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This article is devoted to the simultaneous resolution of three inverse problems, among the most important formulation of inverse problems for partial differential equations, stated for some class of diffusion equations from a single boundary measurement. Namely, we consider the simultaneous unique determination of several class of coefficients, some internal sources (a source term and an initial condition) and an obstacle appearing in a diffusion equation from a single boundary measurement.

Our problem can be formulated as the simultaneous determination of information about a diffusion process (velocity field, density of the medium), an obstacle and of the source of diffusion. We consider this problems in the context of a classical diffusion process described by a convection-diffusion equation as well as an anomalous diffusion phenomena described by a time fractional diffusion equation.

Fix q ∈ L ∞ (Ω), such that q 0 (1.2) and B ∈ L ∞ (Ω) d . Given T ∈ (0, +∞), α ∈ (0, 2) and ρ ∈ L ∞ (Ω), such that 0 < ρ 0 ρ(x) ρ M < +∞, x ∈ Ω, (1.3) we consider the initial boundary value problem (IBVP)

                           ρ(x)∂ α t u -div (a(x)∇ x u) + B(x) • ∇ x u + q(x)u = F, in Q, u = Φ, on (0, T ) × ∂ Ω, u = 0, on (0, T ) × ∂ω,      u = u 0 if 0 < α 1, u = u 0 , ∂ t u = 0 if 1 < α < 2,
in {0} × Ω.

(1.4)

Here, we fix Q = (0, T ) × Ω and for α = 1 we denote by ∂ α t the usual time derivative ∂ t while, for α ∈ (0, 1) ∪ (1, 2), ∂ α t denotes the fractional Caputo derivative of order α with respect to t defined by

∂ α t u(t, x) := 1 Γ([α] + 1 -α) t 0 (t -s) [α]-α ∂ [α]+1
s u(s, x)ds, (t, x) ∈ Q.

(1.5)

Assuming that Φ ∈ W 2,1 (0, T ; H 3 2 (∂ Ω)), u 0 ∈ L 2 (Ω), F ∈ L 1 (0, T ; L 2 (Ω)), it is well known that problem (1.4) admits a unique weak solution lying in L 1 (0, T ; H 2r (Ω)), r ∈ (0, 1) (see e.g. [START_REF] Jiang | Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations[END_REF][START_REF] Kian | Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations[END_REF][START_REF] Kian | On time-fractional diffusion equations with space-dependent variable order[END_REF][START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF]).

Let Γ in , Γ out be two open subsets of ∂ Ω. In the present paper we study the inverse problem of determining uniquely and simultaneously as much parameters as possible among the set {a, ρ, B, q} of coefficients, the set {u 0 , F } of internal source, the order of derivation in time α as well as the obstacle ω from a single boundary measurement on the subset of the form (T 0 -δ, T 0 ) × Γ out , with T 0 ∈ (0, T ) and δ ∈ (0, T 0 ], of the lateral boundary (0, T ) × ∂ Ω for a suitable choice of the input Φ supported on [0, T ] × Γ in .

1.2. Motivations. Let us mention that diffusion equations of the form (1.4) describe diffusion of different kind of physical phenomena. While for α = 1 such equations correspond to convection-diffusion equations describing the transfer of different physical quantities (mass, energy, heat,...), for α = 1, equations of the form (1.4) are used for modeling different type of anomalous diffusion process (diffusion in inhomogeneous anisotropic porous media, turbulent plasma, diffusion in a turbulent flow,...). We refer to [START_REF] Carcione | Theory and simulation of time-fractional fluid diffusion in porous media[END_REF][START_REF] Jin | A tutorial on inverse problems for anomalous diffusion processes[END_REF][START_REF] Stocker | Introduction to Climate Modelling[END_REF] for more details about the applications of such equations.

The inverse problem addressed in the present paper corresponds to the simultaneous determination of a source of diffusion, an obstacle and of several parameters describing the diffusion of some physical quantities. The convection term B is associated with the velocity field of the moving quantities while the coefficients (a, ρ, q) and the order of derivation α can be associated with some properties of the medium. Moreover, the source term F and the initial condition u 0 can be seen as different kind of source of diffusion. For instance, our inverse problem can be stated as the determination of the velocity field and the density of the medium as well as an obstacle and the source of diffusion of a contaminant in a soil from a single measurement at Γ out . Moreover, for α ∈ (1, 2), ω = ∅, F = 0, B = q = 0 and ρ = c α , our inverse problem can be seen as the fractional formulation of the so called thermoacoustic tomography (TAT) and photoacoustic tomography (PAT), two coupled-physics process, used for combining the high resolution of ultrasound and the high contrast capabilities of electromagnetic waves, which can be formulated as the simultaneous determination of the wave speed and the initial pressure of a wave equation (see e.g. [START_REF] Cox | Quantitative spectroscopic photoacoustic imaging: A review[END_REF][START_REF] Kruger | Thermoacoustic computed tomography-technical construction[END_REF][START_REF] Liu | Determining both sound speed and internal source in thermo-and photo-acoustic tomography[END_REF][START_REF] Stefanov | Recovery of a source term or a speed with one measurement and applications[END_REF]).

1.3. Known results. Inverse problems for equations of the form (1.4) have received many attention these last decades. Many authors considered inverse coefficients, inverse source and inverse obstacle problems for (1.4) when α = 1. Without being exhaustive, we mention the works of [START_REF] Bukhgeim | Global uniqueness of a class of multidimensional inverse problem[END_REF][START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Caro | Determination of convection terms and quasi-linearities appearing in diffusion equations[END_REF][START_REF] Chapko | On the numerical solution of an inverse boundary value problem for the heat equation[END_REF][START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF][START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF][START_REF] Choulli | Some stability estimates in determining sources and coefficients[END_REF][START_REF] Badia | Inverse source problem in an advection-dispersion-reaction system: application to water pollution[END_REF][START_REF] Ikehata | The enclosure method for the heat equation[END_REF][START_REF] Ikehata | On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval[END_REF][START_REF] Katchalov | Equivalence of time-domain inverse problems and boundary spectral problem[END_REF][START_REF] Kaltenbacher | Recovery of multiple coefficients in a reaction-diffusion equation[END_REF]. Contrary to α = 1, inverse problems associated with (1.4) for α ∈ (0, 1) ∪ [START_REF] Agmon | On the eigenfunctions and the eigenvalues of general elliptic boundary value problems[END_REF][START_REF] Ammari | A unified approach to solving some inverse problems for evolution equations by using observability inequalities[END_REF] has received more recent treatment. Most of these results correspond to inverse source problems (see e.g. [START_REF] Fujishiro | Determination of time dependent factors of coefficients in fractional diffusion equations[END_REF][START_REF] Jiang | Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations[END_REF][START_REF] Kian | Identification of time-varying source term in time-fractional diffusion equations[END_REF][START_REF] Kian | Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations[END_REF][START_REF] Kinash | An inverse problem for a generalized fractional derivative with an application in reconstruction of time-and space-Dependent sources in fractional diffusion and wave equations[END_REF]). For inverse coefficients problems, many results have been stated with infinitely many measurements (see for instance [START_REF] Kian | Global uniqueness in an inverse problem for time-fractional diffusion equations[END_REF][START_REF] Kian | On time-fractional diffusion equations with space-dependent variable order[END_REF][START_REF] Li | Uniqueness in inverse boundary value problems for fractional diffusion equations[END_REF]) among which the most general and precise results seem to be the ones stated in [START_REF] Kian | Global uniqueness in an inverse problem for time-fractional diffusion equations[END_REF] where the measurements are restricted to a fixed time on a portion of the boundary of the domain. Several works have also been devoted to the recovery of coefficients form data given by final overdetermination (see e.g. [START_REF] Kaltenbacher | On an inverse potential problem for a fractional reaction-diffusion equation[END_REF][START_REF] Kinash | Inverse problem for a generalized subdiffusion equation with final overdetermination[END_REF]). To the best of our knowledge the works [START_REF] Helin | Inverse problems for heat equation and space-time fractional diffusion equation with one measurement[END_REF][START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF][START_REF] Kian | Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations[END_REF] are the only works in the mathematical literature where the recovery of coefficients appearing in fractional diffusion equations (in dimension higher than 2) has been stated with a single measurement which does not correspond to final overdetermination. Among these three works, [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF] is the only one with results stated with a single boundary measurement on a general bounded domain. Indeed, the result of [START_REF] Helin | Inverse problems for heat equation and space-time fractional diffusion equation with one measurement[END_REF] is stated with internal measurement while the approach of [START_REF] Kian | Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations[END_REF] is restricted to cylindrical domain Ω. The approach of [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF] is based on a generalization of the approach of [START_REF] Avdonin | Identification of q(x) in ut = ∆u -qu from boundary observations[END_REF][START_REF] Cheng | Identification of convection term in a parabolic equation with a single measurement[END_REF] (see also the work of [START_REF] Badia | Identifiabilité d'un coefficient variable en espace dans une équation parabolique[END_REF] for similar approach in the one dimensional case) based on the construction of a suitable Dirichlet input. Indeed, not only [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF] extends the work of [START_REF] Avdonin | Identification of q(x) in ut = ∆u -qu from boundary observations[END_REF][START_REF] Cheng | Identification of convection term in a parabolic equation with a single measurement[END_REF] to fractional diffusion equations (α = 1) but it also extends the work of [START_REF] Avdonin | Identification of q(x) in ut = ∆u -qu from boundary observations[END_REF][START_REF] Cheng | Identification of convection term in a parabolic equation with a single measurement[END_REF] for α = 1 in terms of generality and precision. The main idea of [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF] is to recover boundary data for a family of elliptic equations from a single boundary measurement of the solution of (1.4), with F = u 0 ≡ 0 and ω = ∅, and to combine this result with the works [START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF][START_REF] Katchalov | Inverse Boundary Spectral Problems[END_REF][START_REF] Katchalov | Equivalence of time-domain inverse problems and boundary spectral problem[END_REF][START_REF] Kian | Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets[END_REF][START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF][START_REF] Pohjola | A uniqueness result for an inverse problem of the steady state convection-diffusion equation[END_REF][START_REF] Salo | Inverse problems for nonsmooth first order perturbations of the Laplacian[END_REF]] in order to prove the recovery of coefficients appearing in (1.4).

Let us observe that while, as mentioned above, several works have been devoted to the determination of space dependent coefficients or source terms, to the best of our knowledge, even for α = 1, there is no result devoted to the simultaneous determination of space dependent internal source and coefficients appearing in problem (1.4) from single measurement. In the same way, we are not aware of any result devoted to the simultaneous determination of an obstacle and a coefficient or a source term appearing in (1.4) from a single measurement. Indeed, we have only find works devoted to the simultaneous determination of source and coefficient, appearing in a parabolic equation, that depend only on the time variable (see e.g. [START_REF] Kamynin | Inverse problem of simultaneously determining the right-handside and the coefficient of a lower order derivative for a parabolic equation on the plane[END_REF][START_REF] Kamynin | Inverse problem of simultaneous determination of the time-dependent right-hand side term and the coefficient in a parabolic equation[END_REF]). In the same way, we are only aware of the work of [START_REF] Hu | Uniqueness to some inverse source problems for the wave equation in unbounded domains[END_REF] for the simultaneous determination of a source term and an obstacle appearing in a hyperbolic equation.

Statement of the main results

Following [START_REF] Avdonin | Identification of q(x) in ut = ∆u -qu from boundary observations[END_REF][START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF], we start by introducing a suitable class of inputs Φ. More precisely, we consider

χ ∈ C ∞ (∂ Ω) such that supp(χ) ⊂ Γ in and χ = 1 on Γ in, * an open subset of ∂ Ω. We fix τ 1 , τ 2 ∈ (0, T ],
τ 1 < τ 2 , and a strictly increasing sequence (t k ) k 0 such that t 0 = τ 1 and lim k→∞ t k = τ 2 . We fix also the sequence (c k ) k 0 of [0, +∞) and we define the sequence (ψ k ) k 1 of functions non-uniformly vanishing and lying in C ∞ (R; [0, +∞)) defined, for all k ∈ N := {1, 2, . . .}, by

ψ k (t) =    0 for t ∈ (-∞, t 2k-2 ], c k for t ∈ [t 2k-1 , +∞).
We set the sequence (d k ) k 1 of (0, +∞) such that

∞ k=1 d k ψ k W 3,∞ (R+) < ∞.
In addition, we consider the sequence

(η k ) k 1 of H 3 2 (∂ Ω) such that Span({η k : k 1}) is dense in H 3 2 (∂ Ω) and η k H 3 2 (∂ Ω) = 1, k ∈ N. Finally, we define the input Φ ∈ C 3 ([0, +∞); H 3 2 (∂ Ω)) as follows Φ(t, x) := ∞ k=1 d k ψ k (t)χ(x)η k (x), x ∈ ∂ Ω, t ∈ [0, +∞). (2.1) It is clear that supp(Φ) ⊂ [0, +∞) × Γ in .
Let us observe that according to [39, Section 2.2] one can not expect more than the recovery of two coefficients among the set {a, ρ, B, q}. In the same way, following [START_REF] Kian | Identification of time-varying source term in time-fractional diffusion equations[END_REF]Section 1.3], it is impossible to determine general time-dependent source terms from any kind of boundary measurements of the solution of (1.4). For this purpose, in addition to the two coefficients among the set {a, ρ, B, q}, we consider the recovery of the obstacle ω, the order of derivation α and source terms of the form

F (t, x) = σ(t)f (x)
, with σ a known function, and the recovery of the initial condition u 0 .

For our first main result, we consider this problem for B ≡ 0 and a single boundary measurement given by a∂ ν u |(0,τ2)×Γout , with ν the outward unit normal vector to ∂ Ω. This result can be stated as follows.

Theorem 2.1. For j = 1, 2, let α j ∈ (0, 2), and let the conditions

Γ in, * ∪ Γ out = ∂ Ω, Γ in, * ∩ Γ out = ∅, (2.2) 
be fulfilled. We fix ω j , j = 1, 2, two open set of R d with C 2 boundary such that ω j ⊂ Ω and such

that

Ω j = Ω \ ω j is connected. For j = 1, 2, we fix (a j , ρ j , q j ) ∈ C 1 (Ω j ) × L ∞ (Ω j ) × L ∞ (Ω j ) fulfilling (1.1)-(1.
3), with Ω = Ω j , and we assume that either of the three following conditions:

(i) ρ 1 = ρ 2 on Ω 1 ∩ Ω 2 , (ii) a 1 = a 2 on Ω 1 ∩ Ω 2 , (iii) q 1 = q 2 on Ω 1 ∩ Ω 2
and the conditions

∇a 1 (x) = ∇a 2 (x), x ∈ ∂ Ω, (2.3 
)

∃C > 0, |ρ 1 (x) -ρ 2 (x)| Cdist(x, ∂ Ω) 2 , x ∈ Ω 1 ∩ Ω 2 , (2.4) 
are fulfilled. Moreover, for j = 1, 2, we fix u j 0 ∈ L2 (Ω j ) and, for σ ∈ L 1 (0, T ), f j ∈ L 2 (Ω j ), we define

F j (t, x) = σ(t)f j (x), t ∈ (0, T ), x ∈ Ω j . (2.5)
Here, we assume that the condition

supp(σ) ⊂ [0, τ 1 ) (2.6)
is fulfilled and we assume that the internal sources u j 0 , f j , j = 1, 2, satisfy one of the following conditions

(iv) f 1 = f 2 on Ω 1 ∩ Ω 2 , (v) σ ≡ 0, u 1 0 = u 2 0 on Ω 1 ∩ Ω 2 ,
(vi) σ ≡ 0, there exists τ 0 ∈ (0, τ 1 ) such that supp(σ) ⊂ (τ 0 , τ 1 ).

Furthermore, we assume that the expressions η 1 and c 1 , appearing in the construction of the Dirichlet input Φ given by (2.1), are such that c 1 = 0 and η 1 is a function of constant sign lying in

W 2-1 r ,r (∂ Ω),
for some r > n 2 , and it satisfies χη 1 ≡ 0. Finally, we assume that there exists a connected open subset Õ of Ω \ (ω 1 ∪ ω 2 ) (see Figure 1) satisfying

∂(ω 1 ∪ ω 2 ) ⊂ ∂ Õ, the interior of ∂ Õ ∩ Γ out is not empty, (2.7 
)

a 1 (x) = a 2 (x), ρ 1 (x) = ρ 2 (x), q 1 (x) = q 2 (x), x ∈ Õ. (2.8)
Consider u j , j = 1, 2, the solution of (1.4) with Φ given by (2.1), α = α j , ω = ω j , B = 0, (a, ρ, q) = (a j , ρ j , q j ) and (u 0 , F ) = (u j 0 , F j ). Then the condition

a 1 (x)∂ ν u 1 (t, x) = a 2 (x)∂ ν u 2 (t, x), (t, x) ∈ (0, τ 2 ) × Γ out (2.9)
implies that

α 1 = α 2 , ω 1 = ω 2 , a 1 = a 2 , ρ 1 = ρ 2 , q 1 = q 2 , u 1 0 = u 2 0 , f 1 = f 2 .
(2.10)

In the case α ∈ (0, 2) \ {1}, by considering some additional regularity assumptions, we can extend the result of Theorem 2.1 into a result with a single measurement restricted to any time interval of the form (T 0 -δ, T 0 ), with T 0 ∈ [τ 2 , T ] and δ ∈ (0, T 0 -τ 1 ) arbitrary chosen. Namely, let us consider that Ω

and

ω are C 4 , ρ, a ∈ C 3 (Ω), q ∈ W 2,∞ (Ω), f ∈ H 2 (Ω), u 0 ∈ H α 0 (Ω) ∩ H 2 α (Ω)
, where • denotes the ceiling function and

H k 0 (Ω), k ∈ N, denotes the closure of C ∞ 0 (Ω) in H k (Ω).
Let also σ ∈ W 3,1 (0, T ) be such that σ(0) = σ (0) = σ (2) (0) = 0. We suppose that the Dirichlet input Φ, given by (2.1), is defined with (η k ) k 1 a sequence of functions of H = 1, k ∈ N. We recall that with this choice of the functions (η k ) k 1 , we have

Φ ∈ C 3 ([0, T ]; H 7 2 (∂ Ω)) with Φ(0, x) = ∂ t Φ(0, x) = ∂ 2 t Φ(0, x) = 0, x ∈ ∂ Ω.
Combining [44, Proposition 2.6, 2.8] with [44, Theorem 2.5, 2.9], one can check that problem (1.4)

admits a unique solution u ∈ W α ,1 (0, T ; H s (Ω)) ∩ L 1 (0, T ; H 2+s (Ω)), s > 3 2 .
In particular we have

∂ ν u ∈ W α ,1 (0, T ; L 2 (∂ Ω)) and ∂ ν div(a∇u) ∈ L 1 (0, T ; L 2 (∂ Ω))
. Under these smoothness assumptions, we can prove that the result of Theorem 2.1, with α known, remains valid with measurement given by ∂ ν u and ∂ ν div(a∇u) restricted to (T 0 -δ, T 0 ) × Γ out , with T 0 ∈ [τ 2 , T ] and δ ∈ (0, T 0 -τ 1 ) arbitrary chosen. Our result for this problem can be stated as follows.

Theorem 2.2. Let α 1 = α 2 = α ∈ (0, 2) \ {1} and let the conditions of Theorem 2.1 be fulfilled.

We assume also that, for j = 1, 2, ρ j , a j ∈ C 3 (Ω j ),

q j ∈ W 2,∞ (Ω j ), u j 0 ∈ H α 0 (Ω j ) ∩ H 2 α (Ω j ), f j ∈ H 2 (Ω j )
, satisfy the condition of Theorem 2.1 as well as the following conditions

∂ ν div(a 1 (x)∇h)(x) = ∂ ν div(a 2 (x)∇h)(x), h ∈ H 4 ( Ω), x ∈ Γ out , (2.11 
)

a 1 (x) = a 2 (x), ∂ k ν ρ 1 (x) = ∂ k ν ρ 2 (x), ∂ k ν q 1 (x) = ∂ k ν q 2 (x), k = 0, 1, x ∈ Γ out .
(2.12)

Moreover, we assume that Ω and

ω j , j = 1, 2, are C 4 , σ ∈ W 3,1 (0, T ), with σ(0) = σ (0) = σ (2) (0) = 0,
and the Dirichlet input (2.1) is defined with

(η k ) k 1 a sequence of functions lying in H 7 2 (∂ Ω) such that Span({η k : k 1}) is dense in H 3 2 (∂ Ω) and η k H 7 2 (∂ Ω)
= 1, k ∈ N. Consider u j , j = 1, 2, the solution of (1.4) with Φ given by (2.1), B = 0, (a, ρ, q) = (a j , ρ j , q j ) and (u 0 , F ) = (u j 0 , F j ). Then, for any arbitrary chosen T 0 ∈ [τ 2 , T ] and δ ∈ (0, T 0 -τ 1 ), the condition

   ∂ ν u 1 (t, x) = ∂ ν u 2 (t, x), ∂ ν div a 1 (x)∇ x u 1 (t, x) = ∂ ν div a 1 (x)∇ x u 2 (t, x), (t, x) ∈ (T 0 -δ, T 0 ) × Γ out (2.13)
implies that (2.10) holds true.

For our third main result, we consider the above problem for a = 1, q = 0 and for Γ in, * = Γ out = ∂ Ω. Our third main result can be stated as follows.

Theorem 2.3. Let d 3 and, for j = 1, 2, let α j ∈ (0, 1] a j = 1, q j = 0, ω j be an open set of R d with C 2 boundary such that ω j ⊂ Ω and such that Ω j = Ω \ ω j is connected, ρ j ∈ C(Ω j ) satisfy (1.3),

with Ω = Ω j , and let B j ∈ C γ (Ω j ) d , with γ ∈ (2/3, 1). Moreover, for j = 1, 2, we fix u j 0 ∈ L 2 (Ω j ), σ ∈ L 1 (0, T ), f j ∈ L 2 (Ω j ), satisfying (2.6) and one of the conditions (iv), (v), (vi), and we consider F j given by (2.5). We assume also that the expression η 1 appearing in the construction of the Dirichlet input Φ, given by (2.1), is lying in W 2-1 r ,r (∂ Ω), for some r > n 2 ,and χη 1 ≡ 0. Finally, we assume that there exists a connected open subset

Õ of Ω \ (ω 1 ∪ ω 2 ) satisfying (2.7) with Γ out = ∂ Ω such that (R 3 \ Ω) ∪ Õ ∪ ω 1 is
connected and the following conditions

B 1 (x) = B 2 (x), ρ 1 (x) = ρ 2 (x), x ∈ Õ, (2.14 
)

α 1 = α 2 or ω 1 = ω 2 = ∅ (2.15)
are fulfilled. Consider u j , j = 1, 2, the solution of (1.4) with (a, α, B, ρ, q) = (a j , α j , B j , ρ j , q j ), (u 0 , F ) = (u j 0 , F j ) and Φ given by (2.1) with χ = 1. Then the condition

∂ ν u 1 (t, x) = ∂ ν u 2 (t, x), (t, x) ∈ (0, τ 2 ) × ∂ Ω (2.16)
implies that

ω 1 = ω 2 , α 1 = α 2 , B 1 = B 2 , ρ 1 = ρ 2 , u 1 0 = u 2 0 , f 1 = f 2 .
(2.17)

Let us recall that our construction of the input Φ given by (2.1) can also be extended to (M, g) a compact connected and smooth Riemanian manifold with boundary by replacing ∂ Ω with ∂M . In that case, we define the Laplace-Beltrami operator

∆ g := div g (∇ g •)
where div g and ∇ g denote divergence and gradient operators on (M, g) respectively, and we consider the following problem on the manifold M

                   ∂ α t u -∆ g u + q(x)u = F, in (0, T ) × M, u = Φ, on (0, T ) × ∂M,      u = u 0 if 0 < α 1, u = u 0 , ∂ t u = 0 if 1 < α < 2, in {0} × M.
(2.18)

In that case, following the results of [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF] based on the works of [START_REF] Katchalov | Inverse Boundary Spectral Problems[END_REF][START_REF] Kian | Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets[END_REF][START_REF] Kian | Global uniqueness in an inverse problem for time-fractional diffusion equations[END_REF][START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF] we obtain the following extension of our results to Riemanian manifolds.

Corollary 2.4. For j = 1, 2, let α j ∈ (0, 2), let (M j , g j ) be two compact and smooth connected Riemannian manifolds of dimension d ≥ 2 with the same boundary and with g 1 = g 2 on ∂M 1 , and let q j ∈ C ∞ (M j ) satisfy q j ≥ 0 on M j . Moreover, for j = 1, 2, we fix u j 0 ∈ L 2 (M j ), σ ∈ L 1 (0, T ), f j ∈ L 2 (M j ) satisfying (2.6) and one of the conditions (iv ) f j = 0, j = 1, 2, (v ) σ ≡ 0, u j 0 ≡ 0, j = 1, 2, (vi ) σ ≡ 0, there exists τ 0 ∈ (0, τ 1 ) such that supp(σ) ⊂ (τ 0 , τ 1 ).

Furthermore, we assume that the expressions η 1 and c 1 , appearing in the construction of the Dirichlet input Φ given by (2.1) with ∂ Ω replaced by ∂M 1 , are such that c 1 = 0 and η 1 is a function of constant sign lying in C 3 (∂M 1 ) and it satisfies χη 1 ≡ 0. We consider also F j given by (2.5) and we fix

Γ in = Γ out
an arbitrary open subset of ∂M 1 . Consider u j , j = 1, 2, the solution of (2.18) with Φ given by (2.1), α = α j , (M, g) = (M j , g j ), q = q j , u 0 = u j 0 , F = F j . Then the condition

∂ ν u 1 = ∂ ν u 2 in (0, τ 2 ) × Γ out (2.19)
implies that (M 1 , g 1 ) and (M 2 , g 2 ) are isometric. Moreover, (2.19) implies that there exist ϕ ∈ C ∞ (M 2 ; M 1 ), an isomtery from (M 2 , g 2 ) to (M 1 , g 1 ), fixing ∂M 1 and depending only on (M j , g j ), j = 1, 2, such that

α 1 = α 2 , q 2 = q 1 • ϕ, u 2 0 = u 1 0 • ϕ, f 2 = f 1 • ϕ. (2.20) 
In the spirit of Theorem 2.2 we can also restrict the measurement under consideration in Corollary 2.4 to (T 0 -δ, T 0 ) × Γ out . This result can be stated as follows.

Corollary 2.5. We assume that the conditions of Corollary 2.4 are fulfilled. Let α ∈ (0, 2) \ {1}, let (M, g j ) be two compact and smooth connected Riemannian manifolds of dimension d ≥ 2 with g 1 = g 2 on ∂M , and let q j ∈ C ∞ (M ) satisfy q j ≥ 0 on M . Moreover, for j = 1, 2, we assume that (2) (0) = 0. We consider also F j given by (2.5) and the Dirichlet input (2.1) is defined with

u j 0 ∈ H α 0 (M ) ∩ H 2 α (M ), f j ∈ H 2 (M ) and σ ∈ W 3,1 (0, T ) satisfies σ(0) = σ (0) = σ
(η k ) k 1 a sequence of functions of H 7 2 (∂M ) such that Span({η k : k 1}) is dense in H 3 2 (∂M ) and η k H 7 2 (∂M ) = 1, k ∈ N.
Assume also that Γ in = Γ out is arbitrary chosen and the conditions

∂ ν ∆ g1 h(x) = ∂ ν ∆ g2 h(x), x ∈ Γ out , h ∈ H 4 (M ), (2.21) 
∂ k ν c 1 (x) = ∂ k ν c 2 (x), k = 0, 1, x ∈ Γ out (2.22)
are fulfilled. Consider u j , j = 1, 2, the solution of (2.18) and (g, q, u 0 , F ) = (g j , q j , u j 0 , F j ). Then, for any arbitrary chosen T 0 ∈ [τ 2 , T ] and δ ∈ (0, T 0 -τ 1 ), the conditions

∂ ν u 1 = ∂ ν u 2 in (T 0 -δ, T 0 ) × Γ out (2.23) ∂ ν ∆ g1 u 1 = ∂ ν ∆ g1 u 2 in (T 0 -δ, T 0 ) × Γ out (2.24)
imply that (M, g 1 ) and (M, g 2 ) are isometric and (2.20) is fulfilled with

M 1 = M 2 = M .
We can also extend our results to the case where the input and the measurements are applied on some disjoint sets with respect to the space variable.

Corollary 2.6. Let the condition of Corollary 2.4 be fulfilled and denote by u j , j = 1, 2, the solution of (2.18) with Φ given by (2.1), (M, g, u 0 , F ) = (M j , g j , u j 0 , F j ), j = 1, 2, and q ≡ 0. In addition, we assume that the wave equation on (0, +∞) × M j , j = 1, 2, is exactly controllable from Γ in, * 1 and

Γ in ∩ Γ out = ∅. Then (2.19) implies that (M 1 , g 1
) and (M 2 , g 2 ) are isometric and (2.20) holds true.

Let us observe that the results of Theorem 2.1, 2.2 and 2.3 correspond to the simultaneous unique determination of two coefficients among the set of parameters {ρ, a, B, q}, the order of derivation α, the obstacle ω and the internal space dependent sources {u 0 , f }, from a single boundary measurement of the solution of (1.4). In the same way, Corollary 2.4, 2.6 provide the simultaneous unique determination (up to isometry) of the Riemannian manifold (M, g) as well as the internal sources {u 0 , f }. To the best of our knowledge, even for α = 1, the results of Theorem 2.1 and 2.3 correspond to the first resolution of three among the most important class of inverse problems (inverse coefficient, inverse source and inverse obstacle problems) stated for partial differential equations from a single boundary measurement. In addition in Corollary 2.4, 2.6, we extend, for what seems to be the first time, this approach to the simultaneous determination of a Riemannian manifold (up to isometry) and an internal source. While several authors considered the recovery of coefficients appearing in different evolution

Assuming that ω 1 = ω 2 = ∅,
PDEs from a single boundary measurement (e.g. [START_REF] Feizmohammadi | Global recovery of a time-dependent coefficient for the wave equation from a single measurement[END_REF][START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF][START_REF] Yamamoto | Uniqueness and stability in multidimensional hyperbolic inverse problems[END_REF]) only some restricted results deal with the simultaneous determination of space dependent coefficients and internal source appearing in an evolution PDE from a single boundary measurement (see [START_REF] Liu | Determining both sound speed and internal source in thermo-and photo-acoustic tomography[END_REF]) and none of them seems to consider the simultaneous determination of source, obstacle and coefficients from a single boundary measurement.

In that sense, the results of Theorem 2.1, 2.3 and Corollary 2.4, 2.6 correspond to, what seems to be, the first results of simultaneous determination of general class of space dependent coefficients and internal source and the first results of simultaneous determination of source, obstacle and coefficients from a single boundary measurement for all evolution linear PDEs.

The approach that we use in this work is in the continuity of the work [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF] where the authors obtained, what seems to be, the most general and precise results of determination of coefficients appearing in (1.4) from a single boundary measurement. In the present paper we extend the work of [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF] in five different directions: 1) We give in Theorem 3.3 a simplified proof of [39, Proposition 3.2] based 1 Here we refer to [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] for geometrical conditions that guarantee the exact controllability of the wave equation from Γ in, * .

on properties of time analiticity of some solutions of problem (1.4); 2) We prove that with a class of Dirichlet input similar to the one considered by [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF], in addition to the recovery of coefficients, one can also prove the recovery of internal sources; 3) We add to the recovery of coefficients considered by [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF], the recovery of an obstacle from similar data; 4) In Theorem 2.1 and in Corollary 2.4, 2.6, we add to the results with partial data and results stated on manifold of [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF] (see [39, 

0 -δ, T 0 ), with T 0 ∈ [τ 2 , T ] and δ ∈ (0, T 0 -τ 1 )
arbitrary chosen, while all other comparable results that we know consider measurement on an interval in time of the form (0, T 0 ). This improvement of the known results can be applied to the important and difficult problem of determining coefficients of a PDE from excitation and single measurement made on disjoint sets of the lateral boundary (0, T ) × ∂ Ω (resp. (0, T ) × ∂M ). Indeed, assuming that

c k = 0, k ∈ N, with c k introduced in the definition of the Dirichlet input Φ, and choosing T 0 ∈ (τ 2 , T ), δ ∈ (0, T 0 -τ 2 ) in (2.13), one can check that the supp(Φ) ∩ (T 0 -δ, T 0 ) × Γ out = ∅.
This means that the results of Theorem 2.2 and Corollary 2.5 can be applied to the simultaneous determination of coefficients and internal source from a single measurement separated, by an interval of time, from the application of the single Dirichlet input Φ. So far, only some small number of articles in the mathematical literature have been devoted to the recovery of coefficients or a manifold from excitation and measurements made on disjoint sets for general Riemannian manifolds or a bounded domain (see e.g. [START_REF] Kian | Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets[END_REF][START_REF] Kian | Global uniqueness in an inverse problem for time-fractional diffusion equations[END_REF][START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF][START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF]). All these results considered data on disjoint sets with respect to the space variables. As far as we know, the application of these class of results require a geometrical condition imposed to the support of the inputs Γ in (like the geometrical control condition of [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] considered in [START_REF] Kian | Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets[END_REF][START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF]) and, as far as we know, these results allow only some local recovery of coefficients. In contrast to these results and their applications to fractional diffusion equations stated in [START_REF] Kian | Global uniqueness in an inverse problem for time-fractional diffusion equations[END_REF][START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF], in Theorem 2.2 (resp. in Corollary 2.5) we obtain, for what seems to be the first time, the full recovery of coefficients and manifolds from excitation and single measurement made on disjoint set of the lateral boundary (0, T ) × ∂ Ω (resp. (0, T ) × ∂M ) with respect to the time variable. Contrary to the works of [START_REF] Kian | Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets[END_REF][START_REF] Kian | Global uniqueness in an inverse problem for time-fractional diffusion equations[END_REF][START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF][START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF], in Corollary 2.5 we do not impose any geometrical condition to Γ in and in Theorem 2.2, Corollary 2.5 we obtain the full recovery of coefficients. In order to obtain these extensions of the works of [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF][START_REF] Kian | Global uniqueness in an inverse problem for time-fractional diffusion equations[END_REF], we use an argument borrowed from [START_REF] Kinash | An inverse problem for a generalized fractional derivative with an application in reconstruction of time-and space-Dependent sources in fractional diffusion and wave equations[END_REF] which can only be applied in the case α = 1. For α = 1, it is not clear that condition (2.13) implies (2.17). This property emphasis the memory effect of time fractional diffusion equations.

One of the key ingredient in our proofs is based on a step by step argumentation allowing to transfer our inverse problems into a family of inverse problems that we solve separately. However, in Let us observe that the recovery of the order of derivation α and the simultaneous recovery of the internal sources {u 0 , f } under assumption (vi) and (vi'), stated in Theorem 2.1 and in Corollary 2.4, 2.6, are new in their own. Indeed, in the Step 3 of the proof of Theorem 2.1, we prove for what seems to be the first time, the recovery of the order of derivation α in an unknown medium (coefficients and manifold unknown) from a single boundary measurement associated with a single boundary input while other results seems to consider measurement at one internal point and internal excitation given by the initial condition (see e.g. [START_REF] Hatano | Determination of order in fractional diffusion equation[END_REF][START_REF] Yamamoto | Uniqueness in determining the orders of time and spatial fractional derivatives[END_REF]). In addition, in the Step 5 of the proof of Theorem 2.1 we show how one can prove the simultaneous recovery of the initial condition u 0 and the source term f under the assumption (vi) and (vi'). As far as we known, this is the first result stating the simultaneous recovery of the two internal sources {u 0 , f }. Indeed, it seems that, all other comparable results (see e.g. [START_REF] Jiang | Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations[END_REF][START_REF] Kian | Identification of time-varying source term in time-fractional diffusion equations[END_REF][START_REF] Liu | Strong maximum principle for fractional diffusion equations and an application to an inverse source problem[END_REF]), considered only the recovery the initial condition u 0 or the source term f but not the simultaneous recovery of these two parameters.

2.1.

Outline. This paper is organized as follows. In Section 3 we recall some properties of solutions of (1.4) when T = ∞, including some properties of analyticity in time of solutions (3.1)-(3.2) (see Section

3). Applying these results, in Section 4, 5 and 6 we complete the proof of our uniqueness results.

Namely, in Section 4 we prove Theorem 2.1 while Section 5 (resp. 6) will be devoted to the proof of Theorem 2.2 (resp. 2.3). Finally, in Section 7 we give the proof of the Corollary 2.4, 2.5 and 2.6.

Analytic extension of solutions

In this section we consider (a, ρ, q) satisfying (1.1)

-(1.3) and B ∈ L ∞ (Ω) d . Let k ∈ N := {1, 2, . . .},
R + = (0, +∞) and consider the initial boundary value problems

               (ρ(x)∂ α t v 0 -div (a(x)∇ x v 0 ) + B • ∇ x v 0 + q(x)v 0 )(t, x) = F (t, x)1 (0,T ) (t), (t, x) ∈ R + × Ω, v 0 (t, x) = 0, (t, x) ∈ R + × ∂ Ω, v 0 (t, x) = 0, (t, x) ∈ R + × ∂ω, ∂ t v 0 (0, •) = u , in Ω, = 0, ..., α -1, (3.1) 
               (ρ(x)∂ α t v k -div (a(x)∇ x v k ) + B • ∇ x v k + q(x)v k )(t, x) = 0, (t, x) ∈ R + × Ω, v k (t, x) = d k ψ k (t)χ(x)η k (x), (t, x) ∈ R + × ∂ Ω, v k (t, x) = 0, (t, x) ∈ R + × ∂ω, ∂ t v k (0, •) = 0, in Ω, = 0, ..., α -1. (3.2)
Here 1 (0,T ) denotes the characteristic function of (0, T ) and we refer to the beginning of Section 1.4 for the definition of the parameters d k , ψ k , χ and η k . For simplicity, we will assume here that for α ∈ (1, 2)

we have u 1 ≡ 0. In the present paper, following [START_REF] Kian | On existence and uniqueness of solutions for semilinear fractional wave equations[END_REF][START_REF] Kian | Well-posedness for weak and strong solutions of non-homogeneous initial boundary value problems for fractional diffusion equations[END_REF][START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF], we define the weak solutions of the problem

               (ρ(x)∂ α t v -div (a(x)∇ x v) + B • ∇ x v + q(x)v)(t, x) = F (t, x)1 (0,T ) (t), (t, x) ∈ R + × Ω, v(t, x) = h(t, x), (t, x) ∈ R + × ∂ Ω, v(t, x) = 0, (t, x) ∈ R + × ∂ω, ∂ t v(0, •) = u , in Ω, = 0, ..., α -1, (3.3) 
in the following way.

Definition 3.1. Let F ∈ L 1 (0, T ; L 2 (Ω)), u 0 ∈ L 2 (Ω) and h ∈ L 1 (R + ; H 3 2 (∂ Ω)). We say that the problem (3.3) admits a weak solution v if v ∈ L 1 loc (R + ; L 2 (Ω)) satisfies the following conditions: 1) p * := inf{ε > 0 : e -εt v ∈ L 1 (R + ; L 2 (Ω))} < ∞ and we can find p 0 p * independent of F , u 0 and h,
2) for all p > p 0 the Laplace transform in time

V (p) = +∞ 0 e -pt v(t, .)dt of v solves                  AV (p) + ρ(x)p α V (p) = T 0 e -pt F (t, •)dt + p α-1 ρu 0 ,
in Ω,

V (p) = 0, on ∂ω, V (p) = +∞ 0 e -pt h(t, •)dt, on ∂ Ω,
where

Au = -div (a(x)∇ x u) + B(x) • ∇ x u + q(x)u, u ∈ H 1 (Ω).
One can easily check that the weak solution of (3.1)-(3.2) considered by [START_REF] Kian | On existence and uniqueness of solutions for semilinear fractional wave equations[END_REF][START_REF] Kian | Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations[END_REF][START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF] coincides with the one given by Definition 3.1. Moreover, following [START_REF] Kian | On existence and uniqueness of solutions for semilinear fractional wave equations[END_REF][START_REF] Kian | Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations[END_REF][START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF], we can deduce that, for all Theorem 3.2. Assume that B ≡ 0. Let ε 0 ∈ (0, τ 1 /3) be such that

k ∈ N ∪ {0}, the problems (3.1)-(3.2) admit a unique weak solution v 0 ∈ C((0, +∞); H 2γ (Ω)), v k ∈ C 1 ([0, +∞); H 2γ (Ω)), γ ∈ [0,
supp(F ) ⊂ [0, τ 1 -3ε 0 ] × Ω (3.4)
and let θ ∈ 0, min

π α -π 2 2 , π 4 
. Then, for all γ ∈ [0, 1), the solution v 0 of (3.1) can be extended

uniquely to a function ṽ0 ∈ C((0, τ 1 -ε 0 ] ∪ D τ1-ε0,θ ; H 2γ (Ω)) ∩ H(D τ1-ε0,θ ; H 2γ (Ω)).
Moreover, for any k ∈ N, the solution v k of (3.1) can be extended uniquely to a function ṽk

∈ C 1 ([0, t 2k-1 + ε k ] ∪ D t 2k-1 +ε k ,θ ; H 2 (Ω)) ∩ H(D t 2k-1 +ε k ,θ ; H 2 (Ω)).
Now let us consider the case B ∈ C(Ω) d a non-uniformly vanishing function, ρ ∈ C(Ω), a ≡ 1 and q ≡ 0. We consider the following result.

Theorem 3.3. Assume that the condition (3.4) is fulfilled, a ≡ 1, q ≡ 0 and α ∈ (0, 1]. Then, there

exists θ ∈ 0, min π α -π 2 2 , π 4 
such that, for any γ ∈ (0, 1), the solution v 0 of (3.1) can be extended

uniquely to a function ṽ0 ∈ C((0, τ 1 -ε 0 ] ∪ D τ1-ε0,θ ; H 2γ (Ω)) ∩ H(D τ1-ε0,θ ; H 2γ (Ω)). Moreover, for any k ∈ N, the solution v k of (3.1) can be extended uniquely to a function ṽk ∈ C 1 ([0, t 2k-1 + ε k ] ∪ D t 2k-1 +ε k ,θ ; H 2γ (Ω)) ∩ H(D t 2k-1 +ε k ,θ ; H 2γ (Ω)).
The second claim of this theorem can be deduced from [39, Proposition 3.2]. However, we will give here a simplified proof not based on iteration arguments. For this purpose, we fix A the unbounded elliptic operator defined by A = ρ -1 A acting on L 2 (Ω; ρdx) with domain D(A) = H 1 0 (Ω) ∩ H 2 (Ω). According to [1, Theorem 2.1] (see also [START_REF] Lorenzi | Pallara Analytic semigroups and reaction-diffusion problems[END_REF]Theorem 2.5.1]), there exists θ 0 ∈ π 2 , π and r 0 0 such that the set D r0,θ0 is in the resolvent set of A. Moreover, there exists C > 0, depending on A, ρ, Ω, such that

(A + z) -1 B(L 2 (Ω;ρdx)) + |z -r 0 | -1 (A + z) -1 B(L 2 (Ω;ρdx);H 2 (Ω)) C|z -r 0 | -1 , z ∈ D r0,θ0 . (3.5)
Here we use the fact that, thanks to (1.3), L 2 (Ω) = L 2 (Ω; ρdx) with equivalent norms. We fix

θ 1 ∈ π 2 , π 2 + θ0-π 2 2
, δ ∈ (0, +∞) and we consider γ(δ, θ 1 ) the contour in C defined by

γ(δ, θ 1 ) := γ -(δ, θ 1 ) ∪ γ 0 (δ, θ 1 ) ∪ γ + (δ, θ 1 )
oriented in the counterclockwise direction, where

γ 0 (δ, θ 1 ) := {r 1 + δe iβ ; β ∈ [-θ 1 , θ 1 ]} and γ ± (δ, θ 1 ) := {r 1 + se ±iθ1 ; s ∈ [δ, +∞)}
and the two copies of the ± sign in the above identity must both be replaced in the same way. Here we choose r 1 > r 0 large enough and in particular, for all δ > 0, we have γ(δ, θ 1 ) ⊂ D r0,θ0 . Let

θ 2 ∈ 0, θ 1 -π 2 .
Applying the above properties of the operator A, for α ∈ (0, 1] and z ∈ D 0,θ2 , we can define the operator S(z) ∈ B(L 2 (Ω)) by

S(z)u 0 = 1 2iπ γ(δ,θ1) e zp (A + p α ) -1 u 0 dp, u 0 ∈ L 2 (Ω).
We consider first the following property of the map z → S(z).

Lemma 3.4. For all γ ∈ [0, 1], the map z → S(z) is lying in H(D 0,θ2 ; B(L 2 (Ω); H 2γ (Ω))) and there exists C > 0 depending only on A, ρ and Ω such that

S(z) B(L 2 (Ω;ρdx);H 2γ (Ω)) C max(|z| α(1-γ)-1 , 1)e r1R(z) , z ∈ D 0,θ2 . (3.6) 
Proof. In all this proof C is a constant depending only on A, ρ and Ω that may change from line to line. Using the fact that by interpolation (3.5) implies that e zp (A + p α ) -1 dp, m = 0, ∓, z ∈ D 0,θ2 .

(A + p α ) -1 B(L 2 (Ω;ρdx);H 2γ (Ω)) C ||p| α -r 0 | -(1-γ) , p ∈ γ(δ, θ 1 ), (3.7 
Therefore, the lemma will be completed if we prove that

S m (z) B(L 2 (Ω;ρdx);H 2γ (Ω)) C max(|z| α(1-γ)-1 , 1)e r1R(z) , z ∈ D 0,θ2 , m = 0, ∓. (3.8) 
For m = 0, applying (3.7), we find

S 0 (z) B(L 2 (Ω;ρdx);H 2γ (Ω)) C θ1 -θ1 e r1R(z) |z| -1 A + (r 1 + |z| -1 e iβ ) α -1 B(L 2 (Ω;ρdx);H 2γ (Ω)) dβ C (r 1 + |z| -1 e iβ ) α -r 0 -(1-γ) |z| -1 e r1R(z) C max |z| α(1-γ)-1 , 1 e r1R(z) , z ∈ D 0,θ2 ,
which clearly implies (3.8) for m = 0. Here in the last inequality we have used the fact that r 1 > r 0 is chosen sufficiently large. Now let us consider the case m = ∓. For any z ∈ D 0,θ2 , we find

S ∓ (z) B(L 2 (Ω;ρdx);H 2γ (Ω)) Ce r1R(z) +∞ |z| -1 e r|z| cos(θ1+arg(z)) (A + (re iθ ) α ) -1 B(L 2 (Ω;ρdx);H 2γ (Ω)) dr,
with C > 0 independent of z. Applying again (3.7), for any z ∈ D 0,θ2 , we obtain

S ∓ (z) B(L 2 (Ω;ρdx);H 2γ (Ω)) Ce r1R(z) +∞ |z| -1 e r|z| cos(θ1+arg(z)) (r 1 + re iβ ) α -r 0 -(1-γ) dr Ce r1R(z) +∞ 0 e r|z| cos(θ1-θ2) (r 1 + re iβ ) α -r 0 -(1-γ) dr C max(|z| α(1-γ)-1 , 1)e r1R(z)
+∞ 0 e t cos(θ1-θ2) max(t -(1-γ)α , 1)dt.

Therefore, using the fact that θ 1 -θ 2 ∈ π 2 , π , we deduce that (2.2) holds also true for m = ∓. This completes the proof of the lemma.

In addition to these properties, by combining estimate (3.6) with the arguments of [45, Theorem 1.1] and [45, Remark 1], we deduce that , for F ∈ L ∞ (0, T ; L 2 (Ω)) satisfying (3.4), with u 0 = u α -1 = 0, (3.1) admits a unique weak solution v 0 ∈ C([0, +∞); H 2γ (Ω)), γ ∈ (0, 1), taking the form

u(t, •) = t 0 S(t -s)F (s, •)1 (0,T ) (s)ds, t ∈ R + .
(3.9)

Using some arguments similar to [41, Proposition 6.1.], one can show that the identity (3.9) holds true for source terms F lying in L 1 (0, T ; L 2 (Ω)). Armed with this result we are now in position to complete the proof of Theorem 3. Applying Lemma 3.4, we deduce that ṽ0 ∈ H(D τ1-2ε0,θ2 ; H 2γ (Ω)) and applying (3.4), we obtain

ṽ0 (t, •) = τ1-3ε0 0 S(t -s)F (s, •)ds = t 0 S(t -s)F (s, •)ds = v 0 (t, •), t ∈ (τ -ε 0 , +∞).
This clearly implies the first claim of the theorem. Now let us consider the second claim of the theorem. For this purpose, we fix k ∈ N and we

consider δ k ∈ (0, ε k /3). Let us consider u k solving                (ρ(x)∂ α t u k -∆u k )(t, x) = 0, (t, x) ∈ R + × Ω, u k (t, x) = d k ψ k (t)χ(x)η k (x), (t, x) ∈ R + × ∂ Ω, u k (t, x) = 0, (t, x) ∈ R + × ∂ω, ∂ t u k (0, •) = 0, in Ω, = 0, ..., α -1.
Using the above properties, we deduce that the solution v k of (3.2) is given by

v k (t, •) = u k (t, •) - t 0 S(t -s)B • ∇ x u k (s, •)ds, t ∈ R + . (3.10) 
Here according to estimate (3.6), we can chose p 0 = r 1 . In view of Theorem 3.2, u k can be extended

to ũk ∈ C 1 ([0, t 2k-1 + ε k ] ∪ D t 2k-1 +δ k ,θ2 ; H 2 (Ω)) ∩ H(D t 2k-1 +δ k ,θ2 ; H 2 (Ω)). Therefore, we can define ṽk (z, •) = ũk (z, •) + wk (z, •) + ỹk (z, •), z ∈ D t 2k-1 +δ k ,θ2 , (3.11) 
with wk (z, •) = -

t 2k-1 +2δ k 0 S(z -s)B • ∇ x u k (s, •)ds, ỹk (z, •) = - z-t 2k-1 -2δ k 0 S(p)B • ∇ x ũk (z -p, •)dp.
It is clear that

ṽk (t, •) = u k (t, •) - t 2k-1 +2δ k 0 S(t -s)B • ∇ x u k (s, •)ds - t-t 2k-1 -2δ k 0 S(s)B • ∇ x ũk (t -s, •)ds = u k (t, •) - t 0 S(t -s)B • ∇ x u k (s, •)ds, t ∈ (t k + ε k , +∞).
Combining this with (3.10), one can check that ṽk extends v k . Therefore, using the fact that

D t 2k-1 +ε k ,θ2 ⊂ D t 2k-1 +2δ k ,θ2
, the proof will be completed if we prove that ṽk ∈ H(D t 2k-1 +2δ k ,θ2 ; H 2γ (Ω)). For this purpose, we only need to show that wk and ỹk are lying in H(D t 2k-1 +2δ k ,θ2 ; H 2γ (Ω)). For wk , we first fix δ * ∈ (0, t 2k-1 + 2δ k ) and we consider wk,δ * := -

t 2k-1 +2δ k -δ * 0 S(z -s)B • ∇ x u k (s, •)ds.
Repeating the arguments used at the beginning of this proof, we deduce that wk,δ * ∈ H(D t 2k-1 +2δ k ,θ2 ; H 2γ (Ω)).

Moreover, for any compact set K ⊂ D t 2k-1 +2δ k ,θ2 , applying (3.6), for all z ∈ K, we get

wk,δ * (z, •) -wk (z, •) H 2γ (Ω) C u k L ∞ (0,T ;H 1 (Ω)) t 2k-1 +2δ k t 2k-1 +2δ k -δ * max(|z -s| (1-γ)α-1 , 1)ds.
This proves that wk,δ * converges uniformly, with respect to z ∈ K, as δ * → 0 to wk . This completes the proof of the theorem.

Using the analiticity properties described above, we will complete the proof of our main results in the coming sections. We start with Theorem 2.1, 2.2, 2.3. Then, we prove Corollary 2.4, 2.5, 2.6 in the last section. We will only give the detail of the proof of Theorem 2.1, 2.2 and 2.3. For Corollary 2.4, 2.5, 2.6, we will mainly adapt to the framework of manifolds the arguments used in Theorem 2.1, 2.2.

Proof of Theorem 2.1.

The proof of Theorem 2.1 will be decomposed into five steps. We start by proving that (2.9) implies that, for all k ∈ N ∪ {0}, we have

a 1 (x)∂ ν v 1 k (t, x) = a 2 (x)∂ ν v 2 k (t, x), (t, x) ∈ (0, +∞) × Γ out , (4.1) 
with v j 0 the solution of (3.1) for B ≡ 0, α = α j , ω = ω j and (a, ρ, q, u 0 , u 1 , F ) = (a j , ρ j , q j , u j 0 , 0, F j ), j = 1, 2, and v j k , j = 1, 2, k ∈ N, the solution of (3.2) for B ≡ 0, ω = ω j and (a, ρ, q) = (a j , ρ j , q j ), j = 1, 2. Using (4.1) with k = 1 and exploiting condition (2.7)-(2.8), we will deduce that ω 1 = ω 2 .

Then, applying (4.1), with k = 1, we get α 1 = α 2 . After that, using (4.1), with k ∈ N, we will obtain

a 1 = a 2 , ρ 1 = ρ 2 , q 1 = q 2 . (4.2)
Finally, combining all these results and applying (4.1) with k = 0 we will get

u 1 0 = u 2 0 , f 1 = f 2 . (4.3)
Step 1. We will prove (4.1) by iteration. Let us start with k = 0. For this purpose, using the properties of the sequence (ψ k ) k 1 , let us observe that

ψ k (t) = 0, k 1, t ∈ (0, t 0 ) = (0, τ 1 ).
Therefore, the restriction of u j to (0, τ 1 ) × Ω j solves the boundary value problem

                          
(ρ j (x)∂ α t u j -div(∇ x a j u j )(t, x) + q j u j (t, x) = σ(t)f j (x), (t, x) ∈ (0, τ 1 ) × Ω j , u j (t, x) = 0, (t, x) ∈ (0, τ 1 ) × ∂ Ω,

u j (t, x) = 0, (t, x) ∈ (0, τ 1 ) × ∂ω j ,      u j = u j 0 if 0 < α 1, u j = u 0 , ∂ t u j = 0 if 1 < α < 2, in {0} × Ω j . (4.4)
Using the fact that the restriction of v j 0 to (0, τ 1 ) × Ω j solves also (4.4) and applying the uniqueness of the solution of (4.4), we get v j 0 (t, x) = u j (t, x), (t, x) ∈ (0, τ 1 ) × Ω j and condition (2.9) implies

a 1 (x)∂ ν v 1 0 (t, x) = a 2 (x)∂ ν v 2 0 (t, x), (t, x) ∈ (0, τ 1 ) × Γ out . (4.5)
Combining this with (2.5)-(2.6) and applying Theorem 3.2, we deduce that there exits ε 1 ∈ (0, τ 1 ) such that v j 0 ∈ A((τ 1 -ε 1 , +∞); H Now let us consider 0 and assume that (4.1) is fulfilled for k = 0, . . . , . Since

ψ m (t) = 0, m + 2, t ∈ (0, t 2 +2 ),
we know that

+1 k=0 v j k (t, x) = u j (t, x), (t, x) ∈ (0, t 2 +2 ) × Ω.
Therefore, (2.9) implies

+1 k=0 a 1 (x)∂ ν v 1 k (t, x) = +1 k=1 a 2 (x)∂ ν v 2 k (t, x), (t, x) ∈ (0, t 2 +2 ) × Γ out .
Then, from our iteration assumption we deduce that

a 1 (x)∂ ν v 1 +1 (t, x) = a 2 (x)∂ ν v 2 +1 (t, x), (t, x) ∈ (0, t 2 +2 ) × Γ out .
Therefore, applying again Theorem 3.2 we deduce that t → ∂ ν v j +1 (t, •) |Γout ∈ A((t 2 +1 +ε , +∞); L 2 (Γ out )), j = 1, 2, and we get (4.1) for k = + 1. This proves that (4.1) holds true for all k ∈ N ∪ {0}.

Step 2. We will now show that (4.1) with k = 1 implies that ω 1 = ω 2 . Let us fix V j 1 (p, x) the Laplace transform in time, at p > 0, of the solution v j 1 of the problem (3.1) for k = 1. The definition of weak solution of (1.4) implies that, for all p > 0,

V j 1 (p, •) solves            -div a j ∇ x V j 1 (p, •) + q j V j 1 (p, •) + ρ j p αj V j 1 (p, •) = 0, in Ω j , V j 1 (p, •) = ψ1 (p)χη 1 , on ∂ Ω, V j 1 (p, •) = 0, on ∂ω j , (4.6) 
where

ψ1 (p) = +∞ 0 e -pt ψ 1 (t)dt, p > 0.
Following the arguments used in Step 2 of the proof of [39, Theorem 2.2], one can check that, for s ∈ (3/2, 2) and for all p > 0, we have t → e -pt v j 1 ∈ L 1 (R + ; H s (Ω j )), j = 1, 2. Therefore, we can apply the Laplace transform in time to the identity (4.1), with k = 1, in order to get

a 1 (x)∂ ν V 1 1 (p, x) = a 2 (x)∂ ν V 2 1 (p, x), p > 0, x ∈ Γ out .
Choosing p = 1, we deduce from this identity that

a 1 (x)∂ ν V 1 1 (1, x) = a 2 (x)∂ ν V 2 1 (1, x), x ∈ Γ out . (4.7)
Combining (4.7) with (2.7)-(2.8), we deduce that the restriction of

V 1 (1, •) = V 1 1 (1, •) -V 2 1 (1, •) to O satisfies the conditions    -div (a 1 ∇ x V 1 (1, •)) + q 1 V 1 (1, •) + ρ 1 V 1 (1, •) = 0 in O, V 1 (1, •) = ∂ ν V 1 (1, •) = 0, on Γ out ∩ ∂O.
Since O is connected, applying results of unique continuation for elliptic equations, we find

V 1 (1, x) = 0, x ∈ O.
Using the fact that ∂(ω 1 ∪ ω 2 ) ⊂ ∂O, we deduce from this identity that

V 1 1 (1, x) = V 1 (1, x) = 0, x ∈ (∂ω 2 ) \ (∂ω 1 ). (4.8) Moreover, since χη 1 ∈ W 2-1 r ,r (∂Ω), and V 1 1 (p, •) solves (4.6), [23, Theorem 2.4.2.5] implies that V 1 1 (1, •) ∈ W 2,r (Ω).
Using the fact that r > n/2, the Sobolev embedding theorem implies that

V 1 1 (1, •) ∈ C(Ω) ∩ H 1 (Ω). Fixing ω * = ω 2 \ ω 1 , we deduce from (4.8) that V 1 1 (1, •) ∈ C(ω * ) ∩ H 1 (ω * ) and V 1 1 (1,
•) = 0 on ∂ω * . Therefore, applying [7, Theorem 9.17] and [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Remark 19], we deduce that the restriction of

V 1 1 (1, •) to ω * is lying in H 1 0 (ω * ). It follows that V 1 1 (1, •) ∈ H 1 0 (ω * ) satisfies -div a 1 ∇ x V 1 1 (1, •) + q 1 V 1 1 (1, •) + ρ 1 V 1 1 (1, •) = 0 in ω * . (4.9)
Let us fix

H * h = -div (a 1 ∇ x h) + q 1 h + ρ 1 h with domain D(H * ) = {h ∈ H 1 0 (ω * ) : -div (a 1 ∇ x h) + q 1 h + ρ 1 h ∈ L 2 (ω * )}.
Then, condition (4.9

) implies that V 1 1 (1, •) ∈ D(H * ) and H * V 1 1 (1, •) ≡ 0.
On the other hand, since q 1 0 and ρ 1 > 0, one can check that 0 is not in the spectrum of H * which implies that

V 1 1 (1, x) = 0, x ∈ ω * = ω 2 \ ω 1 . (4.10)
Combining this with the fact that

-div a 1 ∇ x V 1 1 (1, •) + q 1 V 1 1 (1, •) + ρ 1 V 1 1 (1, •) = 0 in Ω 1
and applying results of unique continuation for elliptic equations we deduce that V 1 1 (1, •) = 0 on Ω 1 . On the other hand, since ψ 1 0 and ψ 1 ≡ 0, one can check that ψ1 (1) = 0 and we obtain

χη 1 (x) = V 1 1 (1, x) ψ1 (1) = 0, x ∈ ∂ Ω.
This contradicts the fact that χη 1 ≡ 0. Therefore, we have ω 1 = ω 2 .

Step 3. In this step, we will show that condition (4.1), for k = 1, implies that α 1 = α 2 .

For this purpose, we will start by considering the asymptotic behavior of ∂ ν v j 1 (t, •)| Γout , j = 1, 2, as t → +∞. Then, combining this asymptotic property with (4.1), for k = 1, we will deduce that α 1 = α 2 . We mention that a similar approach has been considered by other authors (see e.g. [START_REF] Hatano | Determination of order in fractional diffusion equation[END_REF][START_REF] Yamamoto | Uniqueness in determining the orders of time and spatial fractional derivatives[END_REF])

with Dirichlet measurement at one internal point (a point x 0 ∈ Ω) in order to prove the recovery of the order of derivation α. However, to the best of our knowledge this result will be the first one in that category stated in an unknown medium (since we have not yet proved that (a 1 , ρ 1 , q 1 ) = (a 2 , ρ 2 , q 2 )), a Neumann boundary measurement and with a Dirichlet input (it seems that all other related results in that category have been stated with non-uniformly vanishing and known initial condition). From now on we fix Ω = Ω 1 = Ω 2 = Ω \ ω 1 which, according to our assumptions, is a C 2 open connected set. Let us consider the operator A j , j = 1, 2, with domain D(A j ) = H 2 (Ω) ∩ H 1 0 (Ω) defined by A j w := -div(a j ∇ x w) + q j w ρ j , w ∈ D(A j ).

We fix {λ j k } k∈N and m j k ∈ N the strictly increasing sequence of the eigenvalues of A j and the algebraic multiplicity of λ j k , respectively. For each eigenvalue λ j k , we introduce a family {ϕ j k, }

m j k =1 of eigenfunctions of A j , i.e., A j ϕ j k, = λ j k ϕ j k, , = 1, . . . , m j k ,
which forms an orthonormal basis in L 2 (Ω; ρ j dx) of the algebraic eigenspace of A j associated with λ j k . We introduce also, for β 1 , β 2 > 0, the Mittag-Leffler function E β1,β2 given by

E β1,β2 (z) = ∞ k=0 z k Γ(β 1 k + β 2 ) , z ∈ C.
We recall also that E 1,1 (z) = e z . In view of [START_REF] Kian | Well-posedness for weak and strong solutions of non-homogeneous initial boundary value problems for fractional diffusion equations[END_REF]Theorem 1.3], for j = 1, 2, one can check that, for all t ∈ (0, +∞), we have

v j 1 (t, •) = ∞ k=1 m k =1 - t 0 (t -s) αj -1 E αj ,αj (-λ j k (t -s) αj )ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ds ϕ j k, .
Using the fact that c 1 = 0, we have supp(ψ 1 ) ⊂ [0, τ 2 ] and it follows that, for all t ∈ (τ 2 , +∞), we find

v j 1 (t, •) = ∞ k=1 m k =1 - τ2 0 (t -s) αj -1 E αj ,αj (-λ j k (t -s) αj )ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ds ϕ j k, . (4.11)
On the other hand, applying [55, Theorem 1.4, page [START_REF] Katchalov | Inverse Boundary Spectral Problems[END_REF][START_REF] Katchalov | Equivalence of time-domain inverse problems and boundary spectral problem[END_REF] one can check that there exists a constant

C > 0 such that E αj ,αj (-λt αj ) Ct -2αj λ -2 , λ ∈ (0, +∞), t ∈ (0, +∞), j = 1, 2.
Moreover, in light of [44, Lemma 2.1] (see also [START_REF] Kian | Global uniqueness in an inverse problem for time-fractional diffusion equations[END_REF]Lemma 2.3]) the sequence

N k=1 m k =1 χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) λ n ϕ j k, , N ∈ N, j = 1, 2,
converges in the sense of L 2 (Ω). Combining these two estimates, we deduce that for all t > τ 2 , the sequence

N k=1 m k =1 - τ2 0 (t -s) αj -1 E αj ,αj (-λ j k (t -s) αj )ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ds ϕ j k, , N ∈ N converges in the sense of D(A j ) ⊂ H 2 (Ω).
Using this result, we deduce that for all t > τ 2 , the sequence

N k=1 m k =1 - τ2 0 (t -s) αj -1 E αj ,αj (-λ n (t -s) αj )ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ds ∂ ν ϕ j k, , N ∈ N
converges in the sense of L 2 (∂Ω) and, for all t ∈ (τ 2 , +∞), we have

∂ ν v j 1 (t, •) = ∞ k=1 m k =1 - τ2 0 (t -s) αj -1 E αj ,αj (-λ j k (t -s) αj )ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ds ∂ ν ϕ j k, . (4.12) 
Applying the Lebesgue dominate convergence theorem, we deduce that, for all t ∈ (τ 2 + 1, +∞) and for j = 1, 2, we have

∂ ν v j 1 (t, •) = - τ2 0 (t -s) αj -1 ∞ k=1 m k =1 E αj ,αj (-λ j k (t -s) αj )ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ∂ ν ϕ j k, ds. (4.13) 
Applying formula (1.143) page 34 of [START_REF] Podlubny | Fractional differential equations[END_REF] we deduce that there exists C > 0 such that, for all s ∈ (0, τ 2 ), t > τ 2 + 1 and k ∈ N, we have

E αj ,αj (-λ j k (t -s) αj ) + (t -s) -2αj Γ(-α j )(λ j k ) 2 C(λ j k (t -s) αj ) -3 C(λ j k ) -3 t -3αj .
In this last identity, we assume that Γ(-1) -1 = 0. In addition, using the fact that

(t -s) -2αj = t -2αj + O t→+∞ (t -3αj ), s ∈ (0, τ 2 ),
we deduce that there exists C independent of t, s, k, such that

E αj ,αj (-λ j k (t -s) αj ) + t -2αj Γ(-α j )(λ j k ) 2 E αj ,αj (-λ j k (t -s) αj ) + (t -s) -2αj Γ(-α j )(λ j k ) 2 + t -2αj -(t -s) -2αj Γ(-α j )(λ j k ) 2 C (λ j k ) -2 t -3αj .
Applying this estimate, we deduce that, for all t > τ 2 + 1, we have

τ2 0 ∞ k=1 m k =1 (t -s) αj -1 E αj ,αj (-λ j k (t -s) αj ) + t -1-αj Γ(-α j )(λ j k ) 2 ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ϕ j k, D(Aj ) ds τ2 0 ∞ k=1 m k =1 (t -τ 2 ) αj -1 E αj ,αj (-λ j k (t -s) αj ) + t -1-αj Γ(-α j )(λ j k ) 2 ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ϕ j k, D(Aj ) ds C τ2 0 ∞ k=1 m k =1 t αj -1 E αj ,αj (-λ j k (t -s) αj ) + t -1-αj Γ(-α j )(λ j k ) 2 ψ 1 (s) χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) ϕ j k, D(Aj ) ds Ct -1-2αj ψ 1 L 1 (R+)     ∞ n=1 m k=1 χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) λ j k 2     1 2 ds Ct -1-2αj χη 1 H 1 2 (∂Ω)
, where C > 0 is a constant independent of t that may change from line to line. Using this estimate and the continuity of the map D(A j ) v → ∂ ν v ∈ L 2 (∂Ω), we obtain

∂ ν v j 1 (t, •) = t -1-αj Γ(-α j ) +∞ 0 ψ 1 (s)ds    ∞ k=1 m k =1 χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) (λ j k ) 2 ∂ ν ϕ j n,k    + O t→+∞ (t -1-2αj ).
In this last identity O is considered with respect to the norm of L 2 (∂Ω). Let us consider

G j ∈ H 2 (Ω) the solution of          -div(a j ∇ x G j ) + q j G j = 0, x ∈ Ω, G j (x) = χη 1 (x), x ∈ ∂ Ω, G j (x) = 0, x ∈ ∂ω 1 . (4.14) 
Applying [44, Lemma 2.1], we deduce that

G j , ϕ j k, L 2 (Ω;ρj dx) = - χη 1 , a j ∂ ν ϕ j k, L 2 (∂Ω) λ j k
and, using this identity, we obtain the following asymptotic property

∂ ν v j 1 (t, •) = - t -1-αj Γ(-α j ) +∞ 0 ψ 1 (s)ds ∂ ν w j + O t→+∞ (t -1-2αj ), (4.15) 
where w j = A -1 j G j with G j the solution of (4.14). Combining this asymptotic property of ∂ ν v j 1 (t, •) as t → +∞ with condition (4.1), with k = 1, we will prove by contradiction that α 1 = α 2 .

Let us assume that α 1 = α 2 . From now on, without loss of generality we assume that α 1 < α 2 .

Notice that (4.1), for k = 1, implies that

±a 1 ∂ ν v 1 1 (t, x) = ±a 2 ∂ ν v 2 1 (t, x), (t, x) ∈ (0, +∞) × Γ out .
Combining this identity with the fact that χη 1 is of constant sign, by eventually replacing η 1 by -η 1 , we can assume that the function χη 1 is non-positive. From (4.15) and (4.1), when k = 1, we deduce that, for a.e. x ∈ Γ out , we have

- t -1-α1 Γ(-α 1 ) +∞ 0 ψ 1 (s)ds a 1 ∂ ν w 1 (x) + O t→+∞ (t -1-2α1 ) = - t -1-α2 Γ(-α 2 ) +∞ 0 ψ 1 (s)ds a 2 ∂ ν w 2 (x) + O t→+∞ (t -1-2α2 ).
Since ψ 1 0, and ψ 1 ≡ 0, we deduce that +∞ 0 ψ 1 (s)ds > 0 and, for a.e. x ∈ Γ out , we obtain

t -1-α1 Γ(-α 1 ) a 1 ∂ ν w 1 (x) + O t→+∞ (t -1-2α1 ) = t -1-α2 Γ(-α 2 ) a 2 ∂ ν w 2 (x) + O t→+∞ (t -1-2α2 ). (4.16) 
Using the fact that χη 1 ∈ W 2-1 r ,r (∂Ω) and applying [23, Theorem 2.4.2.5], we obtain G j ∈ W 2,r (Ω).

Then, since r > n 2 , the Sobolev embedding theorem implies that G j ∈ C(Ω). Therefore, applying again [23, Theorem 2.4.2.5], we deduce that w j ∈ W 2,n+1 (Ω) ⊂ C 1 (Ω). Since χη 1 0 and χη 1 ≡ 0, the maximum principle (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations ofsecond order[END_REF]Corollary 3.2]) implies that, for j = 1, 2, G j 0 and G j ≡ 0.

Moreover, using the fact that -div(a j ∇ x w j ) + q j w j = ρ j G j 0 and w j | ∂Ω = 0, the strong maximum principle (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations ofsecond order[END_REF]Theorem 3.5]) implies that

w j (x) < 0, x ∈ Ω.
Thus, the Hopf lemma (see [START_REF] Gilbarg | Elliptic partial differential equations ofsecond order[END_REF]Lemma 3.4]) implies that

∂ ν w j (x) > 0, x ∈ ∂Ω, j = 1, 2.
In particular, we have a j ∂ ν w j L 2 (Γout) > 0, j = 1, 2. Taking the norm L 2 (Γ out ) on both sides of (4.16), we get

t -1-α1 |Γ(-α 1 )| a 1 ∂ ν w 1 L 2 (Γout) O t→+∞ (t -1-2α1 ) + t -1-α2 |Γ(-α 2 )| a 2 ∂ ν w 2 L 2 (Γout) + O t→+∞ (t -1-2α2 ), (4.17) 
where this time O is considered in term of functions taking values in R. Assuming that α j = 1, multiplying this expression by |Γ(-α 1 )|t 1+α1 and sending t → +∞, we get

a 1 ∂ ν w 1 L 2 (Γout) 0.
This contradicts the fact that a 1 ∂ ν w 1 L 2 (Γout) > 0 and it follows that α 1 = α 2 . On the other hand, if

α 1 = 1, combining the fact that t -1-α2 = o t→+∞ (t -3 ),
with (4.17) and the fact that a 2 ∂ ν w 2 L 2 (Γout) > 0, we deduce that Γ(-α 2 ) -1 = 0 which implies that α 2 = 1. In the same way, if α 2 = 1 one can check that α 1 = 1. This proves that in all case α 1 = α 2

Step 4. From now on we fix α 1 = α 2 = α and Ω = Ω 1 = Ω 2 = Ω \ ω 1 which, according to our assumptions, is a C 2 open connected set. Note that, in this context, the fact that one of the conditions (i), (ii), (iii) is fulfilled implies that one of the following conditions

(i ) ρ 1 = ρ 2 , (ii ) a 1 = a 2 , (iii ) q 1 = q 2 (4.18)
is fulfilled. In this step, we will show that condition (4.1), for k 1, implies that

ρ 1 = ρ 2 , a 1 = a 2 , q 1 = q 2 . (4.19)
For this purpose, we use the notation of the third step. Repeating the arguments used in Step 1, 2, 3 and 4 in the proof of [39, Theorem 2.2], we deduce that the condition (4.1) for k ∈ N implies that the following conditions 

λ 1 k = λ 2 k , m 1 k = m 2 k , k ∈ N, (4.20) 
∂ ν ϕ 1 k, (x), ∂ ν ϕ 1 k, (x), k ∈ N, = 1, . . . , m
, ϕ k, = ϕ 1 k, -ϕ 2 k, satisfies    -div (a 1 ∇ x ϕ k, ) + q 1 ϕ k, -λ 1 k ρ 1 ϕ k, = 0 in Õ, ϕ k, = ∂ ν ϕ k, = 0, on Γ out ∩ ∂ Õ.
Therefore, applying results of unique continuation for elliptic equations, we deduce that

ϕ 1 k, (x) -ϕ 2 k, (x) = ϕ k, (x) = 0, k ∈ N, = 1, . . . , m 1 k , x ∈ Õ.
Combining this with the fact that ∂ω 1 = ∂(ω 1 ∪ ω 2 ) ⊂ ∂ Õ, we deduce that

∂ ν ϕ 1 k, (x) = ∂ ν ϕ 2 k, (x), k ∈ N, = 1, . . . , m 1 k , x ∈ ∂ω 1 .
This last identity and (4.21) imply

∂ ν ϕ 1 k, (x) = ∂ ν ϕ 2 k, (x), k ∈ N, = 1, . . . , m 1 k , x ∈ ∂Ω.
Combining this with (4.20) and the fact that one of the conditions (4.18) is fulfilled, we are in position to apply the inverse spectral result of [10, Corollaries 1.5-1.7] in order to deduce that (4.19) holds true.

Step 5. In this last step we will complete the proof of the theorem by proving that condition (4.1) with k = 0 implies that

u 1 0 = u 2 0 , f 1 = f 2 . (4.22)
Using the fact that Ω 1 = Ω 2 = Ω, α 1 = α 2 = α and the fact that (4. [START_REF] Badia | Inverse source problem in an advection-dispersion-reaction system: application to water pollution[END_REF]) is fulfilled, we deduce that, for

j = 1, 2, v j 0 solves the problem          (ρ 1 (x)∂ α t v j 0 -div a 1 (x)∇ x v j 0 + q 1 (x)v j 0 )(t, x) = F j (t, x), (t, x) ∈ (0, +∞) × Ω, v j 0 (t, x) = 0, (t, x) ∈ (0, +∞) × ∂Ω, ∂ t v j 0 (0, •) = u j ,
in Ω, = 0, ..., α -1.

Fixing F = F 1 -F 2 , u 0 = u 1 0 -u 2 0 , u 1 ≡ 0, we deduce that v 0 = v 1 0 -v 2 0 solves          (ρ 1 (x)∂ α t v 0 -div (a 1 (x)∇ x v 0 ) + q 1 (x)v 0 )(t, x) = F (t, x), (t, x) ∈ (0, +∞) × Ω, v 0 (t, x) = 0, (t, x) ∈ (0, +∞) × ∂Ω, ∂ t v 0 (0, •) = u ,
in Ω, = 0, ..., α -1.

(4.23)

Moreover, condition (4.1) for k = 0 implies that

∂ ν v 0 (t, x) = 0, (t, x) ∈ (0, +∞) × Γ out .
Without loss of generality and by eventually extending Ω into a larger connected open set, we may assume that v 0 (t, x) = 0, (t, x) ∈ (0, +∞) × Ω (4.24)

for Ω an open subset of Ω. We will give the proof of this result both in the case where condition (v) and (vi) are fulfilled. Indeed, assuming that (iv) is fulfilled, one can deduce (4.22) from (4.1) with k = 0 by applying [START_REF] Jiang | Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations[END_REF]Theorem 2.5].

Let us first assume that condition (v) of Theorem 2.1 is fulfilled. Recall that since Ω 1 = Ω 2 = Ω, condition (v) implies that u 1 0 = u 2 0 . Then, v = v 1 0 -v 2 0 solves (4.23) with u ≡ 0, = 0, ..., α -1 and F (t, x) = σ(t)(f 1 (x) -f 2 (x)). For all p > 0 and for V (p, •) the Laplace transform in time of v 0 at p, the conditions

         ρ 1 (x)p α V 0 (p, x) -div (a 1 (x)∇ x V 0 ) (p, x) + q 1 (x)V 0 (p, x) = f (x) T 0 e -pt σ(t)dt, x ∈ Ω, V 0 (p, x) = 0, x ∈ ∂Ω, V 0 (p, x) = 0, x ∈ Ω are fulfilled, with f = f 1 -f 2 .
Since σ ≡ 0 by the uniqueness and the analiticity of the Laplace transform in time of σ extended by zero to (0, +∞), there exists 0 < r 1 < r 2 such that T 0 e -pt σ(t)dt = 0, p ∈ (r 1 , r 2 ).

Thus, fixing

W (p, •) = V 0 (p 1 α , •) T 0 e -p 1 α t σ(t)dt , p ∈ (r α 1 , r α 2 ),
we deduce that W (p, •) satisfies, for all p ∈ (r α 1 , r α 2 ), the conditions

         ρ 1 (x)pW (p, x) -div (a 1 (x)∇ x W ) (p, x) + q 1 (x)W (p, x) = f (x), x ∈ Ω, W (p, x) = 0, x ∈ ∂Ω, W (p, x) = 0, x ∈ Ω .
On the other hand, repeating the above arguments we deduce that for w ∈ L 2 (0, +∞; H 1 (Ω)) the solution of the parabolic problem The unique continuation results for parabolic equations (e.g. [START_REF] Saut | Unique continuation for some evolution equations[END_REF]Theorem 1.1]) imply that w ≡ 0 which implies that f ≡ 0. Therefore, we have f 1 = f 2 from which we get (4.22).

         (ρ 1 (x)∂ t w -div (a 1 (x)∇ x w) + q 1 (x)w)(t, x) = 0, (t, x) ∈ (0, +∞) × Ω, w(t, x) = 0, (t, x) ∈ (0, +∞) × ∂Ω, w(0, •) = f, in Ω, W ( 
Finally, let us assume that condition (vi) is fulfilled. Consider the solution of the following initial boundary value problems

                   (ρ 1 (x)∂ α t v j 0,1 -div a 1 (x)∇ x v j 0,1 + q 1 (x)v j 0,1 )(t, x) = 0, (t, x) ∈ (0, +∞) × Ω, v j 0,1 (t, x) = 0, (t, x) ∈ (0, +∞) × ∂Ω,      v j 0,1 = u j 0 if 0 < α 1, v j 0,1 = u j 0 , ∂ t v j 0,1 = 0 if 1 < α < 2 in {0} × Ω, (4.26) 
         (ρ 1 (x)∂ α t v j 0,2 -div a 1 (x)∇ x v j 0,2 + q 1 (x)v j 0,2 )(t, x) = σ(t)f j (x), (t, x) ∈ (0, +∞) × Ω, v j 0,2 (t, x) = 0, (t, x) ∈ (0, +∞) × ∂Ω, ∂ t v j 0,2 (0, •) = 0, in Ω, = 0, ..., α -1. (4.27) Note that v j 0 = v j 0,1 + v j 0,2 , j = 1, 2. Moreover, in view of condition (vi), the restriction of v j 0,2 to (0, τ 0 ) × Ω solves          (ρ 1 (x)∂ α t v j 0,2 -div a 1 (x)∇ x v j 0,2 + q 1 (x)v j 0,2 )(t, x) = 0, (t, x) ∈ (0, τ 0 ) × Ω, v j 0,2 (t, x) = 0, (t, x) ∈ (0, τ 0 ) × ∂Ω, ∂ t v j 0,2 (0, •) = 0, in Ω, = 0, ..., α -1.
Therefore, the uniqueness of this initial boundary value problem implies that v 1 0,2 = v 2 0,2 = 0 on (0, τ 0 ) × Ω. Therefore, we have v j 0 = v j 0,1 on (0, τ 0 ) × Ω, j = 1, 2. Thus, condition (4.1), with k = 0, implies that

∂ ν v 1 0,1 (t, x) = ∂ ν v 2 0,1 (t, x), (t, x) ∈ (0, τ 0 ) × Γ out .
Then, applying [29, Theorem 2.5], we deduce that u 1 0 = u 2 0 . This implies that v 1 0,1 = v 2 0,1 on (0, +∞)×Ω. It follows that v j 0 = v 1 0,1 + v j 0,2 , j = 1, 2, and condition (4.1), with k = 0, implies that

∂ ν v 1 0,2 (t, x) = ∂ ν v 2 0,2 (t, x), (t, x) ∈ (0, +∞) × Γ out .
Repeating the arguments used for proving (4.22) when (v) is fulfilled, we get f 1 = f 2 . This proves that (4.22) holds true and it completes the proof of the theorem.

Proof of Theorem 2.2

We fix u j , j = 1, 2, the solution of (1.4) with Φ given by (2.1), (a, ρ, q) = (a j , ρ j , q j ) and (u 0 , F ) = (u j 0 , F j ). According to Theorem 2.1, the proof of the theorem will be completed if we show that, for any values of T 0 ∈ [τ 2 , T ] and of δ ∈ (0, T 0 -τ 1 ), the condition (2.13) implies (2.9). For this purpose, we fix T 0 ∈ [τ 2 , T ], δ ∈ (0, T 0 -τ 1 ) and we assume that (2.13) is fulfilled. We set u = u 1 -u 2 , where we recall that u j ∈ W α ,1 (0, T ; H s (Ω j )) ∩ L 1 (0, T ; H 2+s (Ω j )), s > 3 2 , j = 1, 2 1 . We remark that u satisfies the following conditions

         (ρ 1 (x)∂ α t u -div (a 1 (x)∇ x u) + q 1 (x)u)(t, x) = G(t, x) + F (t, x), (t, x) ∈ (0, T ) × (Ω 1 ∩ Ω 2 ), u(t, x) = 0, (t, x) ∈ (0, T ) × ∂ Ω, ∂ t u(0, •) = u , in Ω 1 ∩ Ω 2 , = 0, ..., α -1.
In the above equation we set

F = F 1 -F 2 , u 0 = u 1 0 -u 2 0 , u 1 ≡ 0 and G = (ρ 2 -ρ 1 )∂ α t u 2 -div (a 2 -a 1 )∇ x u 2 + (q 2 -q 1 )u 2 ∈ L 1 (0, T ; H s (Ω 1 ∩ Ω 2 )).
Since supp(σ) ⊂ (0, τ 1 ) and (0, τ 1 ) ∩ (T 0 -δ, T 0 ) = ∅, we deduce that

F (t, x) = 0, (t, x) ∈ (T 0 -δ, T 0 ) × (Ω 1 ∩ Ω 2 )
and it follows that

(ρ 1 (x)∂ α t u -div (a 1 (x)∇ x u) + q 1 (x)u)(t, x) = G(t, x), (t, x) ∈ (T 0 -δ, T 0 ) × (Ω 1 ∩ Ω 2 ).
Using the fact that u j ∈ W α ,1 (0, T ;

H s (Ω 1 ∩ Ω 2 )) ∩ L 1 (0, T ; H 2+s (Ω 1 ∩ Ω 2 )), s > 3 2 , j = 1, 2,
we can apply the normal trace to the above equation in order to obtain

∂ ν (ρ 1 ∂ α t u -div (a 1 ∇ x u) + q 1 u)(t, x) = ∂ ν G(t, x), (t, x) ∈ (T 0 -δ, T 0 ) × Γ out . (5.1) 
Since u = u 1 -u 2 ∈ W α ,1 (0, T ; H s (Ω 1 ∩ Ω 2 )) and u = 0 on (0, T ) × ∂ Ω, we deduce that

∂ ν (ρ 1 ∂ α t u)(t, x) = ρ 1 (x)∂ α t ∂ ν u(t, x), (t, x) ∈ (T 0 -δ, T 0 ) × Γ out .
In the same way, condition (2.12) and (2.13) imply that

∂ ν u(t, x) = ∂ ν (div (a 1 ∇ x u)) (t, x) = 0, (t, x) ∈ (T 0 -δ, T 0 ) × Γ out .
Thus, we find

∂ ν (q 1 u)(t, x) = u(t, x)∂ ν q 1 (x) + q 1 (x)∂ ν u(t, x) = 0, (t, x) ∈ (T 0 -δ, T 0 ) × Γ out .
It follows that

∂ ν (ρ 1 ∂ α t u -div (a 1 ∇ x u) + q 1 u)(t, x) = ρ 1 (x)∂ α t ∂ ν u(t, x), (t, x) ∈ (T 0 -δ, T 0 ) × Γ out . (5.2) 
On the other hand, applying (2.11)-(2.12), we deduce that

∂ ν G(t, x) = ∂ ν (ρ 2 -ρ 1 )∂ α t u 2 -div a 2 ∇ x u 2 -div a 1 ∇ x u 2 + (q 2 -q 1 )u 2 (t, x) = 0, (t, x) ∈ (T 0 -δ, T 0 ) × Γ out .
(5.3)

1 See the discussion before the statement of Theorem 2.2.

p 0 > 0 can be chosen sufficiently large. Therefore, we can apply the Laplace transform in time to the identity (6.1), with k = 1, in order to get

∂ ν V 1 1 (p, x) = ∂ ν V 2 1 (p, x), p > p 0 , x ∈ ∂ Ω. (6.5)
Combining (6.4)-(6.5) with (2.7) and (2.14), we deduce that the restriction of

V 1 (p, •) = V 1 1 (p, •)-V 2 1 (p, •) to Õ satisfies, for all p > p 0 , the conditions    -∆ x V 1 (p, •) + B 1 • ∇ x V 1 (p, •) + ρ 1 p α V 1 (p, •) = 0 in Õ, V 1 (p, •) = ∂ ν V 1 (p, •) = 0, on ∂ Ω ∩ ∂ Õ.
Therefore, applying results of unique continuation for elliptic equations, we deduce that

V 1 (p, x) = 0, p > p 0 , x ∈ Õ.
Using the fact that ∂(ω 1 ∪ ω 2 ) ⊂ ∂ Õ, we deduce from this identity that

V 1 1 (p, x) = V 1 (p, x) = 0, p > p 0 , x ∈ (∂ω 2 ) \ (∂ω 1 ). (6.6) Moreover, since χη 1 ∈ W 2-1 r ,r (∂Ω) and V 1 1 (p, •), p > p 0 , solves (6.4), [23, Theorem 2.4.2.5] implies that V 1 1 (p, •) ∈ W 2,r (Ω 1 )
. Therefore, fixing ω * = ω 2 \ ω 1 and repeating the arguments used in the proof of Step 2 of Theorem 2.1, we deduce that, for all p > p 0 , the restriction of

V 1 1 (p, •) to ω * is lying in H 1 0 (ω * ) and it satisfies -∆ x V 1 (p, •) + B 1 • ∇ x V 1 (p, •) + ρ 1 p α V 1 (p, •) = 0 in ω * . (6.7) 
It follows that for any ϕ ∈ C ∞ 0 (ω * ) we have

0 = -∆V 1 (p, •), ϕ D (ω * ),C ∞ 0 (ω * ) + B 1 • ∇ x V 1 (p, •) + ρ 1 p α V 1 (p, •), ϕ D (ω * ),C ∞ 0 (ω * ) = ∇ x V 1 (p, •), ∇ x ϕ D (ω * ) d ,C ∞ 0 (ω * ) d + B 1 • ∇ x V 1 (p, •) + ρ 1 p α V 1 (p, •), ϕ D (ω * ),C ∞ 0 (ω * ) = ∇ x V 1 (p, •), ∇ x ϕ L 2 (ω * ) d + B 1 • ∇ x V 1 (p, •) + ρ 1 p α V 1 (p, •), ϕ L 2 (ω * ) .
By density, we can extend this identity to any ϕ ∈ H 1 0 (ω * ) and chosing ϕ = V 1 (p, •), we obtain

∇ x V 1 (p, •) 2 L 2 (ω * ) d + B 1 • ∇ x V 1 (p, •) + ρ 1 p α V 1 (p, •), V 1 (p, •) L 2 (ω * ) = 0, p > p 0 .
On the other hand, applying (1.3), we obtain

0 = ∇ x V 1 (p, •) 2 L 2 (ω * ) d + B 1 • ∇ x V 1 (p, •) + ρ 1 p α V 1 (p, •), V 1 (p, •) L 2 (ω * ) ∇ x V 1 (p, •) 2 L 2 (ω * ) d 2 + p α ρ 0 -B 1 2 L ∞ (ω * ) V 1 (p, •) 2 L 2 (ω * ) . Choosing p > p 1 := p 0 + ρ -1 α 0 ( B 1 2 L ∞ (ω * ) + 1) 1 α , we obtain V 1 (p, •) L 2 (ω * ) = 0 which implies that V 1 1 (p, x) = 0, p > p 1 , x ∈ ω * .
Using the fact that B = 0 on (R 3 \ Ω) ∪ Õ ∪ ω 1 which is connected, by subtracting a constant to ϕ we may assume that ϕ = 0 on (R 3 \ Ω) ∪ Õ ∪ ω 1 . Combining this with the fact that ∂Ω = ∂ Ω ∪ ∂ω 1 , we obtain ϕ ∈ H 1 0 (Ω). On the other hand, we get from (6.11) that ϕ satisfies -∆ϕ + 2(B 1 + B 2 ) • ∇ϕ = 2p α (ρ 2 -ρ 1 ), p > p 0 .

Dividing this expression by p α and sending p → +∞, we find ρ 1 = ρ 2 . Then, it follows that ϕ ∈ H 1 0 (Ω) satisfies -∆ϕ + 2(B 1 + B 2 ) • ∇ϕ = 0 on Ω which combined with [START_REF] Gilbarg | Elliptic partial differential equations ofsecond order[END_REF]Theorem 8.3] implies that ϕ ≡ 0. Therefore, we have B 1 = B 2 which implies (6.2).

Step 3. In this step we will complete the proof of the theorem by showing that (6.1) and (6.2) imply (6.3). For this purpose, we fix v 0 = v 1 0 -v 2 0 , the condition (6.1) for k = 0 implies that ∂ ν v 0 (t, x) = 0, (t, x) ∈ (0, +∞) × ∂ Ω.

Without loss of generality and by eventually extending Ω into a larger connected open set, we may assume that (4.24) is fulfilled. We will complete the proof of the theorem by showing that (6. In a similar way to Theorem 2.1, we will show that condition (7.3), with k ∈ N, implies that (M 1 , g 1 ) and (M 2 , g 2 ) are isometric and (2.20) holds true. For this purpose, let us start by proving that the condition (7.3) with k = 1 implies that α 1 = α 2 . To do so, we will proceed in a similar way to the Step 3 in the proof of Theorem 2.1. Let us consider the operator A j , j = 1, 2, with domain D(A j ) = H 2 (M j ) ∩ H 1 0 (M j ) defined by A j w := -∆ gj w + q j w, w ∈ D(A j ).

We fix {λ j k } k∈N and m j k ∈ N the strictly increasing sequence of the eigenvalues of A j and the algebraic multiplicity of λ j k , respectively. For each eigenvalue λ j k , we introduce a family {ϕ j k, } m j k =1 of eigenfunctions of A j , i.e., A j ϕ j k, = λ j k ϕ j k, , = 1, . . . , m j k , which forms an orthonormal basis in L 2 (M j ) of the algebraic eigenspace of A j associated with λ j k . Following the arguments used in the Step 3 of the proof of Theorem 2.1, one can check that we have

∂ ν v j 1 (t, •) = - t -1-αj Γ(-α j ) +∞ 0 ψ 1 (s)ds ∂ ν w j + O t→+∞ (t -1-2αj ), (7.4) 
where w j = A -1 j G j with G j the solution of    -∆ gj G j + q j G j = 0, in M j , G j (x) = χη 1 (x), x ∈ ∂M j .

(7.5)

Combining the asymptotic property (7.4) of ∂ ν v j 1 (t, •) as t → +∞ with condition (7.3), with k = 1, we will prove by contradiction that α 1 = α 2 .

Let us assume that α 1 = α 2 . From now on, without loss of generality we assume that α 1 < α 2 .

In a similar way to Theorem 2.1, without loss of generality we can assume that the function χη 1 is non-positive. Since χη 1 ∈ C 3 (∂M 1 ), we deduce that G j ∈ C 2 (M j ). Since χη 1 0 and χη 1 ≡ 0, the maximum principle stated on the manifold M j (see e.g. [START_REF] Pucci | The strong maximum principle revisited[END_REF]Theorem 9.3]) implies that, for j = 1, 2, G j 0 and G j ≡ 0. Moreover, using the fact that -∆ gj w j + q j w j = G j 0 and w j | ∂Mj = 0, the strong maximum principle (see e.g. [57, Theorem 9.3]) implies that w j (x) < 0, x ∈ M j \ ∂M j .

Thus, the Hopf lemma applied to the manifold (M j , g j ) (see [START_REF] Ammari | A unified approach to solving some inverse problems for evolution equations by using observability inequalities[END_REF]Lemma 3.1.]) implies that ∂ ν w j (x) > 0, x ∈ ∂M 1 , j = 1, 2.

In particular, we have ∂ ν w j L 2 (Γout) > 0. Taking the norm L 2 (Γ out ) on both sides of (7.3), for k = 1, and applying (7.4), we get

t -1-α1 |Γ(-α 1 )| ∂ ν w 1 L 2 (Γout) O t→+∞ (t -1-2α1 ) + t -1-α2 |Γ(-α 2 )| ∂ ν w 2 L 2 (Γout) + O t→+∞ (t -1-2α2 ). (7.6)                   
∂ α t u j -∆ gj u j + q j (x)u j = F j , in (0, T ) × M, u j = Φ, on (0, T ) × ∂M,      u j = u j 0 if 0 < α 1,

u j = u j 0 , ∂ t u j = 0 if 1 < α < 2, in {0} × M.
According to Corollary 2.4, the proof of the theorem will be completed if we show that the conditions (2.23)-(2.24), for some arbitrary chosen T 0 ∈ [τ 2 , T ] and δ ∈ (0, T 0 -τ 1 ), imply (2.19). From now on we fix T 0 ∈ [τ 2 , T ], δ ∈ (0, T 0 -τ 1 ) and we assume that the conditions (2.23)-(2.24) are fulfilled.

We fix u = u 1 -u 2 , where we recall that u j ∈ W α ,1 (0, T ; H s (M ))∩L 1 (0, T ; H 2+s (M )), s > 3 2 , j = 1, 2. We remark that u satisfies the following conditions

         ∂ α
t u -∆ g1 u + q 1 u = G + F, in (0, T ) × M, u(t, x) = 0, (t, x) ∈ (0, T ) × ∂M, ∂ t u(0, •) = u , in M, = 0, ..., α -1.

In the above equation we set F = F 1 -F 2 , u 0 = u 1 0 -u 2 0 , u 1 ≡ 0 and G = ∆ g1 u 2 -∆ g2 u 2 + (q 2 -q 1 )u 2 ∈ L 1 (0, T ; H s (M )), s ∈ (3/2, 2).

Then, combining conditions (2.21)-(2.22) with the arguments used in Theorem 2.2, we deduce that ∂ ν u(t, x) = ∂ α t ∂ ν u(t, x) = 0, (t, x) ∈ (T 0 -δ, T 0 ) × Γ out .

Therefore, applying [47, Theorem 1], we deduce that ∂ ν u(t, x) = 0, (t, x) ∈ (0, T 0 ) × Γ out which implies (2.19). Thus, applying Corollary 2.4, we obtain the results sated in Corollary 2.5.
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 111 Statement of the problem. Let Ω and ω be two bounded open set of R d , d 2, with C 2 boundary, such that ω ⊂ Ω and such that Ω = Ω \ ω is connected. Let a ∈ C 1 (Ω) satisfy the condition ∃c > 0, a(x) c, x ∈ Ω.(1.1)
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 13 Figure 1. The sets Ω, ω 1 , ω 2 and Õ.

  [START_REF] Agmon | On the eigenfunctions and the eigenvalues of general elliptic boundary value problems[END_REF], k ∈ N. Based on the above definition of weak solutions, we will recall some properties of analiticity in time of the solution of problems (3.1)-(3.2). More precisely, for k ∈ N, we fix ε k ∈ (0, (t 2k -t 2k-1 )/2) and we setD s,θ = {s + re iβ : β ∈ (-θ, θ), r > 0}, s, θ ∈ [0, +∞).Here (t k ) k∈N denotes the sequence introduced at the beginning of Section 1.4. For any open set U of C or of R, and X a Banach space, we denote by H(U ; X) the set of analytic functions on U taking values in X. For B ≡ 0, combining [39, Proposition 3.1] with [41, Proposition 2.1], we obtain the following analytic extension result.

  ) one can easily check that S ∈ H(D 0,θ2 ; B(L 2 (Ω); H 2γ (Ω))). Now let us show the estimate (3.6). Fix z ∈ D 0,θ2 . Using the fact that p → (A + p α ) -1 is analytic on p ∈ D r0,θ0 and applying (3.7) combined with some arguments used in [45, Lemma 2.4], one can check that S(z) = S -(z) + S 0 (z) + S + (z) with S m (z) = 1 2iπ γm(|z| -1 ,θ1)

3 .of Theorem 3 . 3 .

 333 Proof We start with the first claim of Theorem 3.3. For F = 0, the analytic extension of v 0 can be deduced easily from arguments similar to the proof of[START_REF] Kian | On time-fractional diffusion equations with space-dependent variable order[END_REF] Theorem 2.3]. For this purpose, without loss of generality we assume that u 0 ≡ 0. Then we fix ṽ0 (z, •) = τ1-3ε0 0 S(z -s)F (s, •)ds, z ∈ D τ1-2ε0,θ2 .

  p, •) coincides with the Laplace transform in time of w at p > 0, denoted by ŵ(p, •). Moreover,p → ŵ(p, •) is analytic in (0, +∞) as a function taking values in L 2 (Ω) and the condition ŵ(p, x) = W (p, x) = 0, p ∈ (r α 1 , r α 2 ), x ∈ Ω implies that ŵ(p, x) = 0, p > 0, x ∈ Ω .By the uniqueness of the Laplace transform in time of w| (0,+∞)×Ω , we get w(t, x) = 0, (t, x) ∈ (0, +∞) × Ω . (4.25)

(p 1 α, r α 2 )ρ 1

 121 1) implies that (4.22) holds true. Like in Theorem 2.1, we will give the proof of this result both in the case where condition (v) and (vi) are fulfilled and we refer to[START_REF] Jiang | Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations[END_REF] Theorem 2.5] for the proof of this result when (iv) is fulfilled.Let us first assume that condition (v) of Theorem 2.1 is fulfilled. In a similar way to Step 5 of Theorem 2.1, we can find p 0 < r 1 < r 2 such that T 0 e -pt σ(t)dt = 0, p ∈ (r 1 , r 2 ).Here p 0 > 0 corresponds to the value appearing in the Definition 3.1 of weak solution of (3.3). Without loss of generality, we refer to p 0 as the maximum of the value appearing in the Definition 3.1 for solutions of problem (3.3) for α = 1 and for the value α of Theorem 2.3. Then, in a similar way to the proof of Theorem 2.1, fixing V 0 (p, •), p > p 0 , the Laplace transform in time of v 0 , andW (p, •) = V 0 W (p, •) satisfies, for all p ∈ (r α 1 (x)pW (p, x) -∆W (p, x) + B 1 • ∇ x W (p, x) = f (x), x ∈ Ω, W (p, x) = 0, x ∈ ∂Ω, W (p, x) = 0, x ∈ Ω .

  Theorem 2.2] and[39, Corollary 2.4, 2.6, 2.7]) the recovery of the order of derivation α; 5) For α = 1, we show in Theorem 2.2 and Corollary 2.5, how one can restrict the measurement considered in [39, Theorem 2.2] and [39, Corollary 2.4, 2.6, 2.7] to any time interval of the form (T 0 -δ, T 0 ) where δ can be arbitrary small. Let us remark that, for α = 1, in Theorem 2.2 and in Corollary 2.5 we can restrict our single measurement to any interval in time of the form (T

  Theorem 2.1 and in Corollary 2.4, 2.6, we need to consider the recovery of the obstacle, the order of derivation α in the situation where the coefficients of the equation are unknown. To overcome this difficulty, for the recovery of the obstacle we use the extra conditions (2.7)-(2.8) and (2.14)-(2.15). However, we prove the recovery of the obstacle without the knowledge of α. Moreover, we give a proof of the recovery of the order of derivation α in the context of Theorem 2.1 and in Corollary 2.4, 2.6 without requiring the knowledge of the manifold and the different coefficient appearing in the equation (see Step 3 in the proof of Theorem 2.1 for more details).

  Combining (4.20)-(4.21) with (2.7)-(2.8), we deduce that, for all k ∈ N, = 1, . . . , m 1 k

	are fulfilled.	
	1 k , x ∈ ∂ Ω	(4.21)

(∂ Ω) such that Span({η k : k 1}) is dense in

(Ω)), j = 1, 2, which implies that ∂ ν v j 0 ∈ A((τ 1 -ε 1 , +∞); L 2 (∂ Ω)).Therefore, (4.5) implies (4.1) for k = 0.
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Combining this with (2.13) and (5.1)- (5.3), we deduce that ∂ ν u(t, x) = ∂ α t ∂ ν u(t, x) = 0, (t, x) ∈ (T 0 -δ, T 0 ) × Γ out .

Using the fact that ∂ ν u ∈ W α ,1 (0, T ; L 2 (∂ Ω)) and applying [47, Theorem 1], we deduce that ∂ ν u(t, x) = 0, (t, x) ∈ (0, T 0 ) × Γ out which implies (2.9), since T 0 τ 2 . Therefore, applying Theorem 2.1, we deduce that (2.10) is fulfilled.

Proof of Theorem 2.3

Repeating the arguments used in the proof of Theorem 2.1 combined with the time analyticity properties of solutions of (3.1)-(3.2) stated in Theorem 3.2, we deduce that (2.16) implies that, for all k ∈ N ∪ {0}, we have

with v j 0 the solution of (3.1) for a ≡ 1, q ≡ 0, ω = ω j , Ω = Ω j and (α, ρ, B, u 0 , u 1 , F ) = (α j , ρ j , B j , u j 0 , 0, F j ), j = 1, 2, and v j k , j = 1, 2, k ∈ N, the solution of (3.2) for a ≡ 1, q ≡ 0 and (α, ρ, B) = (α j , ρ j , B j ), j = 1, 2. We mention, that in the case ω 1 = ω 2 = ∅, the result of Theorem 2.3 can be deduced from (6.1) by combining the results of [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF]Theorem 2.3] with some arguments similar to those used in Theorem 2.1. For this purpose, from now on we assume that α 1 = α 2 = α and we will prove that (6.1) implies (2.17). The proof of Theorem 2.3 will be decomposed into three steps. First, applying (6.1) with k = 1 and exploiting condition (2.7), (2.14), we deduce that ω 1 = ω 2 . Then, applying (6.1) with k ∈ N we will deduce that

Finally, combining all these results and applying (6.1) with k = 0 we deduce that

Step 1. In this step, we will show that ω 1 = ω 2 . For this purpose let us assume the contrary. For p > p 0 let us fix V j 1 (p, •) the Laplace transform in time of v j 1 at p. From the definition of weak solution of (3.1) for q ≡ 0, a ≡ 1, ω = ω j and (B, ρ, u 0 , u 1 , F ) = (B j , ρ j , u j 0 , 0, F j ), j = 1, 2, we deduce that, for all p > p 0 , 

Here

Combining this with results of unique continuation for elliptic equations we deduce that, for all p > p 1 ,

Moreover, using the fact that ψ 1 is non-negative and ψ 1 ≡ 0, we deduce that ψ1 (p 1 + 1) > 0 and it follows

This contradicts the fact that χη 1 ≡ 0. Therefore, we have ω 1 = ω 2 .

Step 2. From now on we assume that ω 1 = ω 2 = ω and we set Ω 1 = Ω 2 = Ω. In this step, we will show that (6.2) is fulfilled. For j = 1, 2 and p > p 0 , consider the boundary value problem

and we can associate this problem with the partial Dirichlet-to-Neumann map

In a similar manner to the proof of [39, Theorem 2.3], we can prove that (6.1), with k ∈ N, imply 

and its associated partial Dirichlet-to-Neumann map

Following the proof of [56, Lemma 6.2], one can check that (6.9) implies that 3.] (see also [START_REF] Ammari | Reconstuction from partial Cauchy data for the Schrödinger equation[END_REF]), we deduce that for B = B 1 -B 2 extended by zero to R 3 there exists ϕ ∈ W 1,∞ (R 3 ) such that B = ∇ x ϕ on R 3 and

Then, in a similar way to the last step of the proof of Theorem 2.1, for w ∈ L 2 loc (0, +∞; H 1 (Ω)) the solution of the parabolic problem

we deduce that W (p, •) coincides with the Laplace transform in time of w at p > p 0 , denoted by ŵ(p, •).

Then, from the fact that

and the analyticity of p → ŵ(p, •), p > p 0 , we deduce that

Combining this with a unique continuation argument similar to the one used in the proof of Theorem 2.1, we deduce that f 1 = f 2 . This proves that (4.22) holds true when condition (v) is fulfilled. In the same way, assuming that condition (vi) is fulfilled, we deduce that (6.3) implies that u 1 0 = u 2 0 , f 1 = f 2 and that (4.22) holds true. This completes the proof of the theorem.

Proof of Corollary 2.4, 2.5 and 2.6

This section is devoted to the proof of Corollary 2.4, 2.5. We will omit the proof of Corollary 

Following the argumentation of Theorem 2.1, we deduce that the condition (2.19) implies that, for all k ∈ N ∪ {0}, we have

Assuming that α j = 1, j = 1, 2, multiplying the expression (7.6) by |Γ(-α 1 )|t 1+α1 and sending t → +∞, we get

This contradicts the fact that ∂ ν w j L 2 (Γout) > 0, j = 1, 2, and it follows that α 1 = α 2 . Using this result and repeating the arguments used at the end of the proof of Step 3 of Theorem 2.1, we deduce that in all case α 1 = α 2 . In the same way, following the proof of [START_REF] Kian | The uniqueness of inverse problems for a fractional equation with a single measurement[END_REF]Corollary 2.4], one can check that condition (7.3), for k ∈ N, implies that (M 1 , g 1 ) and (M 2 , g 2 ) are isometric and there exist ϕ ∈ C ∞ (M 2 ; M 1 ), an isomtery from (M 2 , g 2 ) to (M 1 , g 1 ), fixing ∂M 1 and depending only on (M j , g j ), j = 1, 2, such that q 2 = q 1 • ϕ. Therefore, fixing ṽ(t, x) = v 1 0 (t, ϕ(x)), (t, x) ∈ (0, +∞) × M 2 , we deduce that ṽ solves

Moreover, using the fact that ϕ fix the boundary ∂M 1 , we get

Combining this with (7.3) for k = 0 we deduce that ∂ ν ṽ(t, x) = ∂ ν v 2 0 (t, x), t ∈ (0, +∞), x ∈ Γ out and we deduce that v 0 = ṽ -v 2 0 satisfies the following conditions

t v 0 -∆ g2 v 0 + q 2 (x)v 0 = σ(t)(f 1 (ϕ(x)) -f 2 (x)), in (0, +∞) × M 2 , v 0 (t, x) = 0 (t, x) ∈ (0, +∞) × ∂M 2 , ∂ ν v 0 (t, x) = 0 (t, x) ∈ (0, +∞) × Γ out ,      v 0 (0, x) = (u 1 0 (ϕ(x)) -u 2 0 (x)) if 0 < α 1, v 0 (0, x) = (u 1 0 (ϕ(x)) -u 2 0 (x)), ∂ t ṽ(0, x) = 0 if 1 < α < 2,

x ∈ M 2 .

Thus repeating the arguments used in the last step of the proof of Theorem 2.1, we deduce from this condition that f 1 (ϕ(x)) = f 2 (x), u 1 0 (ϕ(x)) = u 2 0 (x), x ∈ M 2 .

This completes the proof of the corollary.

Proof of Corollary 2.5.

Let u j , j = 1, 2, be the solution of