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Abstract—The recent standardization by IEEE of Fine Timing
Measurement (FTM), a time-of-flight based approach for ranging
has the potential to be a turning point in bridging the gap between
the rich literature on indoor localization and the so-far tepid
market adoption. However, experiments with the first WiFi cards
supporting FTM show that while it offers meter-level ranging in
clear line-of-sight settings (LOS), its accuracy can collapse in
non-line-of-sight (NLOS) scenarios.

We present FUSIC, the first approach that extends FTM’s LOS
accuracy to NLOS settings, without requiring any changes to the
standard. To accomplish this, FUSIC leverages the results from
FTM and MUSIC – both erroneous in NLOS – into solving the
double challenge of 1) detecting when FTM returns an inaccurate
value and 2) correcting the errors as necessary. Experiments in 4
different physical locations reveal that a) FUSIC extends FTM’s
LOS ranging accuracy to NLOS settings – hence, achieving its
stated goal; b) it significantly improves FTM’s capability to offer
room-level indoor positioning.

Index Terms—FTM, NLOS, MUSIC, Indoor localization

I. INTRODUCTION

WiFi-based positioning traces it roots to the work on

RADAR [1] almost two decades ago. Its basic premise was to

leverage the ubiquitous WiFi infrastructure for delivering meter-

level localization indoors, where GPS usually is not accessible.

It proposes to localize mobile computing devices by estimating

the distances to WiFi access points whose locations are known.

In the years since, indoor localization has emerged as a major

scientific and technological challenge. Dozens of approaches

have been proposed representing a solution space that has

grown richer with time, to include a variety of underlying

technologies – UWB [2], sensors [3], acoustic anchors [4]

– as the mobile computing devices have evolved to include

smartphones, tablets, RFID tags, wearables and even micro-

implants [5]. Nevertheless, RADAR’s basic premise remains

true to this day: WiFi is ubiquitous, making it a prime platform

for indoor positioning. Recently, WiFi-based systems [6], [7]

have broken the meter-level barrier, promising an impressive

decimeter-level accuracy.

Unfortunately, it suffices for one to check their smartphone to

realize that market adoption, despite the involvement of industry

heavy-weights like Google and Microsoft [8], is lagging far

behind.

Against this backdrop, IEEE decided recently to put its

weight behind WiFi-based positioning. As part of the 802.11mc

amendment [9], it standardized FTM (Fine Timing Mea-

surement), a time-of-flight (ToF) based approach [10] for

computing the distance between a WiFi client and an access

Fig. 1: Distance estimation with FTM. Ground truth at 5m.

point. It promises meter-level accuracy, inferior to some

recent works [7], but sufficient for many applications, such as

smart home occupancy [6] or shopping mall navigation. More

importantly, a standardized and native firmware implementation

using clocks with picosecond resolution, can make WiFi FTM

a major turning point in the indoor positioning becoming a

standard service on our mobile devices. While 802.11mc is

not supported by all WiFi devices currently deployed, it has

already gained the support of major WiFi manufacturers [11],

and it is adopted by the Android operating system [12]. The

recent Google Pixel 2 and 3 phones, for example, are 802.11mc-

compliant.

While in theory WiFi FTM is looking like a breakthrough

moment, the reality is more mixed. Consider the simple case

of a user standing 5m from an access point with FTM support

and collecting readings on a device with a WiFi FTM card.

Fig. 1 shows that, for the first 30 s while the user is facing

the access point and there is a clear line of sight (LOS), FTM

estimates almost perfectly the distance between the user and

the access point. It suffices, however, for the user to turn 180◦,

thus obstructing the line of sight between the client and the

access point, for the FTM’s accuracy to collapse. This can be

explained by the presence of multipath indoors. Starting at time

30 s, the signal following the line of sight is attenuated by the

presence of the human body, leading FTM to estimate distance

based on a (stronger) reflected signal. This weakness of WiFi

FTM in non-line-sight scenarios (NLOS) was recently showed

in [13], however, no solution was proposed. MUSIC (MUltiple

SIgnal Classification) [14], may seem like the natural approach

to resolving the multiple paths and compute the time-of-flight

of the direct path. Unfortunately, multiple studies [15], [16]



have shown that it performs poorly on WiFi hardware.

In this work we present FUSIC, an approach fusing FTM

and MUSIC with the goal of extending FTM’s LOS accuracy

to NLOS settings. FUSIC requires no changes to the standard

– it simply takes as input the FTM ranging estimates, the WiFi

channel state information (CSI) readings, and corrects the error

when it detects that one has occurred. Thereby, FUSIC can be

implemented as a stand-alone, user-level application on mobile

devices and without requiring any modification to the access

points.

To realize its goal, FUSIC faces several challenges. First,

while the FTM performance in NLOS shown in Fig. 1 was

thoroughly evaluated in [13], two key underlying questions were

left open: 1) How do the multiple instances of the transmitted

signal and their relative strengths impact the FTM accuracy,

and 2) Do obstacles play an additional role in the observed

inaccuracy. The radio-wave signal slows down when it crosses

obstacles by a factor that depends on their relative permittivity.

FTM transforms the ToF to distance by using the speed of

light, leading to potential errors. The impact of such errors,

however, on FTM has not been studied yet.

Second, FUSIC needs to detect when the value returned by

FTM is inaccurate, even though this value and CSI are its only

input. A straightforward approach might be to apply MUSIC

on the CSI to obtain the power-delay profile and conclude there

is an error when the direct signal is not the strongest. However,

our measurements show that FTM can be accurate even when

the direct signal is not the strongest; applying correction on

an accurate result can make it erroneous. Finally, once FUSIC

detects that FTM has returned an inaccurate result it needs to

correct it while having as input only this value and MUSIC’s

power-delay profile – both erroneous.

In short, we address these challenges by first conducting a

measurement-based analysis on off-the-shelf hardware designed

to shed light on the factors leading to the poor performance

of WiFi FTM in NLOS. Coupling FTM output with MUSIC’s

power-delay profile of the received signals, we develop a fine-

grained understanding of the relation between multipath and

FTM. We leverage this understanding for designing FUSIC’s

two integral parts: a mechanism for identifying when FTM

returns erroneous results, and an error correction mechanism

fusing data from FTM and MUSIC.

Our main contributions may be summarized as follows:

• In Section III, we conduct a measurement analysis of WiFi

FTM and MUSIC using off-the-shelf hardware. We assess

the magnitude of the FTM weaknesses in NLOS and study

the underlying reasons at the signal level. Furthermore, we

assess MUSIC’s ability to help improve the accuracy of

FTM.

• In Section IV, we use the lessons learned in our measurement

analysis to design FUSIC, an algorithm that takes as input

the FTM distance estimates and CSI and 1) is able to detect

whether the FTM ranging result is inaccurate and 2) correct

the FTM ranging result when necessary.

• In Section V, we use a testbed comprising off-the-shelf

hardware to conduct an extensive evaluation of FUSIC in

4 different physical settings, including a controlled setting,

a university restaurant, a warehouse and a student lounge.

Our experiments show that a) FUSIC extends FTM’s LOS

ranging accuracy to NLOS settings – hence, achieving its

stated goal; b) it significantly improves FTM’s capability to

offer room-level indoor positioning.

II. BACKGROUND

This section presents the necessary background to understand

our contribution.

A. Channel State Information (CSI)

In wireless systems, the signal that reaches a receiver is

generally altered (eg. attenuated and reflected) by the channel

in which it travels before reaching the receiver. If we denote by

x the signal sent by the transmitter, the signal y that reaches

the receiver is given by the equation

y = H ∗ x+ n (1)

where the matrix H represents the complex attenuation and

phase shifts undergone by the signal while going through

the channel, and n the ambient noise, often assumed to be

white Gaussian with zero mean. H is called Channel State

Information (CSI) and represents the properties of the channel

between the sender and the receiver. Many research works [6],

[7], [15]–[21] have used CSI in their solutions as processing

them can give useful information about the signal propagation,

including Time of Flight (ToF), Angle of Arrival (AoA) and

Power Delay Profile (PDP).

B. MUSIC in the frequency domain: ToF estimation of multiple

propagation paths

In the interest of brevity, we provide an intuitive summary

of MUSIC (MUltiple SIgnal Classification) [14], necessary

to understand our work. For an in-depth description we refer

the interested reader to [14], [15], [18]. MUSIC algorithm

distinguishes signals based on predictable variations of phase

when it comes from a specific location. It relies on the

measurements obtained from each subcarrier of an OFDM

system (as is the case of WiFi, for example). This is feasible

because for a given ToF, a difference in terms of signal

frequency produces a difference in terms of phase at the

receiving system. In fact, two signals that reach an antenna

after having travelled during a ToF τ will reach that antenna

with a predictable phase difference of −2π × (fj − fi) × τ ,

with fj and fi being the frequencies of those signals. This

means that, with the knowledge of signal measurements on

different subcarriers of an OFDM WiFi band, it is possible

to resolve the ToFs over different propagation paths. MUSIC

uses this property to build a model that is able to resolve

the ToFs of different propagation paths. MUSIC algorithm

takes as input the CSI corresponding to the communication

and returns a spectrum indicating the signal power perceived

at each instant by the receiver, a kind of PDP. From such a

spectrum, propagation paths can be identified by taking the

peaks of the spectrum. This gives an estimate of their ToFs

and Power.



C. Fine Timing Measurement (FTM)

Fig. 2: FTM protocol overview.

The Fine Timing Measurement (FTM) protocol has been

standardized in IEEE 802.11-2016 (included as part of the

802.11mc amendment) [9]. It enables a WiFi station to compute

the distance to an access point in range without having to

associate to the particular access point. The protocol works by

estimating the ToF between the two WiFi devices, that is, the

time it takes for a signal transmitted by one device to reach

the other.

As summarized in Fig. 2, the process starts with a WiFi

station (called initiator) which scans for access points sup-

porting FTM. If an FTM-capable access point is detected, the

initiator sends to the latter an FTM request frame. Upon the

reception that request, the access point can choose to ignore it,

or to become a responder. In the latter case, the two stations

start a series of (FTM, ACK) packet exchanges, called burst,

allowing the initiator to estimate the round trip time (RTT)

with the responder. An FTM burst consists of the responder

sending multiple FTM packets, which are all acknowledged

by the initiator. Both stations capture the timestamps at which

the burst packets are sent and received. The RTT is calculated

as follows:

RTT = (t4 − t1)− (t3 − t2)

where t1 and t2 represent the time at which the FTM packet is

sent by the responder and received by the initiator, respectively,

and t3, t4, the time the ACK is sent by the initiator and received

by the responder, respectively. Finally, the distance between

the two devices is derived from the ToF (which is half the

RTT) by multiplying the latter by the speed of light. Notice

that, an FTM session may also consist of several bursts. In

this case, the number of bursts is negotiated at the beginning

of the process. The RTT over an FTM session with N bursts

is the average of each burst RTT.

While the approach underlying FTM is not novel, its

standardization by the IEEE and, therefore, its native imple-

mentation in the firmware of WiFi network interface controllers

(NICs) using timestamps with picosecond resolution [9] have
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Fig. 3: The multipath problem.

the potential to make a significant difference in practice. In

the next section, we use some of the first NICs with native

FTM support placed on the market to evaluate its accuracy.

III. FTM, ITS MULTIPATH PROBLEM AND MUSIC

According to the WiFi Alliance, FTM provides ranging

with meter-level accuracy [11]. However, a recent study [13]

showed that while this claim is generally true for clear line-of-

sight settings, it is not the case in non-line-of-sight (NLOS)

scenarios. At the high level, the problem is due to the presence

of obstacles and multipath, inherent to indoor settings. As

illustrated in Fig. 3, the reflected signal may be stronger than

the line-of-sight signal, leading the initiator to consider the

length of the reflected path as the distance to the responder.

However simple and clear this explanation may seem, the

reality, especially on real hardware, as we show in the following,

is more nuanced. Questions left unanswered in [13], include:

1) How do the multiple instances of the transmitted signal

and their relative strengths impact FTM accuracy, and 2) Do

obstacles play an additional role in the observed inaccuracy.

The radio-wave signal slows down when it crosses obstacles

by a factor that depends on their relative permittivity. FTM

transforms the ToF to distance by using the speed of light,

leading to potential errors. The impact of such errors, however,

on FTM in typical scenarios has not been studied yet.

Finally, considering that FTM limitations involve multipath,

MUSIC may seem like the natural approach to resolving

the multiple paths and compute the ToF of the direct path.

Unfortunately, multiple studies [6], [15], [16] have shown

that it performs poorly on WiFi hardware. What is unknown,

however, is to what extent, if any, MUSIC can help improve

the accuracy of FTM.

To answer these questions, we carry out a measurement-

based analysis using off-the-shelf hardware (see § V-B for a

full description of our testbed). The lessons learned will help

drive the design of our solution, FUSIC, presented in § IV.

A. Problem assessment

Clear line of sight: To establish a baseline, we start our

analysis with the simple case in which there is a clear line

of sight between the initiator and the responder. We place

the two stations in a long corridor and measure their distance

with FTM while varying the actual distance between them

from 1 to 60m. Each experiment is repeated 5 times, and we

take as output the average and standard deviation of all the



Fig. 4: Accuracy of FTM in clear line-of-sight scenarios.
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(a) Controlled multipath experimental setup

(b) Distance estimation with FTM as well as the actual reflected path
length

Fig. 5: FTM accuracy in different settings: clear or obstructed

line-of-sight.

experiments. As expected, Fig. 4 shows that FTM performs

very well in this situation, with an average estimation error of

0.76m and 1.56m 90-percentile.

Obstructed line of sight in presence of multipath: To

evaluate FTM accuracy in NLOS scenarios, we set up the

following experiment, illustrated in Fig. 5(a). We place the two

stations in a setting where there is a reflector (a wall). The

distance between the two stations, L, is varied from 2m to

10m in steps of 2m. The distance to the reflector, D, varies

between two values: 6m, 8m. For every value of L and D,

we perform experiments using two different configurations:

one with clear line of sight and one with a person standing

between the two stations.

Fig. 5(b) shows the obtained results. The straightforward

observation is that FTM is inaccurate when the line of sight is

obstructed – the error is up to 3.03m for D = 6m and 7.62m
for D = 8m.

A more subtle observation is that, in NLOS settings, FTM

(a) Experimental setup in open-space environ-
ment

(b) FTM performance for different numbers of obstacles (per-
sons) as well as the observed RSSI.

Fig. 6: Experiments in a multipath-free environment (football

stadium). Adding people in the line of sight has negligible effect

on FTM distance estimation even if it impacts the received

signal strength (RSSI).

does not return the length of the path followed by the reflected

signal. In Fig. 5(b), we have added the geometrical length

(theoretical value) of the reflected path, which we can calculate

because we have a semi-controlled setting with a single reflector.

The data shows that FTM output is between the value of the

direct path and the theoretical value of the reflected path. In

§ III-B, we explore the root causes of this observation and use

the findings to drive our solution.

Obstructed line of sight with no multipath: We conduct

a similar experiment in an outdoor open space (absence of

multipath) in order to verify the source of FTM errors in

NLOS settings: multipath effect or relative permittivity of the

obstacle in the line of sight. To this end, we perform FTM

measurements at different distances, while varying the number

p of persons between the two devices, p ∈ 0, 1, 2, 3. Fig. 6(a)

shows the experimental setup with one person as obstacle. In

these experiments, we also record the received signal strength

indication (RSSI) to observe how the signal strength varies

with the number of persons as obstacles. As we can see in

Fig. 6(b), the insertion of persons as obstacles on the LOS

path has negligible effect on distance estimation when there

is no multipath. This clearly shows that the effect of relative

permittivity is negligible and that our observations when there

is a reflector are mostly due to the multipath propagation.



(a) Strong LOS: almost
no error

(b) Comparable
strengths: low error

(c) Weak LOS: high er-
ror

Fig. 7: Normalized MUSIC spectrums in three different

situations

Fig. 8: Error vs relative strength of LOS

B. The origin of the issue in the multipath settings

To gain a better understanding as to the root causes of

the FTM’s poor accurracy in the presence of multipath, we

place ourselves in the multipath experimental environment of

Fig. 5(a), with L = 5m and D = 8m. We run a series of

experiments using up to 8 volunteers to act as obstacles. New

to this round of experiments, we add near the responder a

computer equipped with an Intel 5300 WiFi NIC and run the

Linux CSI tool [22] to collect CSI during the experiment.

We start our analysis by aiming at understanding FTM results

at the signal level. We place the two FTM devices in three

different settings: short distance (L = 2m) and clear line

of sight; medium distance (L = 6m) and obstructed line of

sight (one person), and long distance (L = 10m) and highly

obstructed line of sight (2 persons). In addition to FTM data,

we collect CSI and use MUSIC to analyze the PDP. The data

for the first setting, Fig. 7(a), are as expected: when the LOS

is clear, the direct path is dominant and the error is negligible.

On the other hand, the data of Fig. 7(b) and Fig. 7(c) provide

a more nuanced understanding of what happens in NLOS. The

accuracy of FTM is not a simple function of whether there is

a clear LOS or not. Instead, it depends on the strength of the

direct signal relative to the reflected signal. When the direct

signal is similar in strength to the reflected signal, Fig. 7(b),

FTM is still reasonably accurate. However, when the reflected

signal is clearly stronger, FTM becomes inaccurate, Fig. 7(c).

To further validate these findings, we carry out a new series

of experiments in which we change the level of obstruction by

having up to 8 volunteers standing in the LOS between the

two FTM devices, with L = 5m and D = 8m. Fig. 8 shows

the FTM error as function of what we define as signal strength

ratio. It captures the strength of the direct signal relative to the

combined strength of all signals reaching the receiver. Formally,

Fig. 9: Distance estimation based on CSI. Ground truth at 5m.

the signal strength ratio is defined as:

P (τ1)
∑K

k=1 P (τk)

where K is the number of resolved paths, τk and P (τk) are

the ToF and strength of path k (k = 1 corresponds to the direct

path), respectively.

As we can see in Fig. 8, the value of the FTM errors depend

on the strength of the direct path relative to the NLOS paths.

We leverage this finding in § IV as part of our solution for

correcting FTM.

C. MUSIC and the inaccuracy problem

We evaluate the capability of MUSIC to accurately estimate

the ToF using CSI from off-the-shelf WiFi network interface

controllers. Towards this, we place a WiFi station and access

point (AP) at a distance of 5m from each other. The station

transmits a series of 100 packets while the AP records the CSI

for each packet. The experiment is performed indoors with a

reflector 8m from the line of sight between the station and

access point. In this setting, we expect to get two paths with

lengths 5m and 16.8m, respectively. We apply MUSIC on

each CSI entry and consider the delays of the first and second

peak as the estimated ToF for the direct and reflected path,

respectively. We convert the ToF to distance by multiplication

with the speed of light. Fig. 9 shows that the distance estimation

error is significant, varying between 32m and 61.8m. This

corresponds to about 12-time the actual distance, on average.

These observations are consistent with findings in [6], [16].

What is more, the values calculated by MUSIC are highly

variable from one packet to another(6.9m standard deviation),

rendering ineffective any static calibration (which consists in

averaging the error and removing it from the following ToF

estimates).

Nevertheless, Fig. 9 points to a very interesting observation.

While the direct and reflected paths estimated distances are

highly erroneous,the difference in the estimates of the two path

lengths is the same across all 100 packets and corresponds

to the actual difference of paths lengths. In this particular

experiment, we observe an almost constant offset of 12.3m.

This observation has also been pointed by other works [6], [7],

[15], [16]. We leverage it in the design of FUSIC, our solution

presented in the next section.



IV. FUSIC

In this section, we present FUSIC, an algorithm fusing WiFi

FTM and MUSIC for delivering accurate ranging even in the

presence of multipath. FUSIC takes as input the potentially

erroneous, FTM output, and the CSI matrix and returns the

distance between two WiFi FTM devices. FUSIC requires no

changes to the standard, no changes to the access points and

can be implemented as an application on the user’s device.

FUSIC faces two key challenges. First, it needs to identify

when FTM is mislead into calculating the distance based on

the reflected signal. Second, when FTM is mislead, it faces

the challenge of correcting the error and returning the length

of the direct path.

The key intuition driving the design of FUSIC is that FTM

is mislead when the LOS path is not the most dominant path

(§ III-B, Fig. 7). MUSIC, on the other hand, provides the

power-delay profile of all paths, allowing to identify when

the direct path is not the dominant one. A fusion of the two

can pave the way for an approach identifying when FTM

is incorrect and correcting its output as necessary. However,

turning this intuition into a practical solution addressing our two

key challenges is not trivial. First, as our data shows (Fig. 7(b)),

FTM can return accurate distance estimates even if the LOS

path is not the most dominant path. In this case, trying to

correct can lead to worse results. Second, even knowing when

FTM is erroneous, is it not clear how fusing it with results from

MUSIC, shown to be highly inaccurate, will somehow lead to

accurate results. Algorithm 1 summarizes how FUSIC addresses

all these challenges. Next, we describe the key contributions

of the algorithm.

A. Detecting when FTM needs correction

As our measurement data in § III-B, Fig. 7 showed, the

question of whether FTM is correct cannot be reduced to

simply knowing whether the direct path is the most dominant

or not. There are cases in which the direct path is not the most

dominant and yet FTM returns accurate results. Therefore,

deciding when to correct FTM is more challenging that it may

seem at first look.

To address this challenge, FUSIC introduces a new parameter,

R, which quantifies the contribution of the direct path to the

overall MUSIC spectrum (line 2, Algorithm 1). R is defined

as:

R =
P (τ1)

∑K

k=1 P (τk)

and is similar to lfactor metric used in CUPID [17].

When the value of R is above a threshold, Rthreshold,

FUSIC does not perform any correction (line 4, Algorithm 1).

Otherwise, it will trigger the correction algorithm introduced

in § IV-B. Selecting the right value for Rthreshold requires

addressing an interesting tradeoff: If the threshold is too low,

FUSIC may alter accurate FTM measurements, leading to

unnecessary errors. On the other hand, if it is too high, FUSIC

may fail to correct erroneous FTM measurements. In our

prototype, we have selected Rthreshold to be conservative on

the side of applying the error correction algorithm less often.

Extensive evaluation in § V, using Rthreshold = 0.5, show that

our approach leads to significant improvements.

Algorithm 1: FUSIC

Input: csi matrix: The measured CSI matrix

dftm: The distance measured by FTM

Output: dfusic: The corrected distance estimation

1 Identify the dominants paths using MUSIC algorithm

{(tk, Pk)}1≤k≤K = music spectrum(csi matrix),
with tk and Pk being respectively resolved ToF and

Power of path k;

2 Compute the relative strength of direct path with

respect to others as R = P (τ1)∑
K

k=1
P (τk)

;

3 if R ≥ Rthreshold then

4 Conserve the FTM distance estimate dfusic = dftm;

5 else

6 Compute the mean excess delay as

τ̄ =
∑

K

k=1
P (τk)(τk−τ1)∑
K

k=1
P (τk)

;

7 Compute the corrected distance estimate as

dfusic = dftm − τ̄ × c, with c ≈ 3× 108 ms−1

being the speed of light;

8 end

9 return dfusic;

B. Correcting the FTM output

To introduce our error correction algorithm, we first consider

a special case and use it as springboard for introducing our

general-purpose algorithm.

Error correction for a special case: Let us start by

considering the special case in which there are only two

propagation paths between an initiator and a responder: a LOS

path which is strongly obstructed and a reflected path. This

case corresponds to something we observed in Fig. 7(c). In

this instance, FTM will output the length of the reflected path.

The FTM error can be expressed as the difference between

its output and the length of the LOS path. The idea behind

FUSIC is to leverage MUSIC to estimate the FTM error and

thereby correct its output. The challenge is how can MUSIC,

highly erroneous on WiFi hardware, help estimate the error of

FTM, which actually works better.

To address this challenge, we leverage a key observation

we made in § III-C: Despite its inaccuracy, the difference in

estimated ToFs (thus distances) generated by MUSIC for any

two paths is actually accurate. Hence, FUSIC can use the

inaccurate ToF estimates of the propagation paths resolved

by MUSIC to compute the FTM measurement error. d̄ǫ =
(τreflected − τdirect)× c, with τdirect and τreflected being the

ToF estimates of the direct and reflected paths, respectively. c ≈
3× 108 ms−1 represents the speed of light. The direct path is

taken from the MUSIC spectrum as the one with the minimum

estimated ToF. With the knowledge of d̄ǫ, FUSIC computes an

accurate value of the direct path ToF by subtracting this value

from the FTM distance measurement: dfusic = dftm − dǫ.



Fig. 10: An example of a product-level implementation of

FUSIC, implemented in the initiator’s wireless driver.

General-purpose algorithm: In the general case, we may

have several propagation paths between an initiator and a

responder and we cannot make any assumptions as to the

relative power levels of the different signals reaching the

receiver. Under such circumstances, as we observed in § III-A,

Fig. 5(b), the FTM measurements do not necessarily reflect the

length of a particular propagation path. Instead, FTM returns

a value between the length of the direct path and that of the

reflected path. What is more, the FTM errors increase as the

LOS signal gets weaker relative to the NLOS signals (Fig. 8).

We model this phenomenon by considering the FTM output

as not being the length of an actual reflected path but of a virtual

path whose length is influenced by the lengths and relative

strengths of the most dominant propagation paths. Therefore,

FUSIC takes into account all the path length differences relative

to the direct path computed by MUSIC and assigns them

weights proportionally to their power levels. The estimated

FTM measurement error, τ̄ , in terms of ToF (= d̄ǫ/c), is then

computed as the weighed average of ToF differences to the

direct path’s ToF (line 6, Algorithm 1):

τ̄ =

∑K

k=1 P (τk)(τk − τ1)
∑K

k=1 P (τk)

a quantity also referred to as the mean excess delay [23],

[24]. FUSIC finally removes the effect of the error (line 7,

Algorithm 1) and outputs the corrected distance estimate as:

dfusic = dftm − τ̄ × c.

V. PERFORMANCE EVALUATION

After a quick presentation of a prototype of FUSIC, this

section focuses on the evaluation results of FUSIC. We first

evaluate its accuracy, followed with its utilization for indoor

localization. The latter is the most common use case for WiFi-

based ranging solutions. For this use case, we implement

a classical non-linear trilateration algorithm [25]. For all

experiments we compare FUSIC with vanilla FTM.

A. FUSIC implementation

One of the strengths of FUSIC is that it requires no

modification to the standard. It just takes the output of FTM

and processes it with the knowledge of CSI. This process

should be done on the initiator’s side because only the initiator

knows the output of the FTM protocol. There are many ways

FUSIC can be implemented: either as a user-space application,

or beforehand in the wireless driver or firmware (directly

by Original Equipment Manufacturers) in such a way to be

totally transparent to upper-layer applications. Fig. 10 shows

an example of such an implementation which fits well with

indoor localization purposes. There, FUSIC, implemented at

the application layer, intercepts FTM output and performs

the eventual correction before actually using the results. Our

prototype follows this implementation choice.

B. Experimental Setup

Hardware. Our experimental setup is similar to [13]’s open

platform. We use one Dell Latitude 5480 laptop equipped with

an Intel 8260 WiFi NIC chipset as the initiator and three Asus

Wireless-AC1300 RT-AC58U routers (access points) with the

Qualcomm IPQ4018 chipset as the responders. Both Intel 8260

and Qualcomm IPQ4018 chipsets are FTM-capable and have

the WiFi Location certification from the WiFi Alliance [11].

All stations use 80MHz bandwidth at 5GHz as in [13]. To

simplify the experimentation process (which consists of several

measurements), we choose to run FUSIC on the router side

instead of the client as it should be in practice (see Fig. 10).

Notice that this setup does not impacts the results because

CSI and FTM data are the same in both sides. Knowing that

our testbed routers do not allow CSI reporting, we emulate

the ideal router by attaching to each Asus Wireless-AC1300

RT-AC58U router a device which allows CSI reporting (see Fig.

11(a)). We use Dell Vostro 15 3000 series computers, equipped

with Intel 5300 WiFi NICs and running the well-known Linux

CSI tool [22] for this purpose. Notice that such a combination

of devices to enable CSI reporting in research works is not

new [17]. We also believe CSI reporting is going to become

a common feature in new WiFi NICs drivers, as many new

applications rely on them. Intel’s iwlwifi wireless driver, for

example, has already integrated CSI reporting as a feature to

come in its next releases [26].

Software. The initiator runs Ubuntu 16.04 operating system

with Linux kernel 4.14.0 and a modified version [13] of the

backported LinuxCore30 release of Intel’s iwlwifi wireless

driver. Concerning the routers, they run OpenWrt Snapshot

r1834-0f04829 with Linux kernel 4.9.86 which includes FTM-

capable Qualcomm Atheros ath10k driver and firmware. For

FTM request initiation, we use a modified version of iw

command line tool in which FTM protocol capabilities has

been added 1. All the measurements are repeated 30 times and

averaged. Finally, to evaluate omnidirectional communications

(which are more common), we make sure that beamforming

is disabled during all the experiments by setting ath10k’s

parameters accordingly on the AP side.

Spatial contexts. We evaluate FUSIC in four spatial contexts.

The first context, which is a synthetic one, is the controlled

multipath setup presented in Section § III and summarized

in Fig. 5(a). The three other contexts are indoor buildings,

representing real human living environments: a university

restaurant (23m× 13.5m, Fig 11(b)), a technical warehouse

1https://p.sipsolutions.net/bef149ad0c1b8c8f.txt patch
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Fig. 11: Experimental setup

Fig. 12: FUSIC vs FTM in time-variant experiment.

(a) Raw results (b) CDF

Fig. 13: FUSIC vs FTM at different distances, with obstructed

LOS.

(13m × 12.5m, Fig. 11(c)), and a lounge (15m × 13.5m,

Fig. 11(d)). Fig. 11(e), 11(f), and 11(g) respectively show the

maps of the different rooms. The three responders have fixed

positions in the spatial contexts (represented by blue circles

on the maps). Concerning the initiator, we experiment several

positions in each spatial context (represented by red circles on

the maps), for a total of 122 tested target locations. In addition

to the user holding the target device, these indoor contexts

include two other people walking, standing and sitting in a

random way. The ground truth is obtained using a 30m long

measuring tape.

C. Accuracy in the synthetic spatial context

This experiment is realized in the first spatial context (Fig.

5(a)). We first place the initiator and responder at a distance

of L = 5m from each other and D = 8m from the wall. We

conduct the same time-variant experiment described in Section

§ III: the user make a 180° turn at time t = 30 s and a 360°

turn at t = 60 s. Fig. 12 presents the results. We can see that

FUSIC is able to accurately estimate the distance during all the

(a) University restaurant (b) Warehouse (c) Lounge

Fig. 14: FUSIC and FTM accuracy in three real indoor rooms.

experiment. This is not the case for FTM when the user stands

between the initiator and the responder, as already stated in

Section III.

Next, we vary the distance L between the equipments and

the distance D from the wall, as in Section § III. Fig. 13(a)

presents the estimated distances while Fig. 13(b) presents the

Cumulative Distribution Function (CDF) of the estimation error

for all the evaluated positions. FUSIC achieves a median and

90-percentile of 0.68m and 2.12m respectively while FTM

ones are 4.38m and 7.8m respectively. These results clearly

show that FUSIC is able to bring back the estimated distances

to almost the clear LOS FTM measurement and validate the

effectiveness of the approach introduced by FUSIC.

D. Accuracy in real indoor environments

Here, we perform experiments in the three indoor spatial

contexts (Figs. 11(b), 11(d) and 11(c)). For each of the spatial

contexts, and for each of the target locations (red dots on the

maps), we perform FTM measurements and collect CSI on

the routers sides. We later on apply FUSIC on these data and

compute the error with respect to the ground truth. Fig. 14

presents the CDFs of the distance estimation errors for each of

the three rooms. We can see that FUSIC beats FTM in accuracy

in all the three spatial contexts. This is normal because FTM is

influenced by the complexity of propagation environment while

FUSIC takes it into account in order to output accurate distance

estimations. We can also notice that the minimal difference

between FUSIC and FTM is achieved in the lounge. This is

explained by the fact that it is the spatial context with the

less obstacles, thus the less challenging multipath environment.

Taking all the data into account, FUSIC achieves a median and

90-percentile of 1.27m and 3.41m respectively, outperforming

FTM, whose overall performance is 2.32m for the median and

5.28m for the 90-percentile.
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Fig. 15: Indoor localization using FUSIC and FTM.

E. Use case: Indoor localization

Here we evaluate FUSIC’s ability to yield accurate local-

ization. For this evaluation, we compute target’s locations

using the data obtained during the experiments presented in

the previous section. This is done using the classical Least

Square Optimization approach [25] which consists in looking

for the location that minimizes the sum of squared errors to

the observed distances to the routers. We then compare the

outputted locations to the known ground truth. Fig. 15 presents

the CDFs of the location estimation errors for each spatial

context. As we can see, localization based on FUSIC is more

accurate than the one with vanilla FTM. This is not surprising

since FUSIC proved itself being more accurate in distance

estimation than FTM, especially in challenging multipath

environments (See Section V-D). In the technical warehouse

for example, which is the most challenging multipath setting,

the difference is impressive: 1.9m of median localization error

with FUSIC versus 5.04m with FTM. Overall, taking all the

locations estimates into account, FUSIC achieves a median and

90-percentile of 1.94m and 3.77m respectively. Concerning

FTM, it achieves a median and 90-percentile of 3.64m and

5.79m respectively.

VI. RELATED WORK

Ranging using WiFi is a well studied problem. We present

only a set of representative works and refer the interested

readers to [27] and [28] for more complete surveys.

The existing approaches for WiFi based ranging can be

classified in two main categories: Received Signal Strength

Indicator (RSSI) based and Time of Flight (ToF) based. We

also dedicate a special paragraph to Fine Timing Measurement

(FTM).

RSSI-based approaches. Many research works have used

RSSI, which characterizes the attenuation of a radio signal

during its propagation. Those works generally use the well-

known path-loss propagation model [1], [29]. Some other works

combine this model with classical filtering techniques like

Kalman filter [30] or with more sophisticated algorithms like

Gaussian Process Latent Variable Models [31], [32]. Similar

to pure RSSI-based techniques, works like [33] build CSI-

based path-loss like relations in order to improve the accuracy.

However, as the received signal strength depends on many

environmental factors including the existence or not of obstacles

and their natures, the density of multipath reflections and even

the ambient temperature and humidity, these approaches include

limitations due to the difficulty to build propagation models

that perfectly fit the reality of different indoor environments.

Compared to those solutions, FUSIC relies on FTM which

is a ToF-based solution, and thus does not suffer from these

problems.

ToF-based approaches. Multiple works in this category

use timestamp-based techniques on top 802.11 MAC protocol,

either with the packets echoing technique [34], [35] or with

custom-made synchronization-free protocol [36]. [37] and

[10] also proposed methods for filtering out the measurement

noises due to multipath propagation. On the other hand, some

recent works like [16] and [38] focused on removing the

errors inherent to CSI obtained from commodity WiFi NICs

in order to perform accurate ranging via super-resolution

techniques like MUSIC algorithm. [6], [18], [19] combined

the measurements on multiple WiFi bands to form a virtual

wider bandwidth, aiming at achieving finer resolution. Although

some of those systems achieve remarkable accuracy, the lack

of standardization makes them difficult to adopt in real world

usage as there is no guarantee of interoperability between them.

FUSIC, on the other hand, leverages the standardization of

FTM protocol and is designed to be deployed in such a way

to be transparent and stay compliant with the standard.

Fine Timing Measurement. As a new algorithm in 802.11

standard (late 2016), FTM has so far gained the attention of only

few research works. [13] studied FTM accuracy in different real

world scenarios including indoors and outdoors, and proposed a

measurement framework for evaluating such time-based ranging

systems. Some other works use FTM measurements as inputs

to their system either to improve their sensor fusion based

Pedestrian Dead Reckoning [39] or to perform collaborative

positioning in a wireless network [40].

While these works either only discuss the accuracy of FTM

algorithm or use it as is, the challenge addressed by the present

work is to make FTM accurate in Non-Line-Of-Sight conditions

as it does in Line-Of-Sight ones. FUSIC, has been shown to

give a solution to that challenge, making FTM work well even

in highly challenging indoor environments.

VII. CONCLUSION

We presented FUSIC, an approach fusing FTM and MUSIC

with the goal of extending WiFi FTM line-of-sight (LOS)

accuracy to non-line-of-sight (NLOS) settings. FUSIC is the

first approach which tackles this issue. It requires no changes

to the standard and can be implemented as a stand-alone, user-

level application on mobile devices. We implemented FUSIC

on a testbed consisting of off-the-shelf hardware and through

experiments in 4 different physical locations demonstrated

that it can provide ranging in NLOS of the same accuracy as

FTM’s in LOS – hence, achieving its goal. Furthermore, our

experiments demonstrate that FUSIC significantly improves

FTM’s capability to offer room-level indoor positioning. We

believe FUSIC can also be an effective solution for other

ranging-based applications and services, including device

tracking and indoor mapping, which are among our future

works.



ACKNOWLEDGMENT

This work was supported in part by the Agence Nationale

de la Recherche under the ANR JCJC CiTADEL grant.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based user
location and tracking system,” in Proceedings IEEE INFOCOM 2000.

Conference on Computer Communications. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies (Cat.

No.00CH37064), 2000, pp. 775–784 vol.2.

[2] Y. Ma, N. Selby, and F. Adib, “Minding the billions: Ultra-wideband
localization for deployed rfid tags,” in ACM MobiCom, 2017, pp. 248–
260.

[3] S. Shen, M. Gowda, and R. Roy Choudhury, “Closing the gaps in inertial
motion tracking,” in ACM MobiCom, 2018, pp. 429–444.

[4] S.-M. Moosavi-Dezfooli, Y.-A. Pignolet, and D. Dzung, “Simultaneous
acoustic localization of multiple smartphones with euclidean distance
matrices,” in EWSN, 2016, pp. 41–46.

[5] D. Vasisht, G. Zhang, O. Abari, H.-M. Lu, J. Flanz, and D. Katabi, “In-
body backscatter communication and localization,” in ACM SIGCOMM,
2018, pp. 132–146.

[6] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with
a single wifi access point,” in USENIX NSDI, 2016, pp. 165–178.

[7] E. Soltanaghaei, A. Kalyanaraman, and K. Whitehouse, “Multipath
triangulation: Decimeter-level wifi localization and orientation with a
single unaided receiver,” in ACM MobiSys, 2018, pp. 376–388.

[8] (2017, July) Path guide: A new approach to indoor navigation.
[Online]. Available: https://www.microsoft.com/en-us/research/blog/path-
guide-new-approach-indoor-navigation/

[9] IEEE, “Ieee draft standard for information technology–
telecommunications and information exchange between systems -
local and metropolitan area networks–specific requirements part 11:
Wireless lan medium access control (mac) and physical layer (phy)
specifications,” IEEE P802.11-REVmc/D6.0, June 2016, pp. 1–3774,
2016.

[10] M. Rea, A. Fakhreddine, D. Giustiniano, and V. Lenders, “Filtering noisy
802.11 time-of-flight ranging measurements from commoditized wifi
radios,” IEEE/ACM Transactions on Networking, pp. 2514–2527, 2017.

[11] W.-F. Alliance®. (2017, Feb.) Wi-fi certified location™
brings wi-fi® indoor positioning capabilities. [Online].
Available: https://www.wi-fi.org/news-events/newsroom/wi-fi-certified-
location-brings-wi-fi-indoor-positioning-capabilities

[12] A. developers documentation. (2018) Wi-fi lo-
cation: ranging with rtt. [Online]. Available:
https://developer.android.com/guide/topics/connectivity/wifi-rtt

[13] M. Ibrahim, H. Liu, M. Jawahar, V. Nguyen, M. Gruteser, R. Howard,
B. Yu, and F. Bai, “Verification: Accuracy evaluation of wifi fine time
measurements on an open platform,” in ACM MobiCom, 2018, pp. 417–
427.

[14] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Transactions on Antennas and Propagation, pp. 276–280, 1986.

[15] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level
localization using wifi,” in ACM SIGCOMM, 2015, pp. 269–282.

[16] W. Gong and J. Liu, “Sifi: Pushing the limit of time-based wifi localization
using a single commodity access point,” ACM UbiComp, pp. 10:1–10:21,
2018.

[17] S. Sen, J. Lee, K.-H. Kim, and P. Congdon, “Avoiding multipath to revive
inbuilding wifi localization,” in ACM MobiSys, 2013, pp. 249–262.

[18] J. Xiong, K. Sundaresan, and K. Jamieson, “Tonetrack: Leveraging
frequency-agile radios for time-based indoor wireless localization,” in
ACM MobiCom, 2015, pp. 537–549.

[19] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity
wifi,” in ACM MobiCom, 2015, p. 53–64.

[20] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim, “Sail: Single access
point-based indoor localization,” in ACM MobiSys, 2014, pp. 315–328.

[21] Z. Tian, Z. Li, M. Zhou, Y. Jin, and Z. Wu, “PILA: sub-meter localization
using CSI from commodity wi-fi devices,” Sensors, 2016.

[22] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11n traces with channel state information,” ACM SIGCOMM Comput.

Commun. Rev., pp. 53–53, 2011.

[23] R. Bharadwaj and S. K. Koul, “Study and analysis of channel character-
istics of ultra-wideband communication links using wearable antennas,”
in 2017 IEEE Asia Pacific Microwave Conference (APMC), 2017, pp.
45–48.

[24] S. Forcellini and L. C. Trintinalia, “Location estimation using relationship
between delay spread and mean excess delay,” in Proceedings. 2005

IEEE Networking, Sensing and Control, 2005., 2005, pp. 638–643.
[25] F. Izquierdo, M. Ciurana, F. Barcelo, J. Paradells, and E. Zola, “Perfor-

mance evaluation of a toa-based trilateration method to locate terminals
in wlan,” in 2006 1st International Symposium on Wireless Pervasive

Computing, 2006, pp. 1–6.
[26] Intel. (2019, Jan.) iwlwifi: mvm: implement csi reporting. [Online].

Available: https://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi/iwlwifi-
fixes.git/commit/?id=5213e8a8a28d2c4c143fec94e57c866a958ed52d

[27] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization
systems and technologies,” CoRR, 2017.

[28] Z. Yang, Z. Zhou, and Y. Liu, “From rssi to csi: Indoor localization via
channel response,” ACM Comput. Surv., pp. 25:1–25:32, 2013.

[29] P. Kumar, L. Reddy, and S. Varma, “Distance measurement and error
estimation scheme for rssi based localization in wireless sensor networks,”
in WCSN, 2009, pp. 1–4.

[30] I. Guvenc, “Enhancements to rss based indoor tracking systems using
kalman filters,” in In GSPx International Signal Processing Conference,
2003.

[31] B. Ferris, D. Fox, and N. Lawrence, “Wifi-slam using gaussian process
latent variable models,” in Proceedings of the 20th International Joint

Conference on Artifical Intelligence, 2007, pp. 2480–2485.
[32] A. Goswami, L. E. Ortiz, and S. R. Das, “Wigem: A learning-based

approach for indoor localization,” in ACM CoNEXT, 2011, pp. 3:1–3:12.
[33] K. Wu, Jiang Xiao, Youwen Yi, Min Gao, and L. M. Ni, “Fila: Fine-

grained indoor localization,” in IEEE INFOCOM, 2012, pp. 2210–2218.
[34] S. A. Golden and S. S. Bateman, “Sensor measurements for wi-fi location

with emphasis on time-of-arrival ranging,” IEEE Transactions on Mobile

Computing, pp. 1185–1198, 2007.
[35] D. Giustiniano and S. Mangold, “Caesar: Carrier sense-based ranging

in off-the-shelf 802.11 wireless lan,” in ACM CoNEXT, 2011, pp. 10:1–
10:12.

[36] M. Youssef, A. Youssef, C. Rieger, U. Shankar, and A. Agrawala,
“Pinpoint: An asynchronous time-based location determination system,”
in ACM MobiSys, 2006, pp. 165–176.

[37] M. Ciurana, F. Barcelo-Arroyo, and F. Izquierdo, “A ranging system with
ieee 802.11 data frames,” in 2007 IEEE Radio and Wireless Symposium,
2007, pp. 133–136.

[38] N. Tadayon, M. T. Rahman, S. Han, S. Valaee, and W. Yu, “Decimeter
ranging with channel state information,” IEEE Trans. Wireless Commu-

nications, pp. 3453–3468, 2019.
[39] Y. Yu, R. Chen, L. Chen, G. Guo, F. Ye, and Z. Liu, “A robust dead

reckoning algorithm based on wi-fi ftm and multiple sensors,” Remote

Sensing, 2019.
[40] L. Banin, O. Bar-Shalom, N. Dvorecki, and Y. Amizur, “Scalable wi-fi

client self-positioning using cooperative ftm-sensors,” IEEE Transactions

on Instrumentation and Measurement, pp. 1–13, 2018.




