlation network analysis made it possible to 371 

identify clusters of metabolites which were coregulated, to establish global changes in metabolic 372 

composition, and to highlight the association between primary and secondary metabolites with 373 

minerals or volatile compounds.75 This approach was not developed to help with structural elucidation 374 

but rather to obtain a broader picture of the biological process and better understand metabolic 375 

interactions. It also applies to other kind of biological interactions; indeed, correlation networks were 376 

used to explore gene-metabolite association in tomato fruit, for instance.76 377 

Multiblock Fusion 378 

The use of multiblock data integration, or data fusion, has been increasing in omics sciences for a 379 

couple of decades and this approach can be applied at different levels.66 Low-level data fusion consists 380 

of combining the preprocessed individual blocks at the data level without performing any variable 381 

selection prior to modeling the resulting block and in interpreting the global outcome. Although this is 382 

a straightforward way to approach data integration, careful consideration must be taken regarding 383 

scaling and normalizing the individual data sets. Indeed, because of the sensitivity and robustness 384 

differences existing between analytical methods (e.g., NMR or HRMS), the analytical response for a 385 

single compound will vary from one data set to another. Data set manipulation to overcome this 386 

obstacle can give too much weight to similar variables (e.g., isotopes and fragments from the same 387 

metabolite or metabolites from the same pathway), as it is the case when the individual data sets are 388 

autoscaled. Scaling can thus also be performed by considering sub-blocks of similar variables, which 389 

weight the influence of sub-blocks according to their size. Either way, low-level data fusion has been 390 

described as an approach which provides only limited useful information in metabolomics.66 391 

Furthermore, because the totality of each individual data set is being integrated as is, the size of the 392 

resulting data matrices before modeling is considerable. As such, mid-level data fusion considers only 393 

the most discriminant features highlighted by block-wise statistical analyses of the individual blocks, 394 
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which can be complemented by applying an additional technique to further reduce the dimensionality 395 

of the integrated matrix.66 Also, assessing separately each data set through mid-level data fusion 396 

highlighted metabolites detected by several methods, which could be over-represented in the global 397 

model and which may introduce bias in biomarker discovery. Finally, data fusion can also be applied 398 

through a high-level approach, where individual blocks are preprocessed and modeled separately, as 399 

for a mid-level approach, but where the global output (e.g., the predictive algorithms) of each of the 400 

individual model is integrated, rather than their discriminant features.66 It is important to mention that 401 

statistical model validation is crucial in metabolomics in order to properly assess the performance of 402 

the model without overfitting it,77,78 but although several validation tools exist, no common agreement 403 

has been found regarding which one is the most suitable.79–81 The predictive power of the combined 404 

output obtained following a high-level approach is highly expected to be equal or higher than the 405 

predictive power of the best performing individual model, and thus the error rate is also expected to 406 

be reduced.82 However, the predictive performance of the global output will increase more 407 

importantly if the classifiers used present similar discriminative performance, which is often the case 408 

in metabolomics.82 In such cases, integration of the individual output through correlation networks, as 409 

presented in the Correlation of NMR and MS Data Sets section, might be a solution to jointly interpret 410 

individual results while preserving the predictive performance of the individual analysis.66 In a way, 411 

correlation networks can be considered as a high-level data fusion approach but from which the 412 

biological interpretation can often be complicated by an extensive visualization output.  413 

Following the selection of the data integration approach, several modeling techniques are 414 

available and can be applied for individual data set analysis (for mid- or high-level approaches, before 415 

data fusion of the selected features or the individual global outputs, respectively) or by global analysis 416 

(for low- or mid-level approaches once data fusion has been made).66 The resulting models naturally 417 

highlight possible association between variables from different data sets to improve biological 418 

interpretation but also serve to assess the contribution of each individual data set to the global model. 419 

Sequential multiblock analysis, as unsupervised single block multivariate statistical analysis, aims to 420 

describe the general trend of the matrix and is based on the calculation of one single component at a 421 

time followed by a deflation procedure to calculate the next one. Several sequential multiblock 422 

methods exist, from the simplest which are SUM-PCA or consensus PCA (CPCA) to more complex such 423 

as hierarchical PCA (HPCA), generalized PCA (GPCA), multivariate component models or multiple factor 424 

analysis.66,83 Similarly, several modeling tools exist to apply predictive supervised analysis, such as PLS 425 

regression or discriminant analysis, orthogonal-PLS (O-PLS or O2-PLS), hierarchical PLS (HPLS) or 426 

multiblock PLS (MBPLS).66,84 Those statistical methods allow the combination of data sets from 427 

different analytical methods, whatever the size of the different blocks. In metabolomics, however, 428 
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even though the numbers of variables can change from one NMR to one MS block for instance, it is 429 

preferred to have the same number of objects (or samples) for all blocks. The following paragraphs 430 

illustrate how such data fusion and data modeling approaches have maximized the potential of 431 

combining NMR and MS data in metabolomics.  432 

In a first example, HPCA was applied to the study of three melon cultivars by 1H NMR spectroscopy 433 

and by GC-MS, but not only to fuse both data sets.85 Indeed, in this example, classical PCA on 1H NMR 434 

managed to discriminate the samples coming from different spatial positions in the melon fruit, but it 435 

failed when the PCA was based on the GC-MS data set. As such, the authors assigned each of the three 436 

melon cultivars as an individual block and applied HPCA on them, which successfully highlighted 437 

metabolic differences linked to the spatial positions of the samples.85 Furthermore, a HPCA model was 438 

also built on the combination of both analytical techniques and showed the robustness of this 439 

statistical tool as the compounds detected by both NMR and GC-MS were located at similar positions 440 

of the loading plots.85 In another plant study exploring tomato fruits and leaves,86 the integration of 1H 441 

NMR, LC-MS, and GC-MS data was directly done through a low-data level fusion approach, regardless 442 

of their individual performance but further association was made with correlation networks to 443 

facilitate the interpretation of the biological pathway regulations.  444 

In a second example, 1H NMR spectroscopy and two HRMS instruments (TOF and Orbitrap) were 445 

used to analyze honey samples from different botanical origins.87 PCA and PLS-DA were applied on 446 

each of the individual data sets, before PCA modeling based on mid-level data fusion was performed 447 

from two different angles. The first one was based on the fusion of the PCA scores of each of the data 448 

sets, to prevent any loss of information, and the second one was based on the fusion of selected 449 

variables from the individual PLS-DA models, to remove any irrelevant information. Both data fusion 450 

approaches performed better than the individual models in term of discriminative power and sample 451 

misclassification.87 The mid-level data fusion between NMR and HRMS-Orbitrap with variable 452 

selections had the best discrimination of all the models reported, without misclassification, while the 453 

mid-level data fusion between NMR and HRMS-Orbitrap without variable selections led to 454 

misclassification. The fusion of NMR with HRMS-TOF data with our without variable selection did not 455 

misclassify the samples but underperformed the discrimination of the samples with variable selection 456 

compared to the fusion of the NMR and HRMS-Orbitrap data sets.87  457 

Another study focused on the metabolic profiles of plasma samples from patients with stable 458 

carotid atherosclerosis versus healthy subjects using GC-MS and 1H NMR spectroscopy.88 The individual 459 

PCA models showed good separation of the samples but only along the third principal component, 460 

which proved the presence of discriminative variables irrelevant to the pathology characterization. As 461 
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in single block multivariate analyses, PLS, or orthogonal signal correction (OSC), also called OPLS, 462 

provided a better sample separation since the sample classification is included in the model. 463 

Supervised analyses were thus performed, and the PLS-DA and OPLS-DA models of both individual data 464 

sets did present a higher discriminative power compared to PCA models. Low-level data fusion was 465 

then performed, and the supervised analysis of the resulting data set performed as well as the 466 

individual supervised models.88 Here, the application of the combined NMR and MS supervised analysis 467 

could thus be questioned, but a Pearson correlation between the metabolites scores obtained from 468 

the predictive component of the combined OPLS-DA model allowed a broader understanding of the 469 

metabolic pathway alteration than if only one technique would have been used for statistical analyses.  470 

Even if supervised methods often enable a better separation than unsupervised analyses, they can 471 

sometimes fail, and combining several analytical technologies might enhance the discriminative 472 

performance of a model and help to highlight specific biomarkers. For instance, Gu et al. used 1H NMR 473 

spectroscopy and direct analysis in real time (DART)-MS to discriminate serum samples from patients 474 

with breast cancer from healthy controls.89 No distinct separation between the samples were observed 475 

in the PCA models of each of the analytical data sets, although a slight grouping along the first principal 476 

component was observed for the 1H NMR PCA model. Furthermore, both PLS-DA and OSC-PLS-DA 477 

models based on each of the individual data sets did misclassify an important number of samples, 478 

which was clearly beyond the acceptance rate when it comes to health applications.89 As such, PLS-DA 479 

and OSC-PLS-DA models were rebuilt by setting the Y dummy matrix, the classification variable to the 480 

first principal component of the 1H NMR PCA model, which performed slightly better than the DART-481 

MS PCA model, and the X matrix to the DART-MS data set, which was more sensitive. These models 482 

both performed better than the individual supervised models, with a major preference for the OSC-483 

PLS-DA which resulted in a lowest misclassification score due to the removal of confounding factors 484 

following the orthogonal signal correction.89 Another study, which aimed to differentiate the 485 

extraction protocols of cold-pressed lemon oil, supervised modeling analyses, namely, MB-PLS-DA and 486 

consensus (C)-OPLS-DA, elegantly showed the benefits of using orthogonal projection to improve the 487 

separation between samples.90 In this illustration, a low-data level fusion of untargeted data sets 488 

obtained by 1H NMR, GC-FID and LC-MS in positive and negative ionization modes was used (Figure 489 

5).90 The supervised analyses then showed a much better separation, and thus interpretability when 490 

it came to the C-OPLS-DA compared to the MB-PLS-DA, although their predictive performance was 491 

similar. It is important to note that even if the data matrix resulting from the fusion of these four data 492 

sets was extensive, high-level data fusion successfully discriminated the same samples according to 493 

their geographical origins in another study,91 but not according to their extraction processes. 494 

Therefore, low-level data fusion can be a useful alternative when other modelling tools failed, at the 495 
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condition to take particular care for the scaling of the different datasets. As illustrated in another study 496 

applying low-level data fusion, both of the 1H NMR and direct infusion (DI)-ESI-MS data sets were 497 

scaled first to unit variance and second by the square root of the block variable count, in order to 498 

ensure fairness in the consideration of each block.92 Other key elements were to note in this report, as 499 

a thorough optimization of the sample preparation in order to prevent important sample handling. 500 

This allowed the analysis of one single sample by both 1H NMR and DI-ESI-MS, and optimization of the 501 

DI-ESI-MS protocol was undertaken to limit the matrix effect.92 Also, the backscaled 1H NMR and DI-502 

ESI-MS loading plots obtained from the MB-PLSDA, which outperformed the single block PLS, were 503 

complemented by additional MS accurate mass and MS/MS experiments to compare with the NMR 504 

signals and facilitate metabolite identification.92 Overall, this study provides a complete illustration of 505 

how to combine NMR and MS data sets from sample preparation, data set acquisition, multivariate 506 

analyses and metabolite identification.  507 

 508 

Figure 5. Methodology used to integrate metabolomic data from multiple analytical platforms for a 509 

comprehensive characterization of lemon essential oils. Figure reproduced from Integrating 510 

Metabolomic Data from Multiple Analytical Platforms for a Comprehensive Characterization of Lemon 511 

Essential Oils, Mehl, F.; Marti, G.; Merle, P.; Delort, E.; Baroux, L.; Sommer, H.; Wolfender, J.-L.; Rudaz, 512 

S.; Boccard, J. Flavor Fragr., Vol. 30, Issue 2 (ref 90). Copyright 2015 Wiley.  513 

 514 
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Multiblock data fusion is thus starting to be anchored in the metabolomics landscape, and some 515 

attempts are made to refine and bring some originality into those methods and to increase their 516 

application scope. For instance, C-PLS-DA and C-O-PLS-DA have been applied to integrate MS with two 517 

NMR data sets, one 1H data set and one 2D J-resolved (J-res) NMR.93 Also, data fusion can be based on 518 

multiple kernel learning (MKL). This approach was applied to explore plasma metabolic alterations in 519 

three different chronic diseases for example, namely, acute coronary syndrome, breast and colon 520 

cancers.94 Serum samples were analyzed by NMR and LC-MS, and the resulting data sets were fused 521 

with the metadata of the patients, which aimed to represent their lifestyle. The MKL fusion model 522 

increased the performance of the individual models when it came to the acute coronary syndrome, 523 

but slightly underperformed compared to the individual NMR model for the breast cancer condition, 524 

and none of the individual or fusion model performed well regarding the colon cancer conditions.94 525 

This could be due to the increase presence of confounding variables in the matrix, which complicated 526 

the selection of discriminative variables. Several methods were actually developed to optimize variable 527 

selection. Deng and co-workers proposed one based on backward variable elimination from PLS-DA 528 

models and combined with Monte Carlo cross validation (MCCV-BVE-PLSDA).95 This method could be 529 

considered as half way between low-level and mid-level data-fusion, as all the variables were 530 

considered during the first iteration and since only the most predictive variables were kept during the 531 

last iteration. A similar approach had been already proposed, called a Sparse multiblock PLS regression 532 

(Sparse MBPLSR), implemented with a cross model validation in order to ensure the reliable and stable 533 

variable selection for biomarker discovery.96 In a more recent report, the variable selection before 534 

obtaining the final PLS-DA model was made in three steps. First, a curation step was applied to remove 535 

all the redundant variables. Second, PCA and PLS-DA were performed and the resulting variables were 536 

further filtered by performing different kind of statistical analyses, namely one-way ANOVA Sparse 537 

PLS, or least absolute shrinkage and selection operator (LASSO). Third, PLS-DA was performed on each 538 

of the resulting new subset of selected variables.97 All the PLS-DA following variable selection 539 

performed better than the PLS-DA before variable selection and the models which had the best 540 

performance were the one based on the variables selected by the Sparse PLS and the LASSO 541 

techniques.97 Further matrix reduction can be performed but it depends on operator willingness to 542 

discard information without affecting biomarker discovery or biological pathway understanding. In any 543 

case, although a 2014 review mentioned that the multiblock fusion of NMR and MS techniques 544 

followed by supervised analyses was not common in metabolomics studies,66 we hope to have shown 545 

that since it has gained great interest as it maximizes the complementarity between both analytical 546 

techniques. Although multiblock analyses do not always end up giving better results than single block 547 

analysis and that it is important to keep a critical eye on the usefulness of this hyphenation, it has 548 

already found various application fields. 549 
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Postmetabolomics Analysis: Reaching the Aim and Going Beyond 550 

Identification 551 

While increasing the metabolic coverage is of the utmost importance in metabolomics, it might be 552 

even more crucial to identify the metabolites covered. Indeed, metabolite identification is clearly seen 553 

as a major bottleneck in the field of metabolomics, especially in MS-based techniques. Thanks to the 554 

robustness of 1H NMR spectroscopic analysis, NMR databases are easier to produce and more 555 

trustworthy than MS databases. Generally, signals are compared and matched to experimental or 556 

theoretical spectra registered in in-house or online databases. If a compound of interest cannot be 557 

identified, it is an unknown compound annotated at a level 4 of confidence, the lowest according to 558 

the criteria used by the Metabolomics Standards Initiative (MSI).98,99 If the chemical class of the 559 

compound can be determined, the annotation level is 3. If a compound can be determined by 560 

comparison to a database, it is a level 2 of annotation. Finally, if the compound matches with at least 561 

two orthogonal parameters (e.g., the m/z and the retention time) compared to an authentic standard 562 

which has been spiked into a sample, then the level of confidence is 1 and the term “identification” 563 

can be used (although care still needs to be taken in the case of isomeric compounds, but 564 

stereochemistry should soon be taken into consideration through a new and revised reporting 565 

standards which are being discussed in the community with the Metabolite Identification Task group 566 

of the Metabolomics Society leading on this initiative  [Personal communication, Prof. Warwick Dunn, 567 

cochair Metabolite Identification task group]), in contrast to the term “annotation” for levels 2, 3, and 568 

4.99 Also sometimes, subconfidence groups in the level 2 annotation emerge, 2b being given if the 569 

annotation to a specific metabolite is based on one orthogonal parameter (e.g., m/z or δ values 570 

matching to database) and 2a if the annotation is based on two orthogonal parameters (e.g., m/z 571 

values and retention time or m/z and δ values matching to databases) without spiking the 572 

corresponding authentic standard. Hence, annotating a compound by using both NMR and MS 573 

analytical techniques provides more confidence in the annotation level and facilitates structural 574 

elucidation of unknowns.  575 

Identification of unknowns is particularly difficult in plant metabolomics due to the lack of chemical 576 

standards to confirm the identification of a new metabolite. Initial strategies developed were thus 577 

based on accurate mass measurements by HRMS, allowing to obtain chemical formula and matching 578 

them to possible chemical structures available in databases, before comparing their fragmentation 579 

pattern.100 Successful candidates were confirmed following purification and NMR analysis for 580 

structural characterization. This method could be limited by the fact that the lack of sensitivity of NMR 581 

measurements could restrict the annotation of new metabolites or biomarkers. The use of capillary 582 
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NMR to overcome this limitation was seen as an alternative,101 but the process was not less time-583 

consuming and labor-intensive. More recent strategies have thus been proposed to increase the 584 

identification of unknowns by relying on the complementarity between NMR and MS. The one that 585 

attracted the most attention in metabolomics is the so-called SUMMIT, for Structures of Unknown 586 

Metabolomics Mixture components by MS/NMR.102 Its principle relies on HRMS measurements of the 587 

accurate masses of the different analytes present within a complex sample in order to determine their 588 

molecular formulas. From those, all the possible scaffolds which can correspond to these formulas are 589 

predicted, and the list can be extensive. A 1D or 2D NMR spectra is then predicted for each of the 590 

predicted scaffolds. These predicted NMR spectra are then compared to experimental HSQC NMR 591 

spectra, previously deconvoluted into 13C-1H HSQC chemical shifts of each metabolite by combining 592 

information from 2D NMR experiments. The possible scaffold hits are finally ranked according the level 593 

of concordance between the predicted and the experimental spectra.102 This method was initially 594 

developed to prevent time-demanding steps such as sample separation/purification or interrogating 595 

metabolic databases and was successfully applied to the identification of previously known compound 596 

from E. coli as a proof of principle.102 However, subsequent publications showed that the approach 597 

could be further improved by the interrogation of databases, making the method more general and 598 

efficient.103,104 In the future, using the SUMMIT strategy could also help guiding retrospectively to a 599 

specific MS platform ad hoc or encourage the use of multiple MS platform to increase the chance to 600 

detect metabolites by both MS and NMR. Recently after the introduction of SUMMIT MS/NMR, 601 

another strategy called NMR/MS Translator was proposed by the same group, as a tool which could 602 

be used prior to SUMMIT MS/NMR.105 Following the 1D or 2D NMR spectral acquisition, NMR/MS 603 

Translator questions NMR databases and from the obtained hits, it calculates isotopes, adducts, and 604 

fragments. From those, MS spectra are reconstructed and compared to the upstream acquired MS1 605 

experimental spectra.105 Interrogating databases is limited by the fact that the hits will depends on 606 

how well a database is furnished, and yet there have always been a lot of disparities from one database 607 

to another.58 Therefore, authors highlighted that the eye confirmation of the resulting annotations by 608 

an operator should always be applied to prevent false identification, as reported with NMR/MS 609 

Translator for 11 urinary metabolites. However once known metabolites are identified, unknown 610 

metabolites are easily distinguished and SUMMIT MS/NMR can come to help (Figure 6),103 for which 611 

automation efforts have been pursued.104 While these approaches are very elegant, they imply that 612 

metabolites need to be detected by both NMR and MS measurements. However, as already explained 613 

in Cross-Comparison of NMR and MS Data Sets to Increase Metabolic Coverage the metabolic coverage 614 

between NMR and MS measurements is limited by different parameters such as the low sensitivity of 615 

NMR or for MS techniques the ionization efficiency, the choice of the chromatographic phase, and the 616 

ionization mode. Therefore, methods such as SUMMIT or NMR/MS translator are restricted to 617 
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compounds that can be detected by both the NMR and MS techniques. As such, physical or chemical 618 

derivatization103 prior to analysis might give access to an increased number of unknowns that would 619 

not have been commonly detected by NMR and MS otherwise. Although the associated sample 620 

handling could be more time-demanding, it would lead to promising perspectives to uncover more 621 

unknown metabolites.  622 

 623 

Figure 6. Integrated metabolomics workflow for the identification of known and unknown metabolites in 624 

complex mixtures. Combined use of metabolomics databases with experimental NMR and MS spectra (e.g., 625 

NMR/MS Translator105) allows the rapid identification of a maximal number of known metabolites present in the 626 

mixture, while unidentified signals are used as fingerprints of unknowns. Next, structures of unknown 627 

metabolites can be elucidated or vastly narrowed down by the combined use of multidimensional NMR, MS, 628 

cheminformatics, and computation (e.g., SUMMIT MS/NMR102). Figure reprinted from Curr. Opin. Biotechnol., 629 

Vol. 43, Bingol, K.; Brüschweiler, R. Knowns and Unknowns in Metabolomics Identified by 630 

Multidimensional NMR and Hybrid MS/NMR Methods, p 17-24 (ref 103). Copyright 2017, with permission 631 

from Elsevier. 632 

Quantitation 633 

Quantitative information about metabolites constitutes an invaluable asset to obtain a deeper 634 

understanding of the biological reactions and processes occurring in an organism, as changes in 635 

metabolite concentrations reflect changes in protein concentrations or gene expressions. For this 636 

reason, efforts are being made to collect quantitative data and incorporate them in databases, as it 637 
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was done for the human serum metabolome.61 Quantitative data also helps toward more robust, 638 

discriminant, and predictive statistical models.106 NMR- and MS-based quantitation methods are well 639 

established.106,107 NMR quantitation is relatively straightforward and lies on the use of a single internal 640 

standard such as TSP (sodium d4-3-(trimethylsilyl)-propionate), provided that data are acquired and 641 

processed under proper conditions known as qNMR.108 For complex mixtures where peak overlaps 642 

prevent accurate quantitation, quantitative procedures based on 2D NMR have also been 643 

developed.109 MS quantitation is more time-demanding as it requires further development to target 644 

the metabolites of interest and free from ion suppression phenomenon. Most robust targeted assays 645 

lie on either the combined use of stable isotope labeled (SIL) internal standards and calibration curves, 646 

especially in regulatory science,110 or on differential 12C/13C isotope labeling using for instance isotope 647 

reagent such as 13C-dansyl chloride to label metabolites.111 However, SIL internal standards are not 648 

always available and costly. Chemical analogues of the metabolites of interest can be used as internal 649 

standards but this is a less reliable approach and results must be interpreted with care. The idea of 650 

combining both NMR and MS techniques to obtain more robust quantitative assays and overcome the 651 

difficulties encountered through MS-based assays is relatively recent.106 A first approach has been 652 

described as an “NMR-guided-MS quantitation”.112 In this approach, NMR absolute quantitation of the 653 

metabolites of interest was performed for a serum sample which was randomly selected to be the 654 

reference sample. The concentrations obtained were then set as references for the multiple reaction 655 

monitoring transitions of the metabolites in the MS experiment, during which the rest of the samples 656 

were analyzed.112 Without the use of internal standards, 30 serum metabolites were successfully 657 

quantified and the correlation between the concentration obtained by the NMR-guided-MS approach 658 

with the one obtained by NMR were above 0.92 for most metabolites. Metabolite concentrations 659 

which showed poor correlation between the NMR-guided-MS approach and NMR draw special 660 

attention to the fact that ion formation is not always stable during MS measurements (which might be 661 

due to ion suppression or ionization efficiency due to e.g., source clogging) and that matrix effect can 662 

skew the results.112 To alleviate this problem, the same group proposed to combine NMR and MS 663 

techniques with chemical derivatization through a so-called qNMR-MS method.113 As for the NMR-664 

guided-MS method, NMR was first used to obtain metabolite concentrations of a randomly assigned 665 

reference sample. This sample was then derivatized with SIL internal standards and mixed with the 666 

remaining study samples, which had been derivatized with unlabeled internal standards. The 667 

comparison between the labeled and the unlabeled signals allowed absolute quantitation by MS, 668 

making it possible to account for matrix effects.113 Results showed excellent agreement between a 669 

classical internal standards methods and proved that the matrix effect, which can be important in 670 

complex biological samples such as serum, is well corrected in the qNMR-MS method compared to the 671 

NMR-guided-MS one (Figure 7).113 672 
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 674 

Figure 7. Linear regression equations for four amino acids in human serum samples: (a) asparagine, (b) glutamic 675 

Acid, (c) glycine, and (d) proline. Coefficients of determination (R²) values show excellent agreement between 676 

qNMR-MS and internal standard methods. Coefficients of determination (R²) for quantitating amino acids in 677 

human serum and standard samples. Each sample was tested using two quantitation calculation methods: NMR-678 

guided-MS and qNMR-MS. NMR-guided-MS uses the peak area of each amino acid derivative to quantify, while 679 

qNMR-MS uses the peak area ratio between labeled and unlabeled MS peaks of each amino acid derivative to 680 

quantify metabolites. Figure reproduced from Fei, Q.; Wang, D.; Jasbi, P.; Zhang, P.; Nagana Gowda, G. A.; 681 

Raftery, D.; Gu, H. Combining NMR and MS with Chemical Derivatization for Absolute Quantification 682 

with Reduced Matrix Effects. Anal. Chem. 2019, 91 (6), 4055–4062 (ref 113). Copyright 2019 American 683 

Chemical Society. 684 

Stable-Isotope Resolved Metabolomics (SIRM) 685 

Stable-isotope resolved metabolomics (SIRM) is an atom-based approach which aims to measure, 686 

following a stimulus, metabolic pathways alterations, and fluxes, which explains that it is also called 687 

fluxomics. This field is based on stable isotope tracers which are used to label precursor molecules, 688 

making it possible to measure metabolic reactions and quantify the metabolite byproducts based on 689 
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the measurement of the tracer atoms. The combined use of NMR and MS analytical techniques for 690 

SIRM is an evidence, as NMR spectroscopy can distinguish isotopomers, compounds which have the 691 

same number of heavy isotopes but at different positions, while MS can quantify the isotopologues, 692 

isomers that differ by their isotope composition. The most commonly used stable isotope-labeled 693 

precursor in fluxomics is U-13C-glucose, but several others are available and can be selected according 694 

the metabolic pathway of interest.114 Some studies actually used multiple labeled precursors in order 695 

to cover more metabolic pathways.115 SIRM is thus a very promising tool for clinical applications such 696 

as understating metabolic disturbances in diseases, pharmaceutical116 and toxicological research, and 697 

highlighting novel drug targets, especially because experiments can be performed in vitro through cell 698 

cultures, on ex vivo tissue models, or in vivo human or animal models.117 It helped for instance to 699 

understand the mechanism of action of a lithium therapeutic treatment for bipolar disorders.115 It is 700 

also of foremost interest for cancer research,118,119 such as this in vivo application for lung cancer 701 

patients infused with 13C-glucose which highlighted an upregulation of the glycolysis and Krebs cycle 702 

activity, as well as the unexpected pyruvate carboxylation, compared to the noncancerous tissues 703 

surrounding the tumor.120 The most used MS technologies in SIRM are GC-MS and FT-ICR-MS, the first 704 

one being more affordable but the second being more sensitive, having higher reoslution, and allowing 705 

high-throughput workflows to be applied more easily.121 In NMR, fast 2D or 3D methods are generally 706 

used to accurately quantify the populations of all isotopomers, given the complex spectra resulting 707 

from complex metabolite mixtures with multiple isotopic patterns.122–124 The combination of 2D NMR 708 

with FT-ICR-MS highlighted for instance precursor metabolites for the synthesis of specific 709 

glycerophospholipids while obtaining accurate m/z which facilitate identification, within a relatively 710 

rapid workflow.125 However, SIRM is a rapidly growing field and LC-MS has also been applied in 711 

combination with NMR to develop a workflow allowing the flux analysis of isoprenoids in yeast, which 712 

could be further applied to other organisms.126 Upon further progresses made in terms of 713 

computational tools and high-throughput workflow (Figure 8)127 for fluxomics analysis, the 714 

combination of NMR and MS within this field will for sure unravel the understanding of numerous 715 

metabolic pathways within a large scope of applications.  716 
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 717 

Figure 8. Overview of a high-throughput 13C-fluxomics workflow. (a) Experimental design allows maximizing the 718 

flux information depending on the biological question addressed by the study. Besides defining appropriate 719 

cultivation conditions (medium composition, temperature, pH, among others), the label input must be optimized 720 

according to the isotopic data that can be measured, the metabolic systems investigated, and the experimental 721 

costs. (b) Robotic and manual systems are available to perform 13C-labeling experiments and sample preparation. 722 

A trade-off between throughput and fine control of growth is determined by the cell cultivation system used and 723 

by the degree of workflow automation. (c) NMR-based and/or MS-based isotopic analyses are then carried out 724 

to measure the 13C-incorporation into metabolites. (d) Data processing is necessary to extract meaningful 725 

isotopic information from the raw data. In contrast to isotopic profiling or targeted 13C-fluxomics, global 13C-726 

fluxomics also requires measuring extracellular (production and consumption) fluxes from the time-course 727 

variations of extracellular concentrations. (e) Finally, different computational approaches for flux calculation and 728 

statistical analysis are applied according to the purpose of the investigations (i.e., isotopic profiling, targeted 729 

fluxomics or global fluxomics) and the level of biological knowledge required to extract the flux information. 730 

Figure reprinted from Curr. Opin. Biotechnol., Vol. 43, Heux, S.; Bergès, C.; Millard, P.; Portais, J.-C.; 731 

Létisse, F. Recent Advances in High-Throughput 13C-Fluxomics, p 104-109 (ref 127). Copyright 2017, with 732 

permission from Elsevier. 733 

Future Perspectives 734 

Public Databases  735 

The previous sections clearly showed that metabolite identification relies on comparing 736 

experimental spectral data to those present in various databases. With Metabolomics being a rapidly 737 

growing field, databases have been expending as well. Common examples are the Human Metabolome 738 
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Database,128 the human serum metabolome,61 METLIN,129 the Biological Magnetic Resonance Data 739 

Bank,130 LipidMaps,131 or the Yeast Metabolomics Database.132 However, as indicated by their names, 740 

these databases are either instrument-, organism-, or compound class-specific. Furthermore, high-741 

quality spectra are sometimes missing, which limits annotation confidence, or experimental conditions 742 

are not reported, which makes the spectral comparison more difficult and less trustworthy. Therefore, 743 

such databases do not always make good use of the MS/NMR complementarity. To overcome this 744 

issue, MetaboLights, the first metabolomics open-access repository regardless of the species or the 745 

analytical technique used, was released in 2012.133,134 It aimed to offer a repository where compound 746 

structure, spectral reference, biological concentration, location, and role as well as raw data could be 747 

submitted, stored, shared with the metabolomics community, and reused. However, automatic 748 

reporting of metabolomics data is not always performed by the community, although it has improved 749 

in the past couple of years.135 Undoubtedly, this has been helped by initiatives such as COSMOS 750 

(Coordination of Standards in MetabOlomicS), which aimed to promote data reporting according to 751 

specific standards, in order to facilitate data exchange and dissemination.136 An experimental workflow 752 

has been proposed to guide members of the metabolomics community in their standardization efforts 753 

(Figure 9) and which ensure FAIR (Findable, Accessible, Interoperable and Reusable) data sharing.137  754 

This is of paramount importance for the future of metabolomics and even if it goes without saying that 755 

this should be applied for both NMR and MS experiments; even taken separately, it is obvious that it 756 

will also help toward further combined use of NMR and MS analysis by gathering both spectral data 757 

for a same compound. 758 

 759 
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Figure 9. Experimental workflows in metabolomics. Shown in light blue are the relevant parts where data 760 

standards come into play. Annotated data deposition in open repositories allow for data reanalysis and reuse. 761 

(a) Traditional workflow using tools which do not depend on data standards, and where data annotation and 762 

data publication happen together with manuscript submission. (b) Fully standard embedded workflow, where 763 

data annotation is part of the standard operational procedures, data processing can use open software, and data 764 

publication is an integral part of the dissemination. Figure reproduced from ref. 137 under Creative Commons 765 

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). 766 

Integration to Other Platforms (Outside Metabolomics)  767 

The new bioinformatic tools allowing the combination of different analytical methods will certainly 768 

not stop their boundaries to the metabolomics field. A growing interest has been noticed for the 769 

integration of untargeted metabolomics data with DNA sequencing techniques for instance, to 770 

investigate the microbiome and its role in health and disease or in pharmaceutical studies to 771 

investigate impact that drugs can have on the human metabolic profile.138 Integrating multiple omics 772 

data from genomics, transcriptomics, proteomics, and metabolomics as well as epigenomics or 773 

pharmacogenomics provides a deeper understanding of complex biological mechanisms linked to a 774 

specific condition. Although computational challenges persist with respect to the integration of large 775 

omics data sets together and their biological interpretation, there is a will to go toward that goal in the 776 

omics community,139 and some tools, such as the R package mixOmics, have already been 777 

developed.140 Omics integration is thus already attracting attention in a number of different fields, 778 

either to have more insight into the human health risks linked to environmental chemical exposition,141 779 

ecological interactions through chemical signals,142 plant biology through integration of transcriptome 780 

and metabolome data sets,143 or many others. Some examples cited in this review did actually combine 781 

transcriptomics and NMR- and MS-based metabolomics to study tomato fruit composition and used 782 

correlation analyses to highlight associations between genes and metabolites, to finally visualize them 783 

in a common network.76 Proteome and metabolome data sets were also combined in the same aim of 784 

studying tomato fruit composition.144 This combination successfully promoted biomarkers discovery in 785 

diseases with a case study based on encephalomyelitis145 and promises further applications to 786 

toxicological studies following a recent published workflow.146 Parallel developments in computational 787 

tools and databases, together with the pursuit of better sensitivity and resolution for NMR and MS 788 

methods, will undoubtedly increase the level of biological information that can be accessed (Figure 789 

10). 790 

http://creativecommons.org/licenses/by/4.0/
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 791 

Figure 10. Schematic representation of systems biology, from which the heart relies on current progress being 792 

made in computational tools for multiomics integration, expanding databases, and increased sensitivity and 793 

resolution of current analytical instruments, which will allow new discovery in genomics, transcriptomics, 794 

proteomics, and finally metabolomics, which is the closest field which can explain an organism phenotype and 795 

which the exposome has constant impact.  796 

Conclusion 797 

In this review, various ways to combine NMR spectroscopy and MS technologies for metabolomics 798 

have been discussed, from hardware combination to computational tools, highlighting how it made it 799 

possible to access crucial information at the postmetabolomics level. It seems clear that metabolomics 800 

is a growing and dynamic field which will greatly benefit from NMR and MS combination, in particular 801 

from the computational point of view. Indeed, hardware combination seems a bit outdated when it 802 

comes to metabolomics but will probably remain relevant in natural product research. In terms of 803 

computational combination of NMR and MS-based metabolomics, the solutions to do so are clearly 804 

multiplying, and the massive improvements which have been made in the recent years guarantee that 805 

the use of correlation and data fusion approaches will spread. This will allow one to obtain more robust 806 

statistical models and will definitely help biomarkers discoveries and a more profound understanding 807 

of biological systems. This will be even truer if efforts in integrating metabolomics with other omics 808 

are maintained to obtain deeper capture of the biological processes lying under an organism 809 

phenotype and of its constant interaction with its environment, the so-called exposome.147 810 
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