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 Abstract 

 

Hartmann-Hahn cross-polarization (HHCP) is the most widely used solid-state NMR 

technique to enhance the magnetization of dilute spins from abundant spins. Furthermore, 

as the kinetics of CP depends on dipolar interactions, it contains valuable information on 

molecular structure and dynamics. In this work, analytical solutions are derived for the 

kinetics of HHCP and multiple-contact CP (MC-CP) using both classical and non-classical spin-

coupling models including the effects of molecular dynamics and several 1H, 13C relaxation 

and 1H-13C CP experiments are performed in graphene oxide (GO). HHCP is found to be 

inefficient in our GO sample due to very fast 1H T1 relaxation. By contrast, the MC-CP 

technique which alleviates most of the magnetization loss by 1H T1 relaxation leads to a 

much larger polarization transfer efficiency reducing the measuring time by an order of 

magnitude. A detailed analysis of the HHCP and MC-CP kinetics indicates the existence of at 

least two different kinds of hydroxyl (C-OH) functional groups in GO, the major fraction 

(~90%) of these groups being in the unusual “slow CP regime” in which the rate of 1H T1 

relaxation is fast compared to the rate of cross-polarization. This 13C signal component is 

attributed to mobile C-OH groups interacting preferentially with fast-relaxing water 

molecules while the remaining carbons (~10%) in the usual “fast CP regime” are assigned to 

C-OH groups involved in hydrogen bonding with neighboring hydroxyl and/or epoxy groups. 
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Introduction 

 

 Hartmann-Hahn (HH) cross-polarization (CP) combined with magic-angle spinning 

(MAS) has become a standard technique to obtain high-resolution, high-sensitivity solid-

state NMR spectra of dilute spin nuclei (S) such as 13C and 15N in the presence of an 

abundant spin species (I), e.g., 1H (1) (2) (3) (4) (5) (6) (7) (8). However, it has been 

recognized for a long time that CPMAS signal intensities may disagree with the atomic ratios 

for many reasons (8) (9). One of the major problems arises from the competition between 

CP and spin-lattice relaxation in the rotating frame. Different chemical groups generally 

exhibit different CP build-up rates and spin-lattice relaxation times in the rotating frame so 

that line intensity ratios depend critically on the CP contact time. Hence, in principle, reliable 

relative peak intensities within a CP spectrum cannot be compared without a careful study 

of their kinetics of CP by variable-contact-time experiments (8). Methods for obtaining 

« quantitative » CPMAS spectra have nevertheless been proposed over the past decades 

(10) (11) (12) (13) (14) (15). Among these techniques, the so-called multiple-contact CP (MC-

CP) scheme (16) (17), first discussed by Melchior (18) (19), has been recently shown to 

provide quantitative 13C NMR spectra of complex organic materials (20) (21) as well as an 

enhancement of the magnetization transfer when compared to (single-contact) HHCP and 

adiabatic passage through the HH condition CP (APHH-CP) in static oriented (22) (23) and 

MAS powder (24) (25) samples. CP also plays a major role for probing short-range ordering 

and dynamics (8) (26). That is why CP is also commonly applied to the detection of nuclei 

without an obvious gain in signal intensity. For that it is indispensable to understand the 

kinetics of the magnetization transfer during CP. The dynamics of this process are well-

understood for 1H-13C CP. In most cases, one can find features of two limits of polarization 

transfer. On the one hand, in systems with relatively weak multiple-spin 1H-13C coupling 

constants and fast 1H spin-diffusion (SD), CP proceeds exponentially as cross-relaxation and 

is well accounted for by a spin-temperature approach (4) (27) (28), the so-called classical I-S 

model (8). This is typically the case of non-protonated carbons in organic solids. On the other 
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hand, the presence of strong heteronuclear dipolar interactions, as in the case of protonated 

carbons, leads to coherent energy transfer (29) (30) (31). The kinetics of CP is then best 

described by the so-called non-classical I-I*-S model (8). Indeed, a number of authors used 

CP with varying contact time (CPVC) to measure heteronuclear couplings and hence 

internuclear distances (32) (33) (34) (35) (36) (37) (38). Furthermore, Ernst et al (39) (40) 

have shown that the I-S model should be applied with care even in samples where the build-

up of the magnetization can be well approximated by an exponential process. 

 

 Graphene oxide (GO), the oxidized form of graphene (41), is currently heavily 

explored in many technological and medical applications (42) including graphene-based 

hybrid materials, energy storage, catalysis and many others. However, due to the 

amorphous and heterogeneous nature of GO, there are still many questions regarding its 

exact structure (43) (44) (45) (46). MAS NMR spectroscopy appears to be one of the most 

appropriate analytical technique to elucidate the molecular structure and dynamics of GO. 

13C NMR studies of various preparations of GO in the literature show the common feature of 

signals at ca. 60 ppm (epoxy groups), 70 ppm (hydroxyl groups), and 120-130 ppm (basal 

graphitic sp2 carbons) (43) (45) (47) (48) (49). These works validated the structural model 

proposed by Lerf et al. (43) and demonstrated that epoxide (C-O-C) and C-OH carbons are 

directly connected. 

 

 In this paper, we investigate and analyze in detail the kinetics of 1H-13C HHCP and 

MC-CP in GO. The experimental results are directly compared with analytical and numerical 

calculations obtained by using the I-S and I-I*-S models. 

 

Theoretical considerations 

 

 The kinetics of CP experiments are usually treated by a phenomenological theory of 

spin thermodynamics, the classical I-S model (8), which assumes that the rate of the spin 

diffusion (SD) process among abundant spins is faster than the magnitude of the coupling 
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interaction between the two spin systems. Although there are a number of objections to the 

applicability of the I-S model in the presence of large heteronuclear interactions and MAS 

(see below) experimental data can often be accounted for by this approach (8) (28) 

providing a simple physical picture of the CP dynamics. In the I-S model, the I and S spin 

systems behave as thermal baths that can be in contact with each other and with the lattice. 

Under these conditions, the spin-temperature theory can be applied and the rate of 

polarization transfer between the I and S spin reservoirs is characterized by a cross-

relaxation time 𝑇𝐼𝑆. Although the spin-temperature concept is little more than a convenient 

language when the amplitudes of the radiofrequency (RF) fields applied to the I and S spins, 

𝜔1𝐼 and 𝜔1𝑆, are larger than any local dipolar field (spin-lock conditions) its development has 

led to the establishment of simple equations, which play a similar role for NMR of solids as 

the Bloch equations do for liquids (50). With these assumptions, the variations of the inverse 

temperature 𝛽 = ℏ 𝑘𝑇⁄  of the I and S spins in the rotating frame during HHCP, 𝛽𝐼 and 𝛽𝑆, are 

described by a system of first-order differential equations of the following form (4) (8) (27) 

(28) : 

 
𝑑

𝑑𝑡
𝛽𝑆(𝑡) = −

1

𝑇𝐼𝑆
(𝛽𝑆(𝑡) − 𝛽𝐼(𝑡)) −

1

𝑇1𝜌
𝑆 𝛽𝑆(𝑡)                                                       (1) 

𝑑

𝑑𝑡
𝛽𝐼(𝑡) = −

𝜀

𝑇𝐼𝑆
(𝛽𝐼(𝑡) − 𝛽𝑆(𝑡)) −

1

𝑇1𝜌
𝐼 𝛽𝐼(𝑡),                                                       (2) 

 

where the two last terms account for spin-lattice relaxation in the rotating frame of the I and 

S nuclei, governed by the time constants 𝑇1𝜌
𝐼  and 𝑇1𝜌

𝑆 , respectively. If the Hartmann-Hahn 

(HH) condition is fulfilled (𝜔1𝐼 = 𝜔1𝑆) and both spin species have the same spin quantum 

number (e.g., ½ ), the parameter 𝜀 = (𝑁𝑆𝑆(𝑆 + 1)𝜔1𝑆
2 ) (𝑁𝐼𝐼(𝐼 + 1)𝜔1𝐼

2 )⁄  (ratio of the heat 

capacities of the S and I spins) becomes equal to the spin population ratio 𝑁𝑆 𝑁𝐼⁄  (4) (28). 

The polarization evolution of the S-spin magnetization can be defined as 

 

〈𝑆𝑧〉(𝑡) =
𝛽𝑆(𝑡)

𝛽𝐼0
,                                                                                                      (3) 
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where 𝛽𝐼0 is the inverse temperature of the I spins initially « locked » along the RF field (4). 

Eq. (3) ensures that the spin polarization is normalized, i.e., 〈𝑆𝑧〉 = 1 when 𝛽𝑆 = 𝛽𝐼0 (28). In 

practice, the relative magnitude (heat capacity) and 𝑇1𝜌 relaxation of an extremely diluted 

spin bath, such as 13C and 15N, can often be neglected (𝜀 = 0 and 1 𝑇1𝜌
𝑆⁄ = 0). The following 

well-known expression of the polarization of the S spins as a function of the contact time is 

then obtained (refer to Appendix A) (8) 

 

〈𝑆𝑧〉(𝑡𝐶𝑃) =
1

1 − 𝑇𝐼𝑆 𝑇1𝜌
𝐼⁄

{exp (−
𝑡𝐶𝑃

𝑇1𝜌
𝐼 ) − exp (−

𝑡𝐶𝑃

𝑇𝐼𝑆
)}.                                   (4) 

 

Eq. (4) holds whatever the ratio 𝜆𝐼 = 𝑇𝐼𝑆 𝑇1𝜌
𝐼⁄ . When the usual condition 𝜆𝐼 < 1 is fulfilled 

(« fast CP regime »), 〈𝑆𝑧〉(𝑡𝐶𝑃) first rises with the time constant 𝑇𝑈𝑃 = 𝑇𝐼𝑆, reaches a 

maximum value 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻 = 𝜆𝐼

(𝜆𝐼 (1−𝜆𝐼)⁄ )
 at time 𝑡𝑀𝐴𝑋

𝐻𝐻 = 𝑇𝐼𝑆ln(𝜆𝐼) (𝜆𝐼 − 1)⁄  (cf. Eqs (A.8) and 

(A.9) in Appendix A) (4) (51), and decreases together with the I spin magnetization according 

to the relaxation time, 𝑇𝐷𝑂𝑊𝑁 = 𝑇1𝜌
𝐼 . On the other hand, in the reverse situation with 𝜆𝐼 > 1 

(« slow CP regime »), it is readily observed that the S magnetization rises with 𝑇𝑈𝑃 = 𝑇1𝜌
𝐼  and 

decreases with 𝑇𝐷𝑂𝑊𝑁 = 𝑇𝐼𝑆. Since Eq. (4) is symmetrical with respect to the interchange of 

𝑇𝐼𝑆 and 𝑇1𝜌
𝐼  it is impossible to determine wether 𝑇𝐼𝑆 < 𝑇1𝜌

𝐼  or 𝑇𝐼𝑆 > 𝑇1𝜌
𝐼  from a two-

exponential fit of the HHCP dynamics alone. Complementary information from single pulse 

excitation (SPE), 𝑇1𝜌
𝐼  relaxation or TORQUE (T One Rho QUEnching) experiments (52) is then 

required (51). Although CP data have already been analyzed under the slow CP assumption 

(51) (53) (54) (55) Fig. 1(a) shows that HHCP kinetic curves in the case where 𝑇𝐼𝑆 ≫ 𝑇1𝜌
𝐼  may 

be difficult to record, as 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻 ≈ 𝑇1𝜌

𝐼 𝑇𝐼𝑆⁄ ≪ 1 (51). The same features are observed in the 

general case (𝜀 > 0) (4) although both 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻  and 𝑡𝑀𝐴𝑋

𝐻𝐻  decreases with 𝜀 when 𝜆𝐼 < 1 (Fig. 

1). Indeed, in the case of negligible 𝑇1𝜌
𝐼  relaxation (𝜆𝐼 ≪ 1), we have 〈𝑆𝑧〉(∞) = 1 (1 + 𝜀)⁄  so 

that only half of the initial polarization of the I spins can be transferred to the S spins when 

𝜀 = 1. Note also that for small values of 𝜆𝐼 one has to wait a long time compared to 𝑇𝐼𝑆 for 

the S spin signal to reach its maximum (Fig. 1(b)). However, remember that at least 95% of 

the maximum signal is reached at 𝑡𝐶𝑃 > 3𝑇𝐼𝑆. On the other hand, 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻  and 𝑡𝑀𝐴𝑋

𝐻𝐻  are 
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found to be independent of 𝜀 when 𝜆𝐼 ≫ 1, as 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻 ≈ 1 𝜆𝐼⁄  and 𝑡𝑀𝐴𝑋

𝐻𝐻 ≈ 𝑇𝐼𝑆ln(𝜆𝐼) 𝜆𝐼⁄  

(Fig. 1). 

 

The MC-CP experiment is shown in Fig. 2. After the initial CP step, both the I and S 

magnetizations are stored along the static magnetic field 𝑩0 by « flip-back » 𝜋 2⁄  pulses. 

During the mixing time 𝜏𝑀, the I spins involved in the CP transfer repolarize through SD with 

the remaining I spins (𝜏𝑀 ≪ 𝑇1
𝐼) (24) (25) and/or via 𝑇1

𝐼 spin-lattice relaxation (𝜏𝑀 > 𝑇1
𝐼) (10) 

(20) (21) (22) (23) while the S magnetization is retained (𝜏𝑀 ≪ 𝑇1
𝑆). The I and S 

magnetizations are returned to the transverse plane and the polarization transfer is 

repeated again. After 𝑁 cycles, i.e., 𝑛 = 𝑁 + 1 CP contacts of duration 𝑡𝐶𝑃 𝑛⁄ , the free 

induction decay of the S spins is observed. As shown in Appendix A, the variation of the S-

spin polarization during the MC-CP sequence under the conditions 𝑇1
𝐼 ≪ 𝜏𝑀 ≪ 𝑇1

𝑆 is written 

(𝜀 = 0 and 1 𝑇1𝜌
𝑆⁄ = 0) 

 

〈𝑆𝑧〉(𝑡𝐶𝑃 + 𝑁𝜏𝑀) = 〈𝑆𝑧〉∞
𝑀𝐶 (1 − exp (−

𝑡𝐶𝑃

𝑇𝐼𝑆
))                                           (5) 

with 

〈𝑆𝑧〉∞
𝑀𝐶 =

exp (−
𝑡𝐶𝑃

𝑛𝑇1𝜌
𝐼 ) − exp (−

𝑡𝐶𝑃

𝑛𝑇𝐼𝑆
)

(1 −
𝑇𝐼𝑆

𝑇1𝜌
𝐼 ) (1 − exp (−

𝑡𝐶𝑃

𝑛𝑇𝐼𝑆
))

.                                                     (6) 

 

Eq. (5) demonstrates that 𝑇𝐼𝑆 can be determined by a single-exponential fit of the MC-CP 

build-up curve since 𝑇1𝜌
𝐼  relaxation only affects the preexponential scaling factor 〈𝑆𝑧〉∞

𝑀𝐶. In 

the slow CP regime, this analysis is clearly superior for measuring 𝑇𝐼𝑆 compared to fitting 

standard HHCP curves. Indeed, when the I spin relaxation is fast (𝜆𝐼 > 1), the exponential 

term in which 𝑇𝐼𝑆 is found describes the decay of the CP curve (cf. Eq. (4)) and it may difficult 

to acquire enough reliable points since 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻  may be much lower than one (Fig. 1(a)). By 

contrast, Eq. (6) shows that 〈𝑆𝑧〉∞
𝑀𝐶  approaches one when 𝑡𝐶𝑃 𝑛⁄ ≪ 𝑇1𝜌

𝐼 . Hence, in principle, 

it is always possible to make the MC-CP dynamics identical to the one that would be 
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obtained by HHCP in the absence of 𝑇1𝜌 relaxation of the I spins by reducing the duration of 

the CP steps (Fig. 2). In other words, within the I-S model, the MC-CP sequence permits to 

suppress the 𝑇1𝜌
𝐼  dependence of the CP dynamics irrespective of the value of 𝑇𝐼𝑆 𝑇1𝜌

𝐼⁄  and 

one can really speak of 𝑇1𝜌
𝐼  relaxation « quenching » by contrast to the apparent quenching 

obtained with the TORQUE experiment only when 𝑇𝐼𝑆 ≪ 𝑇1𝜌
𝐼  (51) (52). Indeed, Fig. 3 clearly 

shows that 〈𝑆𝑧〉∞
𝑀𝐶  increases dramatically for all 𝑇𝐼𝑆 𝑇1𝜌

𝐼⁄  ratios when 𝑡𝐶𝑃 𝑛⁄  becomes shorter 

than 𝑇1𝜌
𝐼 . Furthermore, this increase is comparatively larger when 𝑇𝐼𝑆 > 𝑇1𝜌

𝐼  (Fig. 3). This fact 

can be directly deduced from Eq. (6), as 

 

〈𝑆𝑧〉∞
𝑀𝐶 ≈ exp (−

𝑡𝐶𝑃

𝑛𝑇1𝜌
𝐼 )     when   𝜆𝐼 ≪ 1,                                                     (7) 

and 

〈𝑆𝑧〉∞
𝑀𝐶 ≈

𝑛𝑇1𝜌
𝐼

𝑡𝐶𝑃
(1 − exp (−

𝑡𝐶𝑃

𝑛𝑇1𝜌
𝐼 ))     when   𝜆𝐼 ≫ 1.                               (8) 

Hence, although the MC-CP technique alleviates in part the intensity distortions introduced 

by a distribution of 𝑇𝐼𝑆 values as soon as 𝑡𝐶𝑃 𝑛⁄ < ~𝑇1𝜌
𝐼  (compare Figs 1(a) and 3(a)) the 

method yields quantitative spectra at 𝑡𝐶𝑃 > ~3𝑇𝐼𝑆 (provided that 𝑇𝐼𝑆 ≪ 𝑇1𝜌
𝑆 ) only if 𝑡𝐶𝑃 𝑛⁄  is 

shorter than 𝑇1𝜌
𝐼  by at least an order of magnitude (Fig. 3). On the other hand, MC-CP signals 

in the fast CP regime (𝑇𝐼𝑆 𝑇1𝜌
𝐼⁄ < 1) are observed to be effectively suppressed if 𝑡𝐶𝑃 (𝑛𝑇1𝜌

𝐼 )⁄  

is larger than ~6 (Fig. 3). The MC-CP technique is then expected to be particularly useful for 

measuring 𝑇𝐼𝑆 in the slow CP regime. The extension to the general case (𝜀 > 0) does not 

change significantly 〈𝑆𝑧〉∞
𝑀𝐶  although the time constant of the MC-CP build-up curve 𝑇𝐼𝑆

𝑀𝐶  is 

generally larger than 𝑇𝐼𝑆 (Appendix A). In the fast CP regime (𝜆𝐼 < 1), the amplitude ratio 

𝑟𝑆 = 〈𝑆𝑧〉∞
𝑀𝐶 〈𝑆𝑧〉𝑀𝐴𝑋

𝐻𝐻⁄  cannot exceed 2.73 (𝜀 = 0) or 3.64 (𝜀 = 1) even if the duration of the 

CP steps are reduced so that 〈𝑆𝑧〉∞
𝑀𝐶 ≈ 1 (𝑡𝐶𝑃 𝑛⁄ ≪ 𝑇1𝜌

𝐼 ). As expected, Fig. 4(a and c) shows 

that much higher 〈𝑆𝑧〉∞
𝑀𝐶 〈𝑆𝑧〉𝑀𝐴𝑋

𝐻𝐻⁄  ratios may be obtained in the slow CP regime when 

𝑡𝐶𝑃 𝑛⁄ < ~𝑇1𝜌
𝐼 . Moreover, it is seen that the time ratio 𝑟𝑇 = 𝑡𝑀𝐴𝑋

𝐻𝐻 𝑇𝐼𝑆
𝑀𝐶⁄  decreases with 

increasing values of 𝑡𝐶𝑃 (𝑛𝑇𝐼𝑆)⁄  in the fast CP regime when 𝜀 > 0 (Fig. 4(b and d)). By 

contrast, 𝑟𝑇 is observed to be independent of 𝑡𝐶𝑃 (𝑛𝑇𝐼𝑆)⁄  when 𝜆𝐼 ≫ 1 (𝑇𝐼𝑆
𝑀𝐶 ≈ 𝑇𝐼𝑆). 
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As already mentioned, in principle, the simple I-S model of CP dynamics is valid when the SD 

process accomplished by energy-conserving flip-flop transitions of neighbor I-I spin pairs is 

faster than the magnitude of the coupling interaction between the two spin systems. 

Indeed, the abundant spin system then behaves as a thermal bath and the spin-temperature 

concept is valid. This is typically the case of non-protonated carbons in organic solids. On the 

other hand, the presence of strong heteronuclear interactions, as in the case of protonated 

carbons, leads to coherent energy transfer causing dipolar oscillations (29) (30) (31). The 

resulting two-stage character of the polarization transfer for rigid and semi-rigid CHn groups 

(n = 1, 2, 3) has been previously observed and analyzed in both static and rotating samples 

(56) (57) (58). Since oscillations of magnetization between I and S spins as well as effects of 

MAS are completely neglected in the spin-temperature approach (59), the applicability of 

the I-S model is questionable. To apprehend the complexity of the spin dynamics 

calculations, let us treat first the simplest case of an isolated two-spin ½ system. Using the 

generalized master equation of Zwanzig based on projection-operator and Liouville 

techniques (60) (61), Marica and Snider (62) have shown that the polarizations of the S spin 

and the I spin satisfy the following integro-differential equations for the CP between two ½-

spin particles under MAS: 

 
𝑑

𝑑𝑡
〈𝑆𝑧〉(𝑡) = − ∫ 𝑏(𝑡)𝑏(𝑡′)[𝐾𝑆𝑆(𝑡 − 𝑡′)〈𝑆𝑧〉(𝑡′) + 𝐾𝑆𝐼(𝑡 − 𝑡′)〈𝐼𝑧〉(𝑡′)]𝑑𝑡′

𝑡

0

,            (9) 

 

where the I-S dipolar coupling is a periodic function of time 

 

𝑏(𝑡) =
𝐷𝐼𝑆

2
[√2sin2𝛽cos(𝛾 + 𝜔𝑟𝑡) − sin2𝛽cos(2𝛾 + 2𝜔𝑟𝑡)]                                  (10) 

 

with 𝐷𝐼𝑆 = 𝛾𝐼𝛾𝑆ℏ 𝑟3⁄ , and the memory kernels are 

 

𝐾𝑆𝑆(𝜏) =
1

2
[cos(Σ𝜏) + cos(Δ𝜏)]                                                                                      (11) 
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𝐾𝑆𝐼(𝜏) =
1

2
[cos(Σ𝜏) − cos(Δ𝜏)],                                                                                        (12) 

 

where Σ = 𝜔1𝐼 + 𝜔1𝑆 and Δ = 𝜔1𝐼 − 𝜔1𝑆 ; the corresponding equation for 〈𝐼𝑧〉(𝑡) is 

obtained by interchanging S and I labels on the various terms: 

 
𝑑

𝑑𝑡
〈𝐼𝑧〉(𝑡) = − ∫ 𝑏(𝑡)𝑏(𝑡′)[𝐾𝐼𝑆(𝑡 − 𝑡′)〈𝑆𝑧〉(𝑡′) + 𝐾𝐼𝐼(𝑡 − 𝑡′)〈𝐼𝑧〉(𝑡′)]𝑑𝑡′

𝑡

0

,            (13) 

 

where 𝐾𝐼𝑆(𝜏) = 𝐾𝑆𝐼(𝜏) and 𝐾𝐼𝐼(𝜏) = 𝐾𝑆𝑆(𝜏). 

 

Note that Eqs (9) and (13) obtained by using the special properties of ½-spin systems and the 

special nature of the Hamiltonian are exact and valid for all time for a pair of ½-spin nuclei 

(62). However, the derivation of a general analytical solution to Eqs (9) and (13) is difficult 

due to the time dependence of the I-S dipolar coupling (62). A simple analytical expression of 

the CP dynamics around a sideband matching condition is obtained only under fast MAS 

conditions (𝜔𝑟 ≫ 𝐷𝐼𝑆) (62) (63). Furthermore, in a real situation, the I-S spin pair treated 

above interacts with other spins I and will tend to reach thermal equilibrium through SD. 

Fortunately, because SD is reduced by MAS, the two-spin approximation is expected to 

become more realistic with increasing spinning speed so that the couplings between 

abundant spins may be safely neglected. 

 

The calculation of the CP dynamics from first principles becomes practically impossible when 

considering a multiple-spin system of 𝑁𝐼 and 𝑁𝑆 spins dipolarly coupled with each others. In 

this case, the general approach consists in projecting onto selected parts of the Hamiltonian 

in order to derive kinetic equations as solutions for the thermodynamic coordinates both 

under static (64) and MAS (65) (66) conditions. Although these Mori type (67) integro-

differential equations reveal formal analogies with Eqs (9) and (13) several assumptions and 

approximations must be made in order to obtain analytical expressions for the kinetic 
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equations and the CP parameters. Notably, the heteronuclear dipolar coupling Hamiltonian 

must be small in comparison with the I and S Zeeman energy reservoirs in the tilted double 

rotating frame (lowest Born approximation) and the memory kernels are usually assumed to 

decrease much more rapidly than the thermodynamic coordinates due to the strong 

homonuclear dipolar coupling among the abundant spins (fast-correlation limit or Markov 

approximation) (4) (64) (65) (66). Indeed, the fast-correlation assumption permits the 

calculation of a CP rate constant 1 𝑇𝐼𝑆⁄  and results in the same pair of coupled differential 

equations as Eqs (1) and (2) (classical I-S model) when adding the spin-lattice interaction 

terms characterising the 𝑇1𝜌 decay of the two spin baths (4). However, as the homonuclear 

dipolar interactions are averaged by MAS, heteronuclear interactions often lead to coherent 

energy transfer so that the kinetics of CP has a non-exponential character, i.e., memory (or 

non-Markovian) effects become important as the kinetic equations involve the history of the 

system investigated at earlier times (64) (68). It might be possible, though very tedious, to 

relax the Markov approximation in the memory function approach of Demco and co-workers 

(4) (64). This would likely result in numerical rather than analytical solutions. 

 

An alternative method is to consider the system as an ensemble of tightly coupled 𝐼𝑛𝐼
∗ - S 

subsystems or clusters (e.g., 13C spins and their 𝑛𝐼 directly bonded protons) in thermal 

contact with a reservoir consisting of all the other I spins (29) (30) (31) (58) (69). This is the 

non-classical I-I*-S model (8) (refer to Appendix B) in which spin fluctuations induced by flip-

flop transitions within the I-spin bath are treated as a relaxation process of the I* spin(s). In 

other words, the coupling of the I*-spin(s) to the infinite reservoir of I spins is described by a 

SD-type superoperator depending on two rate constants, 𝑅𝑑𝑝 = 1 𝑇𝑑𝑝⁄  and 𝑅𝑑𝑓 = 1 𝑇𝑑𝑓⁄  

(58) (69). Generally, it is necessary to resort to rather tedious computations involving exact 

numerical integration of the quantum mechanical (QM) master equation (Eq. (B.1) in 

Appendix B) (25). For instance, considering only the Ising term of the I-I* interaction (𝑅𝑑𝑓 =

0) in the case of an I*-S spin pair (𝑛𝐼 = 1) and neglecting 𝑇1𝜌 relaxation, the difference and 

sum expectation values satisfy the following integro-differential equations (70) : 
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𝑑

𝑑𝑡
〈𝐼𝑧 − 𝑆𝑧〉(𝑡) = − ∫ 𝑏(𝑡)𝑏(𝑡′)cos[Δ(𝑡 − 𝑡′)]exp[−𝑅dp(𝑡 − 𝑡′)]〈𝐼𝑧 − 𝑆𝑧〉(𝑡′)𝑑𝑡′

𝑡

0

               

                                                                                                                                                  (14) 
𝑑

𝑑𝑡
〈𝐼𝑧 + 𝑆𝑧〉(𝑡) = − ∫ 𝑏(𝑡)𝑏(𝑡′)cos[Σ(𝑡 − 𝑡′)]exp[−𝑅dp(𝑡 − 𝑡′)]〈𝐼𝑧 + 𝑆𝑧〉(𝑡′)𝑑𝑡′

𝑡

0

.            

                                                                                                                                                  (15) 

 

Note that the interaction between the I* spin and the I-spin bath shows up simply by an 

extra exponential decay of rate constant 𝑅𝑑𝑝 for the memory kernels (cf. Eqs (11) and (12)) 

reflecting the decoherence of the I*-S spin system to its multiple-spin environment. Eqs (14) 

and (15) can be solved exactly only in the static case (no sample spinning) or under fast MAS 

conditions (𝜔𝑟 ≫ 𝐷𝐼𝑆) (70). However, they become identical to Eqs (1) and (2) (classical I-S 

model) with 1 𝑇𝐼𝑆⁄ = 𝑏2(0)𝑇𝑑𝑝 2⁄  and 𝜀 ≡ 𝜀∗ = 𝑁𝑆 𝑁𝐼
∗⁄ = 1 𝑛𝐼⁄ = 1 (cf. Appendix B) with 

1 𝑇1𝜌
𝐼 =⁄ 1 𝑇1𝜌

𝑆 =⁄ 0 in the fast-correlation limit (𝐷𝐼𝑆𝑇𝑑𝑝 and 𝜔𝑟𝑇𝑑𝑝 ≪ 1), as long as Σ𝑇𝑑𝑝 ≫

1 and Δ𝑇𝑑𝑝 ≪ 1. 

 

In many applications of the CP technique the influence of thermal mobility on the I-S and I-I 

dipolar couplings has to be considered. Random molecular motions cause fluctuations of the 

spin interactions and, hence, of the local fields. The rate of these fluctuations can be 

described by a correlation time 𝜏𝑐. Even in the simplest case of an I-S spin pair in two-site 

exchange, analytical solution for CP under MAS are generally not available and it is necessary 

to resort to spin dynamics numerical simulations in the intermediate regime (𝐷𝐼𝑆𝜏𝑐~1) (71). 

On the other hand, effects of anisotropic molecular motions are readily calculated in the 

limit of fast averaging (𝐷𝐼𝑆𝜏𝑐 ≪ 1) as it is accounted for by a reduced (residual) dipolar 

coupling. In the case of isotropic small-step rotational diffusion, if we assume that the 

correlation function 𝑏(𝑡)𝑏(𝑡 + 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝐷𝐼𝑆
2 5⁄ )exp(−|𝜏| 𝜏𝑐⁄ ) decays with a rate exceeding by 

far the dipolar coupling (𝐷𝐼𝑆𝜏𝑐 ≪ 1) and the MAS rate (𝜔𝑟𝜏𝑐 ≪ 1) the upper limit of the 

integral in Eqs (9) and (13) can be taken as infinity because the integrand is negligible for 𝑡 ≫

 𝜏𝑐. The following equations for the spin polarizations are then obtained : 

 



 12 

𝑑

𝑑𝑡
〈𝑆𝑧〉(𝑡) = −𝑅𝑆𝑆〈𝑆𝑧〉(𝑡) − 𝑅𝑆𝐼〈𝐼𝑧〉(𝑡)                                             (16) 

 
𝑑

𝑑𝑡
〈𝐼𝑧〉(𝑡) = −𝑅𝐼𝑆〈𝑆𝑧〉(𝑡) − 𝑅𝐼𝐼〈𝐼𝑧〉(𝑡),                                             (17) 

 

where 

 

𝑅𝑆𝑆 = 𝑅𝐼𝐼 =
𝐷𝐼𝑆

2

5
∫ 𝐾𝑆𝑆(𝜏)exp (−

𝜏

𝜏𝑐
) 𝑑𝜏

∞

0

=
𝐷𝐼𝑆

2

10
[𝐽(Σ) + 𝐽(Δ)]            (18) 

 

𝑅𝑆𝐼 = 𝑅𝐼𝑆 =
𝐷𝐼𝑆

2

5
∫ 𝐾𝑆𝐼(𝜏)exp (−

𝜏

𝜏𝑐
) 𝑑𝜏

∞

0

=
𝐷𝐼𝑆

2

10
[𝐽(Σ) − 𝐽(Δ)].             (19) 

 

The reduced spectral density of thermal motion 𝐽(𝜔) is provided by the Lorentzian 

distribution 

 

𝐽(𝜔) =
𝜏𝑐

1 + (𝜔𝜏𝑐)2
.                                     (20) 

 

Eqs (16) - (20) are identical to the ones obtained by relaxation theory in the weak-collision 

case (72) if spectral densities containing the Larmor frequencies are neglected 

(𝜔0𝐼𝜏𝑐, 𝜔0𝑆𝜏𝑐 ≫ 1). Moreover, when the amplitudes of the applied RF fields are much larger 

than the rate of the motion (Σ𝜏𝑐 ≫ 1) and the Hartmann-Hahn condition is (approximately) 

satisfied (Δ𝜏𝑐 ≪ 1), we have 𝐽(Δ) ≫ 𝐽(Σ) so that Eqs (16) and (17) are identical to Eqs (1) 

and (2) (classical I-S model) with 1 𝑇𝐼𝑆⁄ ≈ 𝐷𝐼𝑆
2 𝜏𝑐 10⁄  and 𝜀 = 1 (𝑁𝐼 = 𝑁𝑆 in the case of I-S spin 

pairs of 100% abundant nuclei and 1 𝑇1𝜌
𝐼⁄ = 1 𝑇1𝜌

𝑆⁄ = 0). Hence, in this case, the CP 

dynamics is similar to the one derived from the thermodynamic theory (I-S model) for which 

the local field fluctuations are caused by flip-flop transitions within the I-spin bath (𝜏𝑐 = ∞) 

(4). 

 

The consideration of multiple-spin systems (𝑛𝐼 > 1) and random molecular motion greatly 

complicates the resolution of the QM master equation for the I-I*-S model (69) (71). 
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Appropriate mathematical approximations must then be made. As shown previously (25), 

analytical solutions to the QM master equation can be conveniently obtained by using the 

memory function approach (4) (60) (61) (62) (64) (67) (68) and the Anderson-Weiss (AW) 

approximation (73) (74) (75). Furthermore, since the loss of correlation due to stochastic 

local-field fluctuations induced by motional and spin exchange are treated on an equal 

footing this approach is expected to be particularly convenient to describe the combined 

effects of spin diffusion and molecular motion on CPMAS dynamics. As shown in Appendix B, 

the I-I*-S model is readily extended to the treatment of multiple-spin systems (𝑛𝐼 > 1) 

including molecular dynamics and spin-lattice relaxation. Fig. 5(a and b) compares the I-I*-S 

HHCP and MC-CP dynamics at the 𝑛𝐻𝐻 = ±1 HH condition calculated by exact numerical 

integration of the quantum mechanical master equation with the ones obtained by using the 

AW theory (Eqs (B.28) and (B.31) in Appendix B). As expected, the AW or Gaussian powder 

approximation does not account for the transient oscillations following the average time 

course of the HHCP exact powder calculations (25) (58). A very good agreement between the 

Gaussian and exact powder calculations is nevertheless observed at short contact times for 

both the HHCP and MC-CP dynamics (Fig. 5(a and b)). Moreover, since √𝑀2
𝐼𝑆𝑇1𝜌

𝐼 , √𝑀2
𝐼𝑆𝑇1𝜌

𝑆 ≥

44.44 the decaying slope of the HHCP curve is well approximated by the rate 𝑅1 =

(1 𝑇1𝜌
𝐼⁄ + 1 𝑇1𝜌

𝑆⁄ ) 2⁄  (Eq. (B.26)). A closer inspection of the CP dynamics shows that the MC-

CP transfer efficiency is overestimated by the AW model at long contact times if 𝑇1𝜌
𝐼 = 𝑇1𝜌

𝑆 , 

especially when 𝑡𝐶𝑃 𝑛⁄ < 𝑇𝑑𝑝 (Fig. 5(a)). This behavior has already been attributed to the 

fact that all orientational correlations between the CP steps of the MC-CP sequence are 

neglected in the AW approach (25). By contrast, the S spin polarization reached in MC-CP at 

𝑡𝐶𝑃 > 𝑇1𝜌
𝐼  is underestimated by the AW calculation in the case when 1 𝑇1𝜌

𝑆⁄ = 0 (Fig. 5(b)). 

This is not surprising since 𝑇1𝜌 relaxation is exactly accounted for by Eq. (B.25) only if 𝑇1𝜌
𝐼 =

𝑇1𝜌
𝑆 . Moreover, because √𝑀2

𝐼𝑆𝑇𝑑𝑝 = 4.44 the Markov approximation (√𝑀2
𝐼𝑆𝑇𝑑𝑝 ≪ 1) breaks 

down so that the I-I*-S model exhibits memory effects (68). Hence, strictly speaking, the 

exact numerical MC-CP calculations of Fig. 5(a and b) cannot be reproduced by the 

exponential build-up curve obtained with the AW model (Eq. (B.31)). Indeed, the MC-CP 

dynamics of Fig. 5(a and b) deviate from an exponential function and are best fitted by two-
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exponential curves. However, we have observed that the two resulting 𝑇𝐼𝑆
𝑀𝐶  time constants 

are close to each other (differing by a factor less than ~4) when 𝑡𝐶𝑃 𝑛⁄ > 𝑇𝑑𝑝 (𝑡𝐶𝑃 𝑛⁄ = 

277.5 and 555 s). This is the reason why these MC-CP exact-powder calculations are 

relatively well described by Eq. (B.31) when 𝑇1𝜌
𝐼 = 𝑇1𝜌

𝑆  (Fig. 5(a)). 

 

Since the classical (I-S) and non-classical (I-I*-S) models converge in the fast-correlation limit 

(√𝑀2
𝐼𝑆𝑇𝑑𝑝 ≪ 1) with 𝜀 ≡ 𝜀∗ = 𝑁𝑆 𝑁𝐼

∗⁄ = 1 𝑛𝐼⁄  (cf. Appendix B) we have also reported in Fig. 

5(c and d) HHCP and MC-CP dynamics calculations using the spin-temperature concept (Eqs 

(A.7) and (A.14) in Appendix A). Disregarding the initial non-exponential character and 

transient oscillations, the HHCP dynamics of the I-I*-S model is well approximated by the I-S 

model calculation with 𝑇𝐼𝑆 = 0.15 ms and 𝜀 = 1 despite the fact that √𝑀2
𝐼𝑆𝑇𝑑𝑝 is as large as 

4.44. Furthermore, the MC-CP transfer efficiency at long contact times in the absence of 𝑇1𝜌 

relaxation of the S spins (1 𝑇1𝜌
𝑆⁄ = 0) is well predicted by the simple spin thermodynamics 

theory (Fig. 5(d)), by contrast with the I-I*-S model AW calculation (Fig. 5(b)). This is readily 

attributed to the fact that 𝑇1𝜌 relaxation is exactly treated in the classical I-S model (cf. 

Appendix A). On the other hand, the short-time behavior of the MC-CP dynamics of the I-I*-S 

and I-S models depart significantly from each other when 𝑡𝐶𝑃 𝑛⁄ < 𝑇𝐼𝑆. While the MC-CP 

build-up rate of the classical (I-S) calculation increases steadily towards 1 𝑇𝐼𝑆⁄  when 

decreasing 𝑡𝐶𝑃 𝑛⁄  this is not the case of the non-classical (I-I*-S) model calculations at 

𝑡𝐶𝑃 𝑛⁄ = 50 and 138.8 s due to non-Markovian behavior. Indeed, within the I-I*-S model, 

the MC-CP rate goes to zero as 𝑡𝐶𝑃 𝑛⁄ → 0. This fact is found to be reminiscent of the 

Gaussian short-time behavior of the HHCP dynamics (8) (58) (68) which cannot be neglected 

since 𝑇𝑑𝑝 is quite long. Fig. 5(c and d) nevertheless shows that the numerical calculations are 

well described by the I-S model when 𝑡𝐶𝑃 𝑛⁄ > 𝑇𝐼𝑆 (𝑡𝐶𝑃 𝑛⁄ = 277.5 and 555 s): whereas Eqs 

(A.14) and (B.31) yield identical results when 𝑇1𝜌
𝐼 = 𝑇1𝜌

𝑆  (Fig. 5(a and c)) the I-S model 

provides a better agreement with the exact-powder calculations than the AW approximation 

in the absence of 𝑇1𝜌
𝑆  relaxation (Fig. 5(b and d)). We have evaluated the range of validity of 

the simplified thermodynamic (I-S) and AW (I-I*-S) analytical solutions by comparison with 

exact numerical integration of the QM master equation in the usual case where the 
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condition 𝑇𝐼𝑆 ≪ 𝑇1𝜌
𝐼 is fulfilled (fast CP regime). However, the reverse situation 𝑇𝐼𝑆 ≫ 𝑇1𝜌

𝐼  

(slow CP regime) which is likely to occur in the presence of molecular motion with 𝜏𝑐~ 1 𝜔1𝐼⁄  

must also be considered. 

 

As expected, the AW calculations of Fig. 6(a) show that molecular motion has a profound 

effect on the HHCP build-up rate in the intermediate regime (0.1 ms > 𝜏𝑐 > 1 s) in 

agreement with previous works (68) (71). The polarization transfer becomes less efficient 

and, in the case of a fast anisotropic motion, the HHCP dynamics depends on the averaged 

interaction through the reduced second moment 𝑆2𝑀2
𝐼𝑆 (0 < 𝑆2 < 1). Furthermore, Fig. 

6(b) shows that the AW HHCP build-up curve in the fast-averaging limit with 𝑆2 = 0.1 is 

close to an exponential function with 𝑇𝐼𝑆 = 1.3 ms (|𝑆|√𝑀2
𝐼𝑆𝑇𝑑𝑝 < 1) and agrees well at 

short contact times with an exact-powder calculation with a reduced effective (residual) I*-S 

dipolar coupling. As previously mentioned, when 𝜏𝑐 is comparable to 1 𝜔1𝐼⁄  (and 1 𝜔1𝑆⁄ ) the 

CP kinetics must also be strongly affected by rotating-frame spin-lattice relaxation (cf. 

Appendix B). The HHCP and MC-CP dynamics of the I-I*-S and I-S models in the presence of 

fast 𝑇1𝜌 relaxation of the I spins (𝑇1𝜌
𝐼 = 0.1 ms) are compared in Fig. 6(b). The good 

agreement obtained confirms that the simple analytical solutions of the I-S model may be 

used as an alternative to exact numerical computations to obtain the kinetic parameters. 

 

Experimental section 

 

The GO sample was provided by Grupo Antolin (Spain). This GO was obtained from carbon 

nanofibers. These fibers are made of ribbons of about five graphene layers. They are 

reduced in their length and exfoliated to form GO under strong acid conditions. The 

presence of adsorbed water molecules was previoulsly assessed using TGA and FT-IR  (47). 

The TGA curve displayed a weight loss of around 13% below 150°C. The presence of water 

molecules was also observed in the FT-IR spectrum (47), although infrared spectroscopy 

does not allow to determine its amount. This GO consists of a fine powder that was directly 

used to fill the NMR rotor without any grinding process. 
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All the NMR experiments applied to GO were performed at room temperature on a Bruker 

Avance III 750 spectrometer, operating at frequencies of 188.65 and 750.19 MHz for 13C and 

1H resonance, respectively, and equipped with a Bruker triple resonance MAS probe using 

3.2-mm-o.d. zirconia rotors. The spinning frequency was fixed at 𝜈𝑟 = 18 kHz. CP and SPE 13C 

MAS spectra of GO were acquired with a recycle time of 1 s and 30 s, respectively. Proton 

decoupling during acquisition was obtained by using SPINAL-64 (76). The HHCP and MC-CP 

1H-13C dynamics in GO were recorded with the proton and carbon RF fields adjusted to fulfill 

the first-order sideband (𝑛𝐻𝐻 = 1) HH condition at 𝜔1𝐻 2𝜋⁄ = 72.2 kHz and 𝜔1𝐶 2𝜋⁄ = 54.2 

kHz. Independent and direct measurements of the 1H and 13C spin-lattice relaxation times in 

the laboratory (𝑇1) and rotating frame (𝑇1𝜌) have also been performed (cf. ESI Sections 2 and 

3). The inversion-recovery (IR) 𝜋 − 𝑡𝐼𝑅 − 𝜋 2⁄  pulse sequence was used to obtain 𝑇1 in 1H 

and 13C resonance. A spin-lock (SL) sequence consisting of an initial 𝜋 2⁄  pulse followed by a 

long 90° phase shifted pulse of duration 𝑡𝑆𝐿 was employed for the 1H and 13C 𝑇1𝜌 relaxation 

measurements. The  𝑇1 and 𝑇1𝜌 relaxation times were obtained by fitting the line intensity as 

a function of 𝑡𝐼𝑅 and 𝑡𝑆𝐿, respectively, to a sum of exponentials (cf. ESI Figs S2-S5). In both 

the CP, SPE, IR and SL experiments, an additional rotor-synchronized refocusing pulse has 

been included after a delay 𝜏 = 𝑇𝑟 (55.55 s) or 6𝑇𝑟 (333.33 s) prior to acquisition in order 

to reduce spectral distortions (77) (78). HHCP and MC-CP dynamics were simulated by using 

the analytical expressions given in the theoretical section or by integrating numerically the 

QM master equation, Eq. (B.1), as described previously (57) (58). 

 

Results and discussion 

 

Various solid-state 13C and 1H NMR experiments were performed on our GO sample (see Figs 

7, 8 and ESI Figs S1-S6). Fig. 7 compares the quantitative SPE 13C spectrum of GO with the 

one obtained by HHCP (𝑡𝐶𝑃 = 555 𝜇𝑠). Although the observed chemical shifts are in good 

agreement with previously reported data (47) the HHCP peak intensities strongly disagree 

with the atomic ratios. Moreover, no improvement of the signal-to-noise ratio is achieved by 
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the HHCP technique (Fig. 7). These observations are readily attributed to the competition 

between CP and 𝑇1𝜌 relaxation of the 1H nuclei (𝑇1𝜌
𝐻 ) (8) (51). As known, the main sources of 

1H nuclear polarization for 13C in CPMAS experiments of GO are the hydroxyl (C-OH) groups 

and water molecules bound to the surface and those entrapped/intercalated between the 

GO sheets (43). In the usual assumption that 𝑇𝐶𝐻 < 𝑇1𝜌
𝐻  (fast CP regime), Fig. 8(a) shows that 

the average CP build-up rate 1 𝑇𝐶𝐻⁄  of the carbon atoms of the C-OH groups is higher than 

the one of the epoxy (C-O-C) groups. Therefore, signal intensities will not be comparable in 

short-contact-time CP (SCT-CP) spectra (𝑡𝐶𝑃 < ~0.5 ms). Actually, in heterogeneous and 

proton deficient systems like GO, only long CP contact times of several milliseconds could 

possibly permit a complete transfer of magnetization to all 13C sites (𝑡𝐶𝑃 ≫ 𝑇𝐼𝑆 for all 13C 

resonances) (10) (11). Unfortunately, reliable HHCP peak intensities are not observable in 

GO due to fast 𝑇1𝜌
𝐻  relaxation (Fig. 8(a)). Indeed, the HHCP intensity for the C-OH, C-O-C and 

sp2-bonded (C=C) carbon atoms rapidly decreases after a maximum located at 𝑡𝑀𝐴𝑋
𝐻𝐻 ≈ 0.25, 

0.8 and 0.6 ms, respectively. Fig. 8(b) demonstrates that the MC-CP technique which 

alleviates most of the magnetization loss due to 𝑇1𝜌
𝐻  relaxation leads to a much larger 

polarization transfer efficiency : the steady state polarization reached for MC-CP yields a 

signal enhancement relative to the maximum value obtained in HHCP by a factor 

(〈𝑆𝑧〉∞
𝑀𝐶 〈𝑆𝑧〉𝑀𝐴𝑋

𝐻𝐻⁄ ) of 2.8, 2.5 and 2 at the C-OH, C-O-C and C=C resonances, respectively (Fig. 

8). However, by contrast with recent MC-CP results in complex organic materials (20) (79), 

line intensity distortions introduced by the distribution of CP rates and 𝑇1𝜌
𝐻  values are not 

significantly diminished in GO because the C-O-C and C=C carbons still are weakly cross-

polarized at a contact time of ~ 7 ms (Fig. 8(b)), as in the SCT-CP spectrum of Fig. 7 (𝑡𝐶𝑃 =

555 𝜇𝑠). The reason is that in GO many epoxy and sp2 carbons situated within aromatic 

clusters are characterized by much weaker CP rates than the C-OH carbons. The 

accumulation of 13C magnetization by MC-CP then requires a prohibitively long total contact 

time (𝑡𝐶𝑃 > 𝑇𝐶𝐻) and is hampered by 𝑇1𝜌
𝐶  relaxation, as the S spin polarization is scaled down 

by a factor (1 + 𝑇𝐶𝐻 𝑇1𝜌
𝐶⁄ )

−1
 (8). 
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Our 1H and 13C 𝑇1 relaxation study of GO (see ESI Section 2) shows that the condition 𝑇1
𝐻 ≪

𝜏𝑀 ≪ 𝑇1
𝐶  is satisfied for the relevant spectral lines in the case of the MC-CP experiments of 

Fig. 8(b) (𝜏𝑀 = 50 ms). Assuming that the phenomenological spin-temperature approach 

with 𝜀 = 0 is valid (the natural abundance of 13C is 1%), the MC-CP build-up in a 

homogeneous system should then be an exponential curve of time constant 𝑇𝐶𝐻
𝑀𝐶 = 𝑇𝐶𝐻 (cf. 

theoretical section and Appendix A). By contrast, the experimental MC-CP data with 

𝑡𝐶𝑃 𝑛⁄ = 277.5 s at 70 ppm (C-OH resonance) exhibit two exponential components (ESI Fig. 

S6) with time constants : 𝑇𝐶𝐻
𝑀𝐶(1)

= 0.25 ms (36%) and 𝑇𝐶𝐻
𝑀𝐶(2)

= 1.1 ms (64%). A separation 

into two components is outside of experimental accuracy for the MC-CP kinetics at the C-O-C 

(59 ppm) and C=C (129 ppm) low intensity lines (Fig. 8(b)). The analysis presented below is 

then restricted to the dominant CP signal at the C-OH sites (70 ppm). The two-exponential 

MC-CP build-up may be readily attributed to the heterogeneous nature of our system. 

However, the two time constants 𝑇𝐶𝐻
𝑀𝐶(1)

 and 𝑇𝐶𝐻
𝑀𝐶(2)

 differing only by a factor ~4, a non-

exponential behavior due to the breaking down of the Markov approximation cannot be 

excluded (cf. Fig. 5). Indeed, the rapid increase of the 13C magnetization at the C-OH sites 

during HHCP (Fig. 8(a)) is consistent with the presence of large 13C-1H interactions although 

no dipolar oscillations are detected. In order to rule out memory effects, let us first assume 

that our system is well approximated by a single value for the CP time constant 𝑇𝐶𝐻. If the 

usual 𝑇𝐶𝐻 < 𝑇1𝜌
𝐻  situation holds (fast CP regime) the C-OH HHCP dynamics of Fig. 8(a) is well 

fitted with 𝑇𝑈𝑃 = 𝑇𝐶𝐻 ≈ 0.1 ms and 𝑇𝐷𝑂𝑊𝑁 = 𝑇1𝜌
𝐻 ≈ 2 ms (𝜀 = 0), i.e., 𝜆𝐻 = 𝑇𝐶𝐻 𝑇1𝜌

𝐻⁄ ≈ 

0.05. Using this value of 𝜆𝐻 together with 𝑡𝐶𝑃 (𝑛𝑇𝐶𝐻)⁄ ≈ 2.8, Fig. 4(a and b) shows that 𝑟𝑆 =

〈𝑆𝑧〉∞
𝑀𝐶 〈𝑆𝑧〉𝑀𝐴𝑋

𝐻𝐻⁄ ≈ 1 and  𝑟𝑇 = 𝑡𝑀𝐴𝑋
𝐻𝐻 𝑇𝐶𝐻

𝑀𝐶⁄ ≈ 3. These results clearly disagree with the 

experimental data of Fig. 8 : 𝑟𝑆 ≈ 2.8 and 𝑟𝑇 ≈ 0.4. Note however that relaxing the simplified 

constraint 𝜀 = 0 improves significantly the agreement with experiment since Fig. 4(c and d) 

leads to 𝑟𝑆 ≈ 2 and 𝑟𝑇 ≈ 0.6 for 𝜀 = 1. As suggested by the calculations of Fig. 5, this may be 

attributed to the fact that the I-I*-S model better describes the CP results (𝜀 ≡ 𝜀∗). In the 

opposite case (slow CP regime), i.e., 𝑇𝑈𝑃 = 𝑇1𝜌
𝐻 ≈ 0.1 ms and 𝑇𝐷𝑂𝑊𝑁 = 𝑇𝐶𝐻 ≈ 2 ms (𝜆𝐻 ≈ 

20), Fig. 4 leads to a much higher 𝑟𝑆 ratio (~8) and a lower value of 𝑟𝑇 (~0.2) irrespective of 

𝜀 that also do not account for the experimental results. The presence of large amount of C-
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OH carbons coupled to protons under the condition 𝑇𝐶𝐻 ≫ 𝑇1𝜌
𝐻  is nevertheless consistent 

with the fact that 〈𝑆𝑧〉∞
𝑀𝐶 is reduced by a factor 1.8 when 𝑡𝐶𝑃 𝑛⁄  is increased from 277.5 s to 

555 s (Fig. 8(b)). Indeed, Fig. 3(b) shows that such a behavior is characteristic of the slow CP 

regime as long as the CP steps of the MC-CP sequence are longer that twice the 𝑇1𝜌 

relaxation time of the proton spins (𝑡𝐶𝑃 (𝑛𝑇1𝜌
𝐻 )⁄ > ~2). This condition is clearly fulfilled if 

𝑇1𝜌
𝐻 ≈ 0.1 ms. By contrast, in the case of the fast CP regime (𝑇𝐷𝑂𝑊𝑁 = 𝑇1𝜌

𝐻 ≈ 2 ms), doubling 

the length of the CP steps can only lead to a marginal change of 〈𝑆𝑧〉∞
𝑀𝐶  (10% decrease 

whatever the value of 𝜀) since 𝑡𝐶𝑃 (𝑛𝑇1𝜌
𝐻 )⁄  then varies from ~0.14 to ~0.28 (Fig. 3(b)). It is 

then concluded that a simple model in which the C-OH groups are characterized by a single 

value of 𝑇𝐶𝐻 and/or 𝑇1𝜌
𝐻  is inadequate for GO. In accordance with both the 𝑇1 and 𝑇1𝜌 

relaxation results (ESI Sections 2 and 3), this two-exponential behavior implies that two (or 

more) different carbon and proton environments must be considered in GO although a 

single isotropic C-OH resonance signal is observed (Fig. 7). Indeed, it is well established that 

non-exponential CP build-up and/or 𝑇1𝜌
𝐻  spin-lattice relaxation can arise from the presence 

of different phases or sites within the same phase, reflecting for instance motional disorder  

(5) (6) (51) (53) (54) (80) (81). We shall assume here, as it is generally done, that the 

relaxation time 𝑇1𝜌
𝐻  is the same during the spin lock and CP periods. 1H 𝑇1𝜌 relaxation decays 

with spin-echo delay values 𝜏 = 55.55 s (one rotor period) and 𝜏 = 333.33 s (six rotor 

periods) both are well described by two-exponential curves with a short (fast-relaxing) ill-

defined component, 𝑇1𝜌𝑆
𝐻  ~ 0.05 - 0.3 ms, and a long (slow-relaxing) component, 𝑇1𝜌𝐿

𝐻 ≈ 2 

ms (ESI Fig. S4). The observed HHCP build-up constant 𝑇𝑈𝑃 ≈ 0.1 ms (Fig. 8(a)) may then be 

ascribed to 𝑇1𝜌𝑆
𝐻  (slow CP regime). Note that rapidly relaxing water molecules with 𝑇1𝜌

𝐻 (H2O) 

ranging from 0.4 to 0.8 ms have been previously observed in several hydrous silicates (51) 

(53) (54). By contrast to direct 1H 𝑇1𝜌 relaxation measurements using a Hahn-echo 

refocusing pulse, the HHCP and MC-CP data are not affected by 𝑇2
𝐻 relaxation (the whole 1H 

magnetization is initially spin-locked) and no significant loss of 13C magnetization is observed 

before signal acquisition (𝜏 = 55.55 s and 𝑇2
𝐶 ≫ 𝑇2

𝐻). The 13C relaxation measurements 

show that 𝑇1𝜌
𝐶 ≿ 7 - 9 ms for all chemical sites (ESI Fig. S5). Neglecting 𝑇1𝜌

𝐶  relaxation (𝑇1𝜌
𝐶 ≫

𝑇1𝜌𝐿
𝐻 ) and assuming that 𝜀 = 0, the four parameters 𝑇𝐶𝐻

𝑀𝐶(1)
= 𝑇𝐶𝐻

(1)
= 0.25 ms, 
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𝑇𝐶𝐻
𝑀𝐶(2)

= 𝑇𝐶𝐻
(2)

= 1 ms, 𝑇1𝜌𝑆
𝐻 = 0.1 ms and 𝑇1𝜌𝐿

𝐻 = 2 ms that are consistent with both the MC-

CP and 𝑇1𝜌
𝐻  relaxation experiments must be assigned to the two components of our system 

in order to obtain the couplings between the 1H and 13C spin reservoirs and to the lattice. 

This can be done by model calculations of the HHCP and MC-CP dynamics (cf. theoretical 

section). Assuming that the CP kinetics follows the I-S model, it is remarked that the fraction 

of each component can always be adjusted so that all possible assignments give a perfect 

agreement with the MC-CP data. The simulations of the HHCP and MC-CP (𝑡𝐶𝑃 𝑛⁄ = 277.5 

s) corresponding to all possible cases are compared with the experimental data in Fig. 9. In 

Fig. 9(a) (case 1), both components are considered to relax with 𝑇1𝜌𝐿
𝐻  (𝑇1𝜌

𝐻(1)
= 𝑇1𝜌

𝐻(2)
= 2 

ms), i.e., 𝑇1𝜌 relaxation of the hydroxyl protons does not depend on the C-OH carbon species 

involved. This would be the case if the 13C spins are not at all cross-polarized by the fast 

relaxing 1H spins (e.g., mobile protons of bulk water (82)). This first case can clearly be 

excluded because the experimental values of both 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻  and 𝑡𝑀𝐴𝑋

𝐻𝐻  are found to be largely 

overestimated by the calculation (Fig. 9(a)). A much better agreement is obtained when 

considering that the major fraction (83%) of the C-OH groups are in the slow CP regime (case 

2) (Fig. 9(c)). The HHCP and MC-CP curves are then interpreted as composed of two types of 

hydroxyl sites having dramatically different abilities to cross polarize (Fig. 9(d)). In 

quantitative terms, the results of Figs 9(c) and 9(d) show that when a dominant population 

of carbons is in the slow CP regime, even a small fraction of carbons within the fast CP 

regime may increase to a significant extent 〈𝑆〉𝑀𝐴𝑋
𝐻𝐻 . Moreover, this would correspond to a 

more realistic situation where a majority of motionally disordered C-OH groups with 𝑇𝐶𝐻 ≫

𝑇1𝜌
𝐻  coexist with a minor fraction of rigid C-OH groups with 𝑇𝐶𝐻 ≪ 𝑇1𝜌

𝐻 . By contrast, Fig. 9(e) 

shows that the « unphysical » opposite case (case 3) where the 𝑇𝐶𝐻
(1)

 and 𝑇𝐶𝐻
(2)

 CP time 

constants are associated with the 𝑇1𝜌𝑆
𝐻  and 𝑇1𝜌𝐿

𝐻  relaxation times, respectively, gives a poor 

agreement with the HHCP experiment. For completeness, we have checked that the highly 

unprobable solution where all 13C spins are cross-polarized by fast relaxing protons with 

𝑇1𝜌
𝐻 = 0.1 ms (case 4) must also be excluded (Fig. 9(g)). In conclusion, the assignment of Fig. 

9(c) clearly provides the best agreement with both the HHCP, MC-CP and relaxation data in 

GO. However, a close inspection of Fig. 9(c) shows that the experimental HHCP dynamics still 
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reaches its maximum earlier and at a lower level than the simulation. This discrepancy may 

be attributed to the fact that the rigid component (𝑇𝐶𝐻
(1)

= 0.25 ms ; 𝑇1𝜌
𝐻(1)

= 2 ms) does not 

comply with the classical kinetic model. Indeed, for rigid and fairly isolated C-OH groups, the 

timescale of the polarization transfer becomes comparable to the spin diffusion rate and the 

fast-correlation limit or Markov approximation is no longer valid. As already mentioned, 

memory effects are present and CP is better described by the non-classical I-I*-S model 

(Appendix B). In the theoretical section, we have demonstrated that the I-I*-S model can be 

conveniently approximated by the classical I-S model with 𝜀 ≡ 𝜀∗ = 1 𝑛𝐼⁄  as long as the 

duration of the MC-CP contacts is longer than the CP time constant (𝑡𝐶𝑃 𝑛⁄ > 𝑇𝐼𝑆). We 

expect this condition to be verified in experiments with 𝑡𝐶𝑃 𝑛⁄ > 0.25 ms (cf. theoretical 

section). Fig. 10 then shows that the I-S model with 𝜀(1) = 0.5 (𝑛𝐼 = 2) permits to remove all 

discrepancies observed in Fig. 9(c) and gives an excellent agreement with the additional MC-

CP experiment at 𝑡𝐶𝑃 𝑛⁄ = 555 s. This is a consequence of the increase of the amplitude 

ration 𝑟𝑆
(1)

 and the decrease of the time ratio 𝑟𝑇
(1)

 due to the fact that 𝜀(1) > 0 (cf. Fig. 4). 

These results fit well with a bottleneck situation where CP at short contact times in the rigid 

C-OH units (𝑇𝐶𝐻 ≈ 0.1 ms) is limited by spin diffusion to their nearest neighboring protons 

(𝑛𝐼  ~ 1). As expected, the equilibrium polarizations calculated from the MC-CP data with 

𝑡𝐶𝑃 𝑛⁄ = 277.5 s and 555 s, 〈𝑆〉∞
𝑀𝐶 = 0.377 and 0.213 (Fig. 10(a)), are much lower than 

one, the optimum value reached when 𝑡𝐶𝑃 𝑛⁄ ≪ 𝑇1𝜌
𝐼  (cf. Fig. 3). Fig. 10(b) also shows that 

the large decrease in the MC-CP signal intensity observed when increasing 𝑡𝐶𝑃 𝑛⁄  from 277.5 

to 555 s is almost exclusively accounted for by the fast relaxing component. This result 

clearly confirms that the major fraction of the C-OH carbons is in the slow CP regime. Indeed, 

Fig. 3(a) demonstrates that only a small decrease of 〈𝑆〉∞
𝑀𝐶  (~10%) is possible irrespective of 

the value of 𝑇𝐶𝐻 𝑇1𝜌
𝐻⁄  when 𝑇1𝜌

𝐻 = 2 ms, i.e., 𝑡𝐶𝑃 (𝑛𝑇1𝜌
𝐻 )⁄  varies from 0.14 to 0.28. By 

contrast, the reduction of 〈𝑆〉∞
𝑀𝐶  by a factor ~2 (from 0.32 to 0.15) agrees well with 

calculated values for 𝑇𝐶𝐻 𝑇1𝜌
𝐻⁄ ≫ 1 at 𝑡𝐶𝑃 (𝑛𝑇1𝜌

𝐻 )⁄ = 2.78 and 5.55 corresponding to 𝑇1𝜌
𝐻 = 

0.1 ms (cf. Fig. 3(b)). Finally, we have checked that the 1H-13C CPMAS dynamics cannot be 

accounted for by a single-component fit. Indeed, although the slow CP regime assumption 

provides a reasonable agreement with the steady state polarizations reached for MC-CP 
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relative to the maximum value obtained in HHCP (〈𝑆𝑧〉∞
𝑀𝐶 〈𝑆𝑧〉𝑀𝐴𝑋

𝐻𝐻⁄ ) it gives a poor agreement 

with the HHCP experiment at long contact times (Fig. 10(c)). Moreover, as expected (cf. ESI 

Fig. S6), the MC-CP data depart significantly from the calculated (exponential) build-up 

curves. 

 

In summary, our results strongly suggest the presence of two types of C-OH groups in GO 

with different mobility. The major component (~90%) in the slow CP regime is attributed to 

mobile C-OH groups interacting with fast-relaxing water molecules (𝑇𝐼𝑆
(2)

≈ 1 ms ; 𝑇1𝜌
𝐻(2)

≈ 

0.1 ms ; 𝜀 ≈ 0) while the remaining carbons (~10%) in the fast CP regime interact strongly 

with hydroxyl protons involved in hydrogen bonding with neighboring hydroxy and/or epoxy 

groups (83) (𝑇𝐼𝑆
(1)

≈ 0.1 ms ; 𝑇1𝜌
𝐻(1)

≈ 2 ms ; 𝑛𝐼~1). However, despite the 9-fold higher 

amount of hydrous species, the hydrogen-bonded C-OH carbons which are the most efficient 

sites for CP transfer represent a large part of the HHCP and MC-CP signals (Fig. 10). These 

findings may be related to previous studies of GO. Panich et al (84) have observed that the 

static room temperature (RT) 1H NMR spectrum of GO is a narrow line with linewidth Δ𝜐 = 

4.2 kHz attributed to mobile H2O molecules. The fact that this linewidth is three orders of 

magnitude greater than the linewidth of liquid water at room temperature implies partial 

immobilisation, almost certainly because of hydrogen-bonding between the water and GO. 

Indeed, different types of motion of confined water and functional groups have been 

previously proposed in GO (85). The simulations of Fig. S7 (ESI) demonstrate that this 

observation is consistent with our 1H MAS spin-echo NMR spectrum (ESI Fig. S1). Both the 

static and MAS RT 1H spectra are the sum of two components : (i) a line in fast-exchange 

narrowing corresponding to H2O molecules undergoing large amplitude rotational motion 

with a correlation time 𝜏𝐶  ; (ii) a line in slow-exchange narrowing due to spin diffusion with a 

bath correlation time 𝜏𝐵 corresponding to rigid hydrogen-bonded C-OH groups. Whereas the 

line already narrowed by molecular reorientations (and possibly translations) is little 

affected by MAS the rigid-lattice spectrum is strongly averaged by MAS, resulting in line 

narrowing in the strong collision limit (𝜔𝑟𝜏𝐵 ≫ 1). The narrow line of the tumbling water 

molecules representing a large fraction of the signal dominates the RT static 1H spectrum 
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(ESI Fig. S7(a)) in agreement with the data of Panich et al (84). By contrast, in spin-echo MAS 

experiments, 1H lineshapes in fast and slow-exchange narrowing may have similar linewidths 

due to MAS averaging (ESI Fig. S7(b)) and intensities (due to different 𝑇2
𝐻 relaxation times), 

as observed in the non-quantitative spectrum of Fig. S1 (𝜏 = 333.33 s). Furthermore, 

components (i) and (ii) lead to with very different 𝑇1𝜌
𝐻  relaxation times in good agreement 

with our 1H relaxation results (ESI Fig. S4). Indeed, spatial averaging due to random 

molecular motion with 𝜏𝐶 = 0.2 – 0.4 s fits well with the fact that 𝑇2
𝐻 = 𝑇1𝜌

𝐻 ~ 0.1 ms for 

the signal assigned to fast-relaxing water molecules (𝜔1𝐻𝜏𝐶 ≪ 1). On the other hand, since 

coherent spatial averaging due to MAS at 𝜈𝑟 = 18 kHz and spin fluctuations with 𝜏𝐵 = 0.1 ms 

have no significant effects on 𝑇1𝜌
𝐻 , the hydrogen-bonded C-OH protons under rigid-lattice 

conditions are likely to relax via spin diffusion towards sinks. A sink is a part of the material 

where relaxation is very fast. Obviously, the tumbling water molecules (𝑇1𝜌
𝐻 ≈ 0.1 ms) may 

be considered as efficient relaxation sinks in GO. This implies that spin diffusion towards the 

sinks in a time 𝑇1𝜌
𝐻 ≈ 2ms is then the rate-controlling step.  

 

Conclusions 

 

 The characteristic features of evolutions of magnetization in HHCP and MC-CP 

experiments were investigated using the simple solutions of the spin thermodynamic 

equations (classical I-S model). Furthermore, using the memory function approach and the 

Anderson-Weiss (AW) approximation, we have derived analytical solutions to the quantum 

mechanical (QM) master equation for HHCP and MC-CP dynamics in the case of a multiple-

spin system in the presence of random molecular motions (non-classical I-I*-S model). The 

range of validity of both the simplified thermodynamic (I-S) and AW (I-I*-S) expressions has 

been evaluated by comparison with exact numerical integration of the QM master equation. 

 

 HHCP is found to be inefficient in GO due to fast spin-lattice relaxation of the 1H spins 

in the rotating frame (𝑇1𝜌
𝐻 ). By contrast, the MC-CP technique which alleviates most of the 

magnetization loss by 𝑇1𝜌
𝐻  relaxation leads to a much larger polarization transfer efficiency 
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which in turn provides a dramatic reduction in measuring time. Moreover, a detailed 

analysis of the HHCP and MC-CP kinetics shows the existence of at least two different types 

of C-OH functional groups although a unique 13C resonance is observed, the major fraction of 

the hydroxy carbons being in the slow CP regime in which the rate of 𝑇1𝜌
𝐻  relaxation is fast 

compared to the CP rate. This unusual CP regime has been reported for 1H-19F or 19F-13C 

transfer in polymer systems (86) (87) and 1H-29Si CP in some inorganic compounds (51) (53) 

(54) (55). However, to the best of our knowledge, the slow CP regime has not been 

previously observed in organic polyaromatic nanomaterials such as GO. The 

complementarity of the HHCP and MC-CP experiments in determining the CP regime or its 

possible mixed character has been clearly demonstrated. The major 13C signal component in 

the slow CP regime is likely to be mobile functional groups interacting preferentially with 

fast-relaxing water molecules while the remaining carbons (in the usual fast CP regime) 

strongly coupled with hydroxyl protons may be assigned to C-OH groups involved in 

hydrogen bonding (83). Hence, our work also underlines the important role of water in GO 

(43) (84) (85). 

 

 In conclusion, a general strategy to obtain unique structural and motional 

informations from the kinetics of HHCP and MC-CP has been presented and applied 

successfully to GO. Notably, in the slow CP regime, the CP time constants cannot be 

extracted from the kinetics of HHCP alone and their measurement is best accomplished by 

recording MC-CP build-up curves preferably at several durations of the individual contacts. 

Since this situation probably arises in functionalized GO (47) (88) and other disordered 

systems the method presented in this paper is expected to be of great value in elucidating 

the structures, dynamics, and interactions at interfaces in functional nanomaterials. 

 

Appendix A : Classical I-S Model 

 

The general solution of Eqs (1) and (2) (main text) under the initial conditions (at time 𝑡0) 

𝛽𝑆(𝑡0) and 𝛽𝐼(𝑡0) can be expressed as (4) 
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𝛽𝑆(𝑡0 + 𝑡) =
1

𝑎+ − 𝑎−
{[(𝜀 + 𝜆𝐼 − 𝑎−)𝛽𝑆(𝑡0) + 𝛽𝐼(𝑡0)]exp (−

𝑎−𝑡

𝑇𝐼𝑆
)

− [(𝜀 + 𝜆𝐼 − 𝑎+)𝛽𝑆(𝑡0) + 𝛽𝐼(𝑡0)]exp (−
𝑎+𝑡

𝑇𝐼𝑆
)}                        (A. 1) 

𝛽𝐼(𝑡0 + 𝑡) =
1

𝑎+ − 𝑎−
{[(1 + 𝜆𝑆 − 𝑎−)𝛽𝐼(𝑡0) + 𝜀𝛽𝑆(𝑡0)]exp (−

𝑎−𝑡

𝑇𝐼𝑆
)

− [(1 + 𝜆𝑆 − 𝑎+)𝛽𝐼(𝑡0) + 𝜀𝛽𝑆(𝑡0)]exp (−
𝑎+𝑡

𝑇𝐼𝑆
)},                     (A. 2) 

where 

𝑎± = 𝑎0 ± √𝑎0
2 − 𝑏                                                                                                     (A. 3) 

with 

𝑎0 =
1

2
(1 + 𝜀 + 𝜆𝐼 + 𝜆𝑆)                                                                                            (A. 4) 

and 

𝑏 = 𝜆𝐼(1 + 𝜆𝑆) + 𝜀𝜆𝑆.                                                                                                  (A. 5) 

 

The other parameters are the spin-population and relaxation-time ratios :  

 

 𝜀 =
𝑁𝑆

𝑁𝐼
 ;  𝜆𝐼 =

𝑇𝐼𝑆

𝑇1𝜌
𝐼  ;  𝜆𝑆 =

𝑇𝐼𝑆

𝑇1𝜌
𝑆 .                                                                               (A. 6) 

 

Since the initial conditions are 𝛽𝑆(0) = 0 and 𝛽𝐼(0) = 𝛽𝐼0 for the the basic HHCP 

experiment, Eq. (A.1) with 𝑡0 = 0 reduces to the general HHCP double-exponential equation 

(4) (8) (28) 

 

〈𝑆𝑧〉(𝑡𝐶𝑃) =
𝛽𝑆(𝑡𝐶𝑃)

𝛽𝐼0
=

1

𝑎+ − 𝑎−
{exp (−

𝑎−𝑡𝐶𝑃

𝑇𝐼𝑆
) − exp (−

𝑎+𝑡𝐶𝑃

𝑇𝐼𝑆
)}.              (A. 7) 

 

When 𝜀 = 0 and 𝜆𝑆 = 0 Eq. (A.7) yields a particularly simple expression which is given by Eq. 

(4) (main text). Note also that, in the case of negligible 𝑇1𝜌
𝐼  relaxation (𝜆𝐼 ≪ 1), we have 

𝑎+ − 𝑎− ≈ 1 + 𝜀 so that only half of the initial polarization of the I spins can be transferred 

to the S spins if 𝜀 = 1. Applying Eq. (A.7), it is readily shown that the S spin magnetization 

reaches a maximum value 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻  at time 𝑡𝑀𝐴𝑋

𝐻𝐻  defined by (4) 
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〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻 =

1

𝑎+ − 𝑎−
{(

𝑎−

𝑎+
)

𝑎−
𝑎+−𝑎−

− (
𝑎−

𝑎+
)

𝑎+
𝑎+−𝑎−

},                                                      (A. 8) 

and 

 

𝑡𝑀𝐴𝑋
𝐻𝐻 =

𝑇𝐼𝑆

𝑎+ − 𝑎−
ln (

𝑎+

𝑎−
).                                                                                                 (A. 9) 

 

The evolution of 𝛽𝑆 given by Eq. (A.1) can be rewritten as 

 

𝛽𝑆(𝑡0 + 𝑡) =
𝛽𝐼(𝑡0)

𝑎+ − 𝑎−
{exp (−

𝑎−𝑡

𝑇𝐼𝑆
) − exp (−

𝑎+𝑡

𝑇𝐼𝑆
)} + 𝛽𝑆(𝑡0)𝑋(𝑡),                     (A. 10) 

where 

 

𝑋(𝑡) =  
1

𝑎+ − 𝑎−
 {(𝜀 + 𝜆𝐼 − 𝑎−)exp (−

𝑎−𝑡

𝑇𝐼𝑆
) − (𝜀 + 𝜆𝐼 − 𝑎+)exp (−

𝑎+𝑡

𝑇𝐼𝑆
)}.    (A. 11) 

 

Assuming full re-equilibration of the I spins to the lattice temperature during each mixing 

step of the MC-CP pulse sequence (Fig. 2), i.e., 𝑇1
𝐼 ≪ 𝜏𝑀, we have 𝛽𝐼(𝜏𝑘) = 𝛽𝐼0 with 𝜏𝑘 =

𝑘(𝑡𝐶𝑃 𝑛⁄ + 𝜏𝑀). Furthermore, if 𝜏𝑀 ≪ 𝑇1
𝑆 the S magnetization is retained during 𝜏𝑀 

(𝛽𝑆 remains constant), i.e., 𝛽𝑆(𝜏𝑘+1) = 𝛽𝑆(𝜏𝑘 + 𝑡𝐶𝑃 𝑛⁄ ). Hence, the following recursion 

relation for the evolution of the inverse temperature of the S spins during each cycle of the 

MC-CP sequence is valid : 

 

𝛽𝑆(𝜏𝑘+1) =
𝛽𝐼0

𝑎+ − 𝑎−
{exp (−

𝑎−𝑡𝐶𝑃

𝑛𝑇𝐼𝑆
) − exp (−

𝑎+𝑡𝐶𝑃

𝑛𝑇𝐼𝑆
)} + 𝛽𝑆(𝜏𝑘)𝑋(𝑡𝐶𝑃 𝑛⁄ )                 

                   = 𝛽𝑆(𝑡𝐶𝑃 𝑛⁄ ) + 𝛽𝑆(𝜏𝑘)𝑋(𝑡𝐶𝑃 𝑛⁄ ).                                                                (A. 12) 

 
Therefore, 𝛽𝑆(𝑡𝐶𝑃 + 𝑁𝜏𝑀) can be generally expressed as the geometric series 
 

𝛽𝑆(𝑡𝐶𝑃 + 𝑁𝜏𝑀) = 𝛽𝑆(𝑡𝐶𝑃 𝑛⁄ )[1 + 𝑋(𝑡𝐶𝑃 𝑛⁄ ) + 𝑋2(𝑡𝐶𝑃 𝑛⁄ ) + ⋯ + 𝑋𝑁(𝑡𝐶𝑃 𝑛⁄ )]. 

           (A. 13) 
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The final result is then 

 

〈𝑆𝑧〉(𝑡𝐶𝑃 + 𝑁𝜏𝑀) = 〈𝑆〉∞
𝑀𝐶(1 − 𝑋𝑛(𝑡𝐶𝑃 𝑛⁄ )),                                                   (A. 14) 

 

where 

 

〈𝑆〉∞
𝑀𝐶 =

〈𝑆𝑧〉(𝑡𝐶𝑃 𝑛⁄ )

1 − 𝑋(𝑡𝐶𝑃 𝑛⁄ )
.                                                                                     (A. 15) 

 

and 〈𝑆𝑧〉(𝑡𝐶𝑃 𝑛⁄ ) and 𝑋(𝑡𝐶𝑃 𝑛⁄ ) are given by Eqs (A.7) and (A.11). Eq. (A.14) shows that the 

MC-CP dynamics is exponential with a time constant 

 

𝑇𝐼𝑆
𝑀𝐶 =

−𝑡𝐶𝑃

𝑛ln(𝑋(𝑡𝐶𝑃 𝑛⁄ ))
.                                                                                    (A. 16) 

 

Although 𝑇𝐼𝑆
𝑀𝐶  approaches 𝑇𝐼𝑆 when 𝑡𝐶𝑃 𝑛⁄ ≪ 𝑇𝐼𝑆 the time constant 𝑇𝐼𝑆

𝑀𝐶  is generally longer 

than 𝑇𝐼𝑆 unless the number of S spins is negligibly small (𝜀 ≪ 1) and/or 𝑇𝐼𝑆 ≫ 𝑇1𝜌
𝐼  (𝑇𝐼𝑆

𝑀𝐶 ≈

𝑇𝐼𝑆). Fortunately, the relative magnitude (heat capacity) and 𝑇1𝜌 relaxation of an extremely 

diluted spin bath, such as 13C and 15N, can often be neglected (𝜀 = 0 and 𝜆𝑆 = 0) so that Eqs 

(A.3) - (A.6) yield 𝑎± = 1 and 𝑎∓ = 𝜆𝐼 (case 𝜆𝐼 < 1 or 𝜆𝐼 > 1) and Eqs (A.7) and (A.14) 

reduce to Eqs (4) and (5) (main text). 

 

Appendix B : Non-classical I-I*-S Model 

 

Following the usual treatment of second-order perturbation theory, the spin dynamics of the 

reduced density operator in the simplest case of a I*-S spin pair (𝑛𝐼 = 1) including rotating-

frame spin-lattice (𝑇1𝜌) relaxation is given by the generalized Liouville-von Neumann 

differential equation (29) (30) 

 
𝑑

𝑑𝑡
�̂�(𝑡) = −𝑖[�̂�(𝑡), �̂�(𝑡)] − Γ̂̂ {�̂�(𝑡) − �̂�∞𝑒−𝑡 𝑇1𝜌

𝐼⁄ } − R̂̂{�̂�(𝑡)}                     (B. 1) 
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with the Hamiltonian 

 

�̂�(𝑡) = 𝜔1𝐼𝐼𝑧 + 𝜔1𝑆�̂�𝑧 + 2𝑏(𝑡)𝐼𝑥�̂�𝑥,                                                                  (B. 2) 

 

where 𝜔1𝐼 and 𝜔1𝑆 are the amplitudes of the radiofrequency (RF) fields applied to the I and 

S spins and 𝑏(𝑡) is given by Eq. (8) (main text). The initial and final density operators, �̂�(0) 

and �̂�∞, are 𝐼𝑧 and 𝐼𝑧 + �̂�𝑧, respectively. For a fast fluctuating I-spin bath, the spin diffusion 

superoperator Γ̂̂ can be written as 

 

Γ̂̂(𝜎) = 𝑅𝑑𝑝 [𝐼𝑧 , [𝐼𝑧 , 𝜎]] + 𝑅𝑑𝑓 {[𝐼𝑥, [𝐼𝑥, 𝜎]] + [𝐼𝑦, [𝐼𝑦, 𝜎]]}.                  (B. 3) 

 

Γ̂̂ then depends on two rate constants, 𝑅𝑑𝑝 = 1 𝑇𝑑𝑝⁄  and 𝑅𝑑𝑓 = 1 𝑇𝑑𝑓⁄ . As 𝑅𝑑𝑓 is associated 

with the flip-flop term of the homonuclear (I-I*) dipolar Hamiltonian (XY or planar term) (69) 

its role in transferring polarization can be easily interpreted. Hence, 𝑅𝑑𝑓 allows the complete 

thermal equilibration with the bath. The effect of 𝑅𝑑𝑝 is more subtle : it can be associated 

with a process where the environment observes the system breaking its coherences (Ising 

term) (89) driving the system to the internal quasiequilibrium (90). Actually, 𝑇𝑑𝑝 and 𝑇𝑑𝑓 

may be respectively regarded as the spin-spin (𝑇2) and spin-lattice (𝑇1) relaxation times of 

the I* spin in a random fields mode. Indeed, for a dipolar interaction Hamiltonian in strong 

RF fields (𝜔1𝐼 ≫ 𝜔𝑟), 𝑅𝑑𝑝 and 𝑅𝑑𝑓 can be expressed as (25) (91) 

 

𝑅𝑑𝑝 =
𝑁2

𝐼𝐼

3
[

2𝜏𝑥

1 + (𝜔𝑟𝜏𝑥)2
+

𝜏𝑥

1 + 4(𝜔𝑟𝜏𝑥)2
]                                         (B. 4) 

and 

 

𝑅𝑑𝑓 ≈
𝑁2

𝐼𝐼

4

𝜏𝑥

1 + (𝜔1𝐼𝜏𝑥)2
,                                                                          (B. 5) 
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where 𝑁2
𝐼𝐼 is the second moment of the dipolar fluctuation autocorrelation function and 𝜏𝑥 

is the correlation time of the I-spin bath in the rotating frame. Note that Eqs (B.4) and (B.5) 

give 𝑅𝑑𝑝 𝑅𝑑𝑓⁄ = 4 in the extreme narrowing regime (𝜔1𝐼𝜏𝑥 ≪ 1) (69). The 

phenomenological relaxation superoperator R̂̂ for the I*-S system is assumed to satisfy the 

relaxation rate equations 

 

𝑑

𝑑𝑡
(𝜎11

𝑟𝑒𝑙(𝑡) − 𝜎44
𝑟𝑒𝑙(𝑡)) = −

𝑅1𝜌
Σ

2
(𝜎11(𝑡) − 𝜎44(𝑡)) −

𝑅1𝜌
Δ

2
(𝜎33(𝑡) − 𝜎22(𝑡))            (B. 6) 

 

𝑑

𝑑𝑡
(𝜎33

𝑟𝑒𝑙(𝑡) − 𝜎22
𝑟𝑒𝑙(𝑡)) = −

𝑅1𝜌
Δ

2
(𝜎11(𝑡) − 𝜎44(𝑡)) −

𝑅1𝜌
Σ

2
(𝜎33(𝑡) − 𝜎22(𝑡)),            (B. 7) 

 

where 

             𝑅1𝜌
Σ =

1

𝑇1𝜌
𝐼 +

1

𝑇1𝜌
𝑆           and         𝑅1𝜌

Δ =
1

𝑇1𝜌
𝐼 −

1

𝑇1𝜌
𝑆 .                                                (B. 8) 

 

The time dependence of 𝑏(𝑡) makes the derivation of general (non-secular) solutions to the 

quantum mechanical (QM) equation (Eq. (B.1)) a formidable task (25) (70). A simple 

analytical solution for the polarization of the S spin, 〈𝑆𝑧〉(𝑡) = 𝑇𝑟(�̂�(𝑡)�̂�𝑧), is obtained only 

when the HH matching condition is exactly fulfilled in the secular approximation, i.e., under 

the conditions 𝜔1𝐼 = 𝜔1𝑆 ≫ 𝐷𝐼𝑆 ≫ 𝑅𝑑𝑝, 𝑅𝑑𝑓 ≫ 1 𝑇1𝜌
𝐼⁄ , 1 𝑇1𝜌

𝑆⁄  (25) (29) (30) (69) (70). 

 

We have recently derived non-secular analytical solutions to the QM master equation for 

HHCP and MC-CP dynamics that are valid for arbitrary values of the applied RF fields and 

spinning frequency by using a combination of the memory function approach and the 

Anderson-Weiss (AW) approximation (25). This simple formalism is extended below to the 

case of a multiple-spin system 𝐼𝑛𝐼
∗ - S (𝑛𝐼 > 1) in the presence of lattice motion. In strong RF 

fields (Σ = 𝜔1𝐼 + 𝜔1𝑆 ≫ 𝐷𝐼𝑆) and neglecting 𝑇1𝜌 relaxation, the polarizations of a particular 

S spin (13C), 〈𝑆𝑧〉(𝑡), and its 𝑛𝐼 neighboring I* spins (1H), 𝑛𝐼〈𝐼𝑧〉(𝑡), may be described by the 

differential equations (58) (68) 
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𝑑

𝑑𝑡
〈𝑆𝑧〉(𝑡) = −𝑛𝐼

𝑑

𝑑𝑡
〈𝐼𝑧〉(𝑡) = − ∫ 𝐾Δ(𝑡 − 𝑡′)[〈𝑆𝑧〉(𝑡′) − 〈𝐼𝑧〉(𝑡′)]𝑑𝑡′

𝑡

0

.               (B. 9) 

 

Eqs (B.9) describe a non-Markovian process because they contain the memory function 

𝐾Δ(𝜏). An ansatz form for 𝐾Δ(𝜏) in a powder CPMAS experiment is given by (25) (65) (71) 

(92) (93) 

 

𝐾Δ(𝜏) =
𝑀2

𝐼𝑆

2
𝐾𝑀𝐴𝑆(𝜏)𝑔(𝜏)cos(Δ𝜏)exp(−𝑅𝑑𝑝𝜏),                                               (B. 10) 

 

where 𝑀2
𝐼𝑆 is the powder-averaged heteronuclear second moment (72) of the 𝐼𝑛𝐼

∗ - S spin 

system (𝑀2
𝐼𝑆 = 𝐷𝐼𝑆

2 5⁄  if 𝑛𝐼 = 1) and Δ = 𝜔1𝐼 − 𝜔1𝑆. MAS introduces a modulation of the 

interactions at the angular frequency 𝜔𝑟 : 

 

𝐾𝑀𝐴𝑆(𝜏) =
2

3
cos(𝜔𝑟𝜏) +

1

3
cos(2𝜔𝑟𝜏).                                                        (B. 11) 

 

Molecular reorientations give rise to local fluctuations in the 𝐼𝑛𝐼
∗ - S dipolar field. It is not 

difficult to include such motional effects in 𝐾Δ(𝜏). Their associated correlation function 

 

𝑔(𝜏) = (1 − 𝑆2)exp (−
𝜏

𝜏𝑐
) + 𝑆2                                                            (B. 12) 

 

is defined by an order parameter 𝑆 and a correlation time 𝜏𝑐. 

 

In the fast-correlation limit (√𝑀2
𝐼𝑆𝑇𝑑𝑝 ≪ 1), note that the following CP rate is obtained : 

 
1

𝑇𝐼𝑆
= ∫ 𝐾Δ(𝜏)𝑑𝜏

∞

0

=
𝑀2

𝐼𝑆

4
𝑗(𝜔1𝐼 − 𝜔1𝑆),                                            (B. 13) 

 

where 

 

𝑗(𝜔) = (1 − 𝑆2)𝐾(𝜔, 1 𝜏𝑐⁄ ) + 𝑆2𝐾(𝜔, 0)                                           (B. 14) 
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with 

 

𝐾(𝜔, 1 𝜏𝑐⁄ ) =
1

3
[𝐿(𝜔 − 𝜔𝑟 , 1 𝜏𝑐⁄ + 𝑅𝑑𝑝) + 𝐿(𝜔 + 𝜔𝑟 , 1 𝜏𝑐⁄ + 𝑅𝑑𝑝)]                         

 

+
1

6
[𝐿(𝜔 − 2𝜔𝑟 , 1 𝜏𝑐⁄ + 𝑅𝑑𝑝) + 𝐿(𝜔 + 2𝜔𝑟 , 1 𝜏𝑐⁄ + 𝑅𝑑𝑝)]             (B. 15) 

 

and 

 

𝐿(Ω, Γ) =
2Γ

Γ2 + Ω2
.                                                                                      (B. 16) 

 

𝑗(𝜔) is the reduced spectral density defined in Refs (92) (93). Furthermore, Eqs (B.9) become 

identical to Eqs (1) and (2) (I-S model) replacing 〈𝑆𝑧〉, 〈𝐼𝑧〉 and 1 𝑛𝐼⁄  by 𝛽𝑆, 𝛽𝐼 and 𝜀, 

respectively, and adding 𝑇1𝜌
𝐼  and 𝑇1𝜌

𝑆  spin-lattice relaxation terms. Hence, as expected, the I-

I*-S model is completely equivalent to the theoretical analysis of CPMAS dynamics 

developed by Topgaard and coworkers (92) (93) when √𝑀2
𝐼𝑆𝑇𝑑𝑝 ≪ 1 (fast-correlation limit) 

and 𝑛𝐼 ≫ 1 (I-S model with 𝜀 ≈ 0). Note that the spin dynamics obtained with the non-

classical I-I*-S model ( 𝑛𝐼 = 1) through Eq. (B.1) also converges with the classical I-S 

calculation when √𝑀2
𝐼𝑆𝑇𝑑𝑓 ≪ 1 with 1 𝑇𝐼𝑆⁄ = 𝑀2

𝐼𝑆𝑇𝑑𝑓 2⁄  and 𝜖 = 0. 

 

Although the simplifying fast-correlation assumption is practical for predicting CP signal 

intensities under MAS (65) (92) (93) a more rigorous approach based on the popular AW 

model (73) (74) (75) accounting for the non-Markovian character of the spin dynamics must 

be used when analyzing HHCP and MC-CP build-up curves at short contact times (25) (58). 

Such a more accurate description is presented in the following. It is first remarked that Eqs 

(B.9) can be rewritten as 

 
𝑑

𝑑𝑡
〈𝐼𝑧 − 𝑆𝑧〉(𝑡) = −

𝑛𝐼 + 1

𝑛𝐼
∫ 𝐾Δ(𝑡 − 𝑡′)〈𝐼𝑧 − 𝑆𝑧〉(𝑡′)𝑑𝑡′

𝑡

0

                       (B. 17) 
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𝑑

𝑑𝑡
〈𝑛𝐼𝐼𝑧 + 𝑆𝑧〉(𝑡) = 0.                                                                                        (B. 18)  

 

Eq. (B.18) agrees with the fact that the total polarization of the  𝑆-𝐼𝑛𝐼
∗  spin system 

(〈𝑛𝐼𝐼𝑧 + 𝑆𝑧〉) is still a constant of the motion and therefore conserved under MAS when the 

amplitudes of the applied RF fields are much larger than the spinning rate and the 𝐼𝑛𝐼
∗ - S 

dipolar couplings (𝜔1𝐼 , 𝜔1𝑆 ≫ 𝜔𝑟 , √𝑀2
𝐼𝑆) (94). The AW approximation (74) (75) may then be 

used to derive a simple analytical solution to Eq. (B.17) for 〈𝐼𝑧 − 𝑆𝑧〉 : 

 
𝑑

𝑑𝑡
〈𝐼𝑧 − 𝑆𝑧〉(𝑡) = −

𝑛𝐼 + 1

𝑛𝐼
∫ 𝐾Δ(𝜏)〈𝐼𝑧 − 𝑆𝑧〉(𝑡 − 𝜏)𝑑𝜏

𝑡

0

                          

 

                                                ≈ −
𝑛𝐼 + 1

𝑛𝐼

〈𝐼𝑧 − 𝑆𝑧〉(𝑡) ∫ 𝐾Δ(𝜏)𝑑𝜏
𝑡

0

.                              (B. 19) 

 

Substituting Eq. (B.10) into Eq. (B.19), one finds the solution  

 

〈𝐼𝑧 − 𝑆𝑧〉(𝑡0 + 𝑡) = 〈𝐼𝑧 − 𝑆𝑧〉(𝑡0)𝐺(𝑡),                                                     (B. 20) 

 

where 𝑡0 is the initial time and 

 

𝐺(𝑡) = exp [−
𝑛𝐼 + 1

2𝑛𝐼
∫ (𝑡 − 𝜏)

𝑡

0

𝐾Δ(𝜏)𝑑𝜏]                                                                                              

 

   = exp {
𝑛𝐼 + 1

2𝑛𝐼
[𝑀2

𝐼𝑆𝑆2𝐹(𝑅𝑑𝑝, Δ, 𝜔𝑟 , 𝑡) + 𝑀2
𝐼𝑆(1 − 𝑆2)𝐹(1 𝜏𝑐⁄ + 𝑅𝑑𝑝, Δ, 𝜔𝑟 , 𝑡)]}       

                                                                                                                               (B. 21) 

with 

 

𝐹(𝑥, Δ, 𝜔𝑟 , 𝑡) =
1

3
[𝑓(𝑥, Δ − 𝜔𝑟 , 𝑡) + 𝑓(𝑥, Δ + 𝜔𝑟 , 𝑡)]                                                    
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                        +
1

6
[𝑓(𝑥, Δ − 2𝜔𝑟 , 𝑡) + 𝑓(𝑥, Δ + 2𝜔𝑟 , 𝑡)].                                (B. 22) 

 

The 𝑓(𝑥, 𝜔, 𝑡) function is defined in Refs (74) (75).  

 

Eqs (B.18) and (B.20) give simple expressions of the HHCP and MC-CP build-up curves under 

MAS for an 𝐼𝑛𝐼
∗ - 𝑆 spin system interacting with a fast fluctuating 𝐼-spin bath in the presence 

of molecular dynamics in the intermediate regime neglecting contact with the lattice 

through 𝑇1𝜌
𝐼  and 𝑇1𝜌

𝑆  relaxation. However, since the relevant parameters for 𝑗(𝜔) then are 

𝜔1𝐼 and 𝜔1𝑆 (𝜔𝑟 ≪ 𝜔1𝐼 , 𝜔1𝑆) efficient 𝑇1𝜌 relaxation is expected in the presence of motions 

with medium-to-slow correlation times (milliseconds to nanoseconds). Considering only 

homonuclear dipolar relaxation for the I spins and heteronuclear dipolar relaxation for the S 

spins (𝜀 = 𝑁𝑆 𝑁𝐼⁄ ≪ 1) and neglecting spectral density terms around 𝜔0𝐼 and 𝜔0𝑆, the 

relaxation rates for one reorientational process of correlation time 𝜏𝑐 in a powder sample 

are written (95) (96) 

 
1

𝑇1𝜌
𝐼 =

1

2
𝑀2

𝐼𝐼𝑗(2𝜔1𝐼)                                         (B. 23) 

 
1

𝑇1𝜌
𝑆 =

1

2
𝑀2

𝐼𝑆𝑗(𝜔1𝑆),                                          (B. 24) 

 

where 𝑀2
𝐼𝐼 is the powder-averaged homonuclear second moment (72) and 𝑗(𝜔) is given by 

Eq. (B.14). 𝑇1𝜌
𝐼  and 𝑇1𝜌

𝑆  relaxation is readily taken into account in the fast-correlation limit 

(√𝑀2
𝐼𝑆𝑇𝑑𝑝 ≪ 1) since the HHCP and MC-CP dynamics are then obtained by solving Eq. (1) 

and (2) (classical I-S model) with 𝜀 ≡ 𝜀∗ = 𝑁𝑆 𝑁𝐼
∗⁄ = 1 𝑛𝐼⁄  and 𝑇𝐼𝑆 given by Eq. (B.13). Such a 

straightforward analysis cannot be made when memory effects of the I spin bath are 

important, i.e., √𝑀2
𝐼𝑆𝑇𝑑𝑝 ≿ 1 (the usual case for the I-I*-S model) (25) (58). However, as long 

as spin-lattice relaxation in the rotating frame is relatively slow (√𝑀2
𝐼𝑆𝑇1𝜌

𝐼 , √𝑀2
𝐼𝑆𝑇1𝜌

𝑆 ≫ 1), 

the following expression for the evolution of the S polarization during CP is readily obtained 

by using the first-order approximation of the I-S model solution (𝜆𝐼 , 𝜆𝑆 ≪ 1 ) : 
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〈𝑆𝑧〉(𝑡0 + 𝑡𝐶𝑃) =
1

𝑛𝐼 + 1
[〈𝑛𝐼𝐼𝑧 + 𝑆𝑧〉(𝑡0)𝑒−𝑅1𝑡𝐶𝑃 − 𝑛𝐼〈𝐼𝑧 − 𝑆𝑧〉(𝑡0)𝑒−𝑅2𝑡𝐶𝑃𝐺(𝑡𝐶𝑃)],    

                                                                                                                                                  (B. 25) 

where 

 

𝑅1 =
1

𝑛𝐼 + 1
(

𝑛𝐼

𝑇1𝜌
𝐼 +

1

𝑇1𝜌
𝑆 )                                                                         (B. 26) 

 

𝑅2 =
1

𝑛𝐼 + 1
(

1

𝑇1𝜌
𝐼 +

𝑛𝐼

𝑇1𝜌
𝑆 ).                                                                        (B. 27) 

 

It must be pointed out that Eq. (B.25) holds whatever the spin-lattice relaxation rate if 𝑇1𝜌
𝐼 =

𝑇1𝜌
𝑆 , i.e., 𝑅1𝜌

Δ = 0 (𝑅1 = 𝑅2). Note also that 𝑅1 = 𝑅2 if 𝑛𝐼 = 1. 

 

Using the initial conditions at 𝑡0 = 0 for HHCP, 〈𝐼𝑧〉(0) = 1, 〈𝑆𝑧〉(0) = 0, the S spin 

polarization as a function of the contact time 𝑡𝐶𝑃 is easily calculated to be 

 

〈𝑆𝑧〉(𝑡𝐶𝑃) =
𝑛𝐼

𝑛𝐼 + 1
[𝑒−𝑅1𝑡𝐶𝑃 − 𝑒−𝑅2𝑡𝐶𝑃𝐺(𝑡𝐶𝑃)].                                    (B. 28) 

 

Note that the equilibrium state polarization reached in the absence of spin-lattice relaxation 

(𝑅1 = 𝑅2 = 0), 〈𝑆𝑧〉(∞) = 𝑛𝐼 (𝑛𝐼 + 1)⁄ , which agrees with the one calculated in the 

thermodynamic limit (the mean magnetization at each site) (94) is significantly higher than 

the time averaged value in an isolated 𝑆𝐼𝑛𝐼
 spin system (𝑅𝑑𝑝 = 0) (34) (97). 〈𝑆𝑧〉(∞) is then 

in principle overestimated (and 𝑛𝐼 is underestimated) when √𝑀2
𝐼𝑆𝑇𝑑𝑝 ≫ 1. It is however 

well known that 〈𝑆𝑧〉(∞) is actually a quasi-equilibrium state polarization since the XY term 

of the homonuclear (I-I*) dipolar Hamiltonian has been neglected in our analysis of the I-I*-S 

model (𝑅𝑑𝑓 = 0). Indeed, in the absence of spin lattice relaxation (𝑇1𝜌), the XY term is 

responsible for the exponential approach of 〈𝑆𝑧〉(𝑡𝐶𝑃) towards the final equilibrium state 

with a rate 𝑅𝑑𝑓 (69) (70). We and others (58) (69) (98) have observed that 𝑅𝑑𝑝 is often much 

higher than 𝑅𝑑𝑓, i.e., the I-I* interaction reveals a highly anisotropic behavior (𝑅𝑑𝑝 𝑅𝑑𝑓⁄ ≫
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1). This may be related to the fact that 𝑅𝑑𝑝 and 𝑅𝑑𝑓 are expected to be given by Eqs (B.4) 

and (B.5), respectively. Since 𝑅𝑑𝑝 ≫ 𝑅𝑑𝑓 when 𝜔1𝐼 ≫ 𝜔𝑟 and 𝜔1𝐼𝜏𝑥 > 1, a slow-fluctuation 

regime of the local fields, controlled by the spin dynamics of the bath, could explain these 

experimental observations (69). Moreover, in a « real » system of 𝑁𝐼 spins where there is a 

strongly coupled 𝑆𝐼𝑛𝐼
∗  cluster and 𝑁𝐼 − 𝑛𝐼  remote (weakly coupled) I spins the quasi-

equilibrium polarization at long times 〈𝑆𝑧〉𝑞𝑒 will be proportional to 𝑁𝐼 (𝑁𝐼 + 1)⁄  (26) (33). In 

other words, the amplitude of the second stage of the HHCP dynamics is reduced by the 

finite energy of the I-spin bath. In any case, the transfer of spin order by SD may be 

neglected when the I and/or S magnetizations decay rapidly due to spin-lattice relaxation in 

the rotating frame 𝑇1𝜌
𝐼  and/or 𝑇1𝜌

𝑆 < 𝑇𝑑𝑓). 

 

In MC-CP, assuming full repolarization of the I* spin(s) during each mixing time (𝑇1
𝐼 ≪ 𝜏𝑀), 

we have 〈𝐼𝑧〉(𝜏𝑘) = 1. Moreover, assuming that 𝜏𝑀 ≪ 𝑇1
𝑆, the S polarization is unchanged 

during each mixing step. Hence, the following recursion relation for MC-CP is deduced from 

Eq. (B.25) : 

 

〈𝑆𝑧〉(𝜏𝑘+1) =
1

𝑛𝐼 + 1
{[𝑛𝐼 + 〈𝑆𝑧〉(𝜏𝑘)]𝑒−𝑅1𝑡𝐶𝑃 𝑛⁄ − 𝑛𝐼[1 − 〈𝑆𝑧〉(𝜏𝑘)]𝑒−𝑅2𝑡𝐶𝑃 𝑛⁄ 𝐺(𝑡𝐶𝑃 𝑛⁄ )}      

 

=
1

𝑛𝐼 + 1
[𝑛𝐼 (𝑒−𝑅1𝑡𝐶𝑃 𝑛⁄ − 𝑒−𝑅2𝑡𝐶𝑃 𝑛⁄ 𝐺(𝑡𝐶𝑃 𝑛⁄ ))

+ 〈𝑆𝑧〉(𝜏𝑘) (𝑒−𝑅1𝑡𝐶𝑃 𝑛⁄ + 𝑛𝐼𝑒−𝑅2𝑡𝐶𝑃 𝑛⁄ 𝐺(𝑡𝐶𝑃 𝑛⁄ ))] 

 

= 〈𝑆𝑧〉(𝑡𝐶𝑃 𝑛⁄ ) + 〈𝑆𝑧〉(𝜏𝑘)𝑋(𝑡𝐶𝑃 𝑛⁄ ),                                    (B. 29) 

 

where 𝜏𝑘 =  𝑘(𝑡𝐶𝑃 𝑛⁄ + 𝜏𝑀) and 

 

𝑋(𝑡) =
𝑒−𝑅1𝑡

𝑛𝐼 + 1
+

𝑛𝐼𝑒−𝑅2𝑡

𝑛𝐼 + 1
𝐺(𝑡).                                             (B. 30) 

 

The MC-CP dynamics is readily obtained from Eq. (B.29) : 
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〈𝑆𝑧〉(𝑡𝐶𝑃 + 𝑁𝜏𝑀) =
〈𝑆𝑧〉(𝑡𝐶𝑃 𝑛⁄ )

1 − 𝑋(𝑡𝐶𝑃 𝑛⁄ )
[1 − 𝑋𝑛(𝑡𝐶𝑃 𝑛⁄ )].                                    (B. 31) 

 

As expected, Eq. (B.31) reduces to Eq. (45) of Ref. (25) (𝑅𝑑𝑓 = 0) when 𝑅1 = 𝑅2 = 0 and 

𝑛𝐼 = 1. 
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Figure 1 : I-S model calculations for HHCP with 𝜆𝑆 = 𝑇𝐼𝑆 𝑇1𝜌

𝑆⁄ = 0. (a) Maximum value of S 

spin polarization 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻  (Eq. (A.8)) and (b) time ratio of maximum 𝑡𝑀𝐴𝑋

𝐻𝐻 𝑇𝐼𝑆⁄  (Eq. (A.9)) as a 
function of 𝜆𝐼 = 𝑇𝐼𝑆 𝑇1𝜌

𝐼⁄  for several values of heat capacity ratio 𝜀. 
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Figure 2 : Schematic representation of the pulse sequence for Multiple-Contact Cross-
polarization (MC-CP). The filled rectangles indicate 𝜋 2⁄  pulses. 
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Figure 3 : I-S model calculations for MC-CP with 𝜀 = 0 and 𝜆𝑆 = 0. Amplitude of the build-up 

curve 〈𝑆𝑧〉∞
𝑀𝐶 : (a) versus 𝜆𝐼 = 𝑇𝐼𝑆 𝑇1𝜌

𝐼⁄  for several values of 𝑡𝐶𝑃 (𝑛𝑇1𝜌
𝐼 )⁄  ; (b) versus 

𝑡𝐶𝑃 (𝑛𝑇1𝜌
𝐼 )⁄  with 𝜆𝐼 ≪ 1 (black line) (Eq. (7)) and with 𝜆𝐼 ≫ 1 (red line) (Eq. (8)). The blue 

line is the amplitude ratio 〈𝑆𝑧〉∞
𝑀𝐶(2) 〈𝑆𝑧〉∞

𝑀𝐶(1)
⁄  with 𝜆𝐼 ≫ 1 when doubling the length of the 

CP steps from experiment (1) to experiment (2) (𝑛(2) = 𝑛(1) 2⁄ ). 
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Figure 4 : I-S model calculations for HHCP and MC-CP with 𝜆𝑆 = 0. (a and c) Amplitude and 
(b and d) time ratios, 𝑟𝑆 = 〈𝑆𝑧〉∞

𝑀𝐶 〈𝑆𝑧〉𝑀𝐴𝑋
𝐻𝐻⁄  and 𝑟𝑇 = 𝑡𝑀𝐴𝑋

𝐻𝐻 𝑇𝐼𝑆
𝑀𝐶⁄ , as a function of 𝜆𝐼 =

𝑇𝐼𝑆 𝑇1𝜌
𝐼⁄  for several values of 𝑡𝐶𝑃 (𝑛𝑇𝐼𝑆)⁄  : (a and b) 𝜀 = 0.01 ; (c and d) 𝜀 = 1. 
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Figure 5 : I-S and I-I*-S model calculations for HHCP and MC-CP. Polarization evolution of S-
spin magnetization 〈𝑆𝑧〉(𝑡) as a function of the total contact time 𝑡𝐶𝑃 for a MAS powder : 
Numerical integration (black solid line for HHCP and colored open circles/solid lines for MC-
CP) of the I-I*-S model QM master equation (Eq. (B.1)) versus analytical solutions (grey solid 
line for HHCP and colored full circles/dotted lines for MC-CP) obtained by (a and b) the AW 
approximation (Eqs (B.28) and (B.31))) or (c and d) the I-S model (Eqs (A.7) and (A.14)) ; MC-

CP with 𝑡𝐶𝑃 𝑛⁄ = 50 s (red), 𝑡𝐶𝑃 𝑛⁄ = 138.8 s (blue), 𝑡𝐶𝑃 𝑛⁄ = 277.5 s (green), 𝑡𝐶𝑃 𝑛⁄ = 

555 s (orange) ; (a and c) 𝑇1𝜌
𝐼 = 𝑇1𝜌

𝑆 = 4 ms ; (b and d) 𝑇1𝜌
𝐼 = 2 ms and 1 𝑇1𝜌

𝑆⁄ = 0. The 

other parameters are |Δ| 2𝜋⁄ = 𝜔𝑟 2𝜋⁄ = 15 kHz, 𝑛𝐼 = 1, 1 √𝑀2
𝐼𝑆⁄ = 45 s and 𝑇𝑑𝑝 = 0.2 

ms (𝑆2 = 1 or 1 𝜏𝑐⁄ = 0) for the I-I*-S model ; 𝑇𝐼𝑆 = 0.15 ms and 𝜀 = 1 for the I-S model. 
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Figure 6 : I-S and I-I*-S model calculations for HHCP and MC-CP with 𝑡𝐶𝑃 𝑛⁄ = 250 s 
(1 𝑇1𝜌

𝑆⁄ = 0). Polarization evolution of S-spin magnetization 〈𝑆𝑧〉(𝑡) as a function of the total 

contact time 𝑡𝐶𝑃 for a MAS powder : (a) HHCP dynamics calculated by using the I-I*-S model 
in the AW approximation for several values of 𝜏𝑐 with 1 𝑇1𝜌

𝐼⁄ = 0 ; (b) Numerical integration 

(black solid line for HHCP with 1 𝑇1𝜌
𝐼⁄ = 0, grey solid line for HHCP with 𝑇1𝜌

𝐼 = 0.1 ms and 

orange open circles/solid lines for MC-CP with 𝑇1𝜌
𝐼 = 0.1 ms) of the I-I*-S model QM master 

equation (Eq. (B.1)) versus the analytical solutions obtained by the AW approximation (Eqs 
(B.28) and (B.31))) (red solid line for HHCP with 1 𝑇1𝜌

𝐼⁄ = 0) or the I-S model (Eqs (A.7) and 

(A.14)) (blue solid line for HHCP with 1 𝑇1𝜌
𝐼⁄ = 0, green solid line for HHCP with 𝑇1𝜌

𝐼 = 0.1 ms 

and orange full circles/dotted lines for MC-CP with 𝑇1𝜌
𝐼 = 0.1 ms). The other parameters are 

|Δ| 2𝜋⁄ = 𝜔𝑟 2𝜋⁄ = 15 kHz, 𝑛𝐼 = 1, 1 √𝑀2
𝐼𝑆⁄ = 45 s, 𝑇𝑑𝑝 = 0.1 ms and 𝑆2 = 0.1 for the I-

I*-S model ; 𝑇𝐼𝑆 = 1.3 ms and 𝜀 = 1 for the I-S model. 
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Figure 7 : 13C NMR MAS single pulse excitation (SPE) (blue line) and HHCP with 𝑡𝐶𝑃 = 555 s 
(red line) spectra of GO. MAS rate 𝜈𝑟 = 18 kHz ; measuring time : 17 h (SPE) and 2 h (HHCP). 
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Figure 8 : Time dependence of 13C magnetization for the C-OH (black or green circles), C-O-C 
(red squares) and C=C (blue triangles) sites of GO in the 1H-13C (a) HHCP and (b) MC-CP 

experiments with 𝜏𝑀 = 50 ms and 𝑡𝐶𝑃 𝑛⁄ = 277.5 s. In the case of the C-OH resonance (70 

ppm), both the MC-CP data with 𝑡𝐶𝑃 𝑛⁄ = 277.5 s (black circles) and 555 s (green circles) 
are reported. The peak intensities were obtained by deconvolution of the 13C NMR MAS 
spectra with the solid line shape analysis (SOLA) package as implemented in the BRUKERTM 
TopSpin 4.0.8 software. 
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Figure 9 : Experimental and calculated (I-S model with 𝜀 = 0 and 𝜆𝑆 = 0) 1H-13C CPMAS 
dynamics for the C-OH resonance (70 ppm) of GO : (a, c, e, and g) HHCP (black circles/dotted 

lines) and MC-CP with 𝑡𝐶𝑃 𝑛⁄ = 277.5 s (red full squares/dotted lines) experimental 
intensities versus two-component calculations (black solid line for HHCP and red open 
squares/solid lines for MC-CP) ; (b, d, f, and h) corresponding individual components (1) and 
(2) represented by : black (1) and red (2) solid lines for HHCP ; black (1) and red (2) full 

squares/dotted lines for MC-CP. The cross-relaxation time constants are 𝑇𝐶𝐻
(1)

= 0.25 ms and 

𝑇𝐶𝐻
(2)

= 1 ms. The 1H spin-lattice relaxation times in the rotating frame (and component 

weight%) are : (a and b) 𝑇1𝜌
𝐻(1)

= 2 ms (36%) and 𝑇1𝜌
𝐻(2)

= 2 ms (64%) ; (c and d) 𝑇1𝜌
𝐻(1)

= 2 ms 

(17%) and 𝑇1𝜌
𝐻(2)

= 0.1 ms (83%) ; (e and f) 𝑇1𝜌
𝐻(1)

= 0.1 ms (63%) and 𝑇1𝜌
𝐻(2)

= 2 ms (37%) ; (g 

and h) 𝑇1𝜌
𝐻(1)

= 0.1 ms (40%) and 𝑇1𝜌
𝐻(2)

= 0.1 ms (60%).  
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Figure 10 : Experimental and calculated (I-S model with 𝜆𝑆 = 0) 1H-13C CPMAS dynamics for 
the C-OH resonance (70 ppm) of GO : (a) HHCP (black circles/dotted lines) and MC-CP with 

𝑡𝐶𝑃 𝑛⁄ = 277.5 s (red full squares/dotted lines) and 𝑡𝐶𝑃 𝑛⁄ = 555 s (blue full 
squares/dotted lines) experimental intensities versus two-component calculations (black 
solid line for HHCP and red or blue open squares/solid lines for MC-CP. The cross-relaxation 

time constants (heat capacity ratio) are 𝑇𝐶𝐻
(1)

= 0.11 ms (𝜀(1) = 0.5) and 𝑇𝐶𝐻
(2)

= 1 ms (𝜀(2) =

0). The 1H spin-lattice relaxation times in the rotating frame (component weight%) are 

𝑇1𝜌
𝐻(1)

= 2 ms (10%) and 𝑇1𝜌
𝐻(2)

= 0.1 ms (90%) ; (b) corresponding individual components (1) 

and (2) represented by : black (1) and red (2) solid lines for HHCP ; black (1) and red (2) full 
squares or triangles/dotted lines for MC-CP ; (c) same as (a) for a single-component 
calculation with 𝑇𝐶𝐻 = 0.66 ms and 𝑇1𝜌

𝐻 = 0.23 ms (𝜀 = 0). 
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