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Asymmetrical performance of laser-based reservoir computer with optoelectronic feedback

We numerically quantify the performance of photonic reservoir computer based on a semiconductor laser subject to high-pass filtered optoelectronic feedback. We assess its memory capacity, computational ability, and performance in solving a multi-step prediction task. By analyzing the complex bifurcation landscape of the corresponding delay-differential equation model, we observe that optimal performance occurs at the edge of instability, at the onset of periodic regimes, and unveil a parity asymmetry in the performance with a slight advantage for positive over negative feedback.

Physical-based neuromorphic computing is a promising alternative to current digital technologies because of its energy efficiency, the potential for parallelism, and large bandwidth. Amongst the various architectures, recurrent neural networks (RNNs) are particularly suited for processing data with temporal dependence such as audio and video signals [? ]. However, their supervised training to solve a particular task is usually data-intensive and requires adjusting the network's interconnection matrix, which is a challenge for hardware implementations. Reservoir Computing (RC) provides a framework to overcome this problem by simplifying the training procedure, essentially leaving the RNN untrained and using simple linear regression on an output layer combining the RNN nodes' transient responses [? ? ].

These considerations have contributed to the development of physical reservoir computing with implementations using several technological platforms, including microelectronics, spintronics, and photonics [? ]. In the latter category, various architectures have been proposed [? ] including large-scale, freespace architectures [? ? ? ], optical feedback architectures [? ? ? ], and photonic-integrated circuits [? ? ]. These physical systems have demonstrated state-of-the-art performance on various tasks, including nonlinear channel equalization, chaotic time-series prediction, and speech recognition [? ].

Feedback architectures rely on the time-delay reservoir computing (TDRC) approach [? ], where a single physical nonlinear node is used in conjunction with virtual nodes distributed in the delayed feedback loop. Most of the TDRC systems use either laser diode with optical feedback or optoelectronic oscillators [? ]. They are cost-effective solutions exploiting the large modulation bandwidth of photonic components to solve the computational task at speed compatible with bit rates in telecom [? ? ].

In this Letter, we consider a different kind of photonic delay system, in which a laser diode (LD) is subjected to optoelectronic feedback on its injection current. Specifically, the optical intensity of the LD is photodetected, converted into an electrical signal, which is amplified, high-pass-filtered, and added after a delay, to the laser bias current. This configuration is known to lead to a variety of nonlinear behaviors, including pulsing and chaotic regimes [? ? ]. Compared to optical feedback, such a design has the advantage of being quite compact, phase-insensitive, and allows for both the positive and negative feedback types, while still genuinely exploiting the intrinsic nonlinear dynamics of a semiconductor laser. Besides, the dynamical picture is fundamentally different compared to optical feedback as only a single steady-state exists [? ], while numerous external-cavity modes can coexist in the optical feedback case, leading to complex phenomena associated with multistability that do not occur in our system [? ].

We evaluate the potential of the system as a reservoir computer via two well-established metrics: (i) the memory capacity [? ] and (ii) the computational ability [? ]. Our architecture will then be tested on a benchmark task: A multi-step nonlinear prediction based on the Santa Fe time series [? ]. This task provides a good benchmark as it solicits simultaneously the nonlinearity and the memory of the reservoir by comparison to one-step prediction only. We demonstrate that optimal performance is obtained at the edge of instability, in the vicinity of Hopf bifurcation points, for positive feedback, hence creating an asymmetry in performance despite the symmetrical bifurcation landscape.

The schematic arrangement of the proposed TDRC architecture is shown in Fig. 1. The signal detected by the photodiode is amplified and subject to high-pass filtering due to bandwidth limitations of the photodiode and amplifiers. This signal is added to or subtracted from the pump current driving the laser, hence providing a delayed optoelectronic feedback loop. Feeding the input data to the reservoir is realized by modulating the pump current with the signal derived from the multiplication of the input data by the mask. Dimensionless equations for a TDRC system based on a laser with optoelectronic feedback having a high-pass filter in a feedback loop read as follows [? ? ]:

İ(t) = 2N g (t)I(t) + f (t), (1) 
İF (t) = -τ F -1 I F (t) + 2N g (t)I(t), (2) 
ε -1 Ṅg (t) = P(1 + ξ M f (t)) + η I F (t -τ) -N g (t) -(1 + 2N g (t))I(t), (3) 
where I(t) is the normalized intensity of the laser field; N g (t) is the carrier density; P is the pump above the threshold parameter with a modulation function M f (t) for the masked input data, and the modulation strength ξ; η is the feedback strength (either positive or negative); τ is the feedback delay time; ε is the ratio of the carrier and photon lifetimes; I F (t) is the filtered intensity signal; τ F is the inverse of the filter cut-off frequency. f (t) is the Langevin term modeled by a Gaussian white noise source with the following properties:

f (t) = 0, f (t) f (t ) = D f δ(t -t ),
where denotes ensemble averaging, D f is the noise source strength. Time t, τ, and τ F are measured in units of the photon lifetime. The modulation function M f (t) is given by

M f (t) = 0, t ≤ 0, D i,j , t ∈ (Nθ(i -1) + θ(j -1), Nθ(i -1) + θj].
where

D i,j = S i M j , {S i } i=1...A , S i ∈ [0, 1]
formed by the input data normalized with respect to max values, and A is the total data stream length; M j is a mask generated from a set of uniformly distributed random numbers {M j } j=1...N in the interval [-1, 1], where N is the number of virtual nodes in the reservoir; θ = τ/N is the modulation period corresponding to the time space between the virtual nodes.

The virtual node states at time step i are taken as the laser intensity values I i,j = I(t i,j ) at equidistant temporal positions t i,j = Nθ * (i -1) + θ * j, where j = 1, 2...N.

The reservoir output O i is scalar product formed by multiplying the state vector I i = (I i,1 , I i,2 , . . . , I i,N , 1) by the weight vector W obtained by the linear least squares method: where Y train is a vector of target values Y i for the training set, and I train is a matrix formed by concatenation of the corresponding state vectors for the training set. A one is added to the state vector to account the constant bias term.

W = (I T train I train ) -1 I T train Y train ,
Only the non-zero intensity steady state (I(t) = P, I F (t) = 0, N g (t) = 0) of Eqs. (1)-( 3) is stable in the absence of the feedback. For the appropriate non-zero feedback strength, the system undergoes a Hopf bifurcation at the relaxation-oscillation frequency with either subcritical or supercritical character of the instability. Figures 2(b-d) show multiple Hopf-bifurcation branches in (η, P) plane obtained by bifurcation analysis of the Eqs. ( 1)-( 3) by means of DDE-Biftool [? ] at D f = 0, and ξ = 0. We consider the following set of parameters for the further numerical analysis: ε = 0.1, τ = 10 3 , τ F = 2 • 10 3 , ξ = 0.1, and D f = 10 -10 (corresponds to signal-to-noise ratio levels SNR ∼ 71 dB).

Let us now examine the relationship between the bifurcation structure of the system and its memory capacity (MC). It measures the ability of the reservoir computing system to reproduce the input at the previous delay times. We used the same approach as in [? ], where MC is defined as

MC = ∞ ∑ m=1 mc m , ( 4 
)
where m is the delay in number of steps between the output of the reservoir and the input value; mc m is the memory function defined as the correlation between the m steps delayed input S i-m , and output O i , when the reservoir is trained to restore S i-m . It is calculated as:

mc m = cov 2 (O i , S i-m )/(σ 2 (S i )σ 2 (O i )),
where cov denotes the covariance, and σ 2 is the variance.

To compute the memory capacity, the input values were simulated as random numbers from the uniform distribution in the range [0, 1]. We used the input stream of length 4, 000, and dropped the first 3, 000 outputs to simulate the long-term continuous operation of the TDRC system. The remaining 1, 000 outputs were randomly divided into training and test sets in the proportion 800 : 200, and a 20-fold cross-validation was used to estimate MC. Using lim m→∞ mc m = 0, the sum Eq. ( 4) was calculated up to a number m th such that mc m < 0.01 for m > m th .

Figure 2(a) shows the memory capacity for a range of the feedback strength η and for different numbers of virtual nodes, while keeping a constant delay τ (i.e. modifying θ). The MC increases with the absolute value of η and reaches its maximum in the vicinity of Hopf bifurcation points, representing the boundary of the limit cycle, periodic behavior. It drops drastically as the system moves away from the Hopf bifurcation points to the reservoir's transition to a stable limit cycle. It is worthy to point out that the memory capacity remains almost constant at η = 0, independently of the number of virtual nodes. increase depends on the reservoir properties and not on the number of linear regression parameter associated with the number of nodes. N > 48, the MC tends to saturate, indicating this can be considered as optimum number supported by the reservoir with the value of τ chosen here and the characteristic relaxation oscillation frequency f RO which amounts to 30-37 τ -1 in Figs. 2(b-d). The figures show a map of the MC in the (η, P) plane, at N = 48, together with the bifurcation structure of the system in the same plane. For the full range of the parameters, the MC reaches a maximum in the Hopf bifurcation border's vicinity, after which it drops off nearly completely. For the full range of the parameters, the MC reaches a maximum in the vicinity of the Hopf bifurcation border, where the MC values are comparable to those obtained for an optical feedback-based TDRC systems [? ] (MC ≈ 21 with 50 nodes) and [? ] (MC ≈ 16 with 48 nodes) and after which it drops off nearly completely.

This demonstrates the validity of the scenario in Fig. 2(a) for a range of laser bias levels. In all cases, we observe a slight asymmetry between the feedback signs, with positive feedback having lower memory capacity than the negative feedback.

Then, we analyze the computational ability (CA), which accounts both for the ability to separate and sufficiently generalize the input data [? ]. We calculated it as a difference between the kernel quality rank r kq and a generalization rank r g , and normalized this value by the number of nodes N: CA = (r kqr g )/N. The kernel quality rank r kq characterizes how well the reservoir can differentiate different input values. To evaluate it, the reservoir is injected with N different sequences, each composed of Q random input values. Then, a N × N matrix is formed by the virtual node states taken only for the last input value of each sequence. The generalization rank r g shows the reservoir's ability to generalize inputs that are slightly different. It is calculated similarly with r kq , and the difference is that the last T values of each sequence are identical.

The numerical results are presented in Fig. 3, obtained with Q = 200, T = 20, and N = 48. Figure 3(a) demonstrates a dependence of the reservoir CA on the feedback parameter η, and, similarly to MC, it increases in the vicinity of the Hopf bifurcation borders. Figure 3(b) shows a 2D-map of CA in (η, P) plane corresponding to the same scenario. The asymmetry between the different signs of the feedback is evident as well; however, the maximal CA value is reached for positive feedback, contrary to the case of MC (which is closer to half the CA value reported in [? ] for a VCSEL with optical feedback and N = 400 nodes).

These results for MC and CA are reminiscent of observations of improved processing ability at the edge of instability for echostate networks (ESN), a specific kind of RNN [? ]. The increase of MC is consistent with the increase in the transient dynamics' duration towards equilibrium, as a laser diode with optoelectronic feedback is getting closer to a Hopf-bifurcation point. Similarly, we could also interpret the increase of CA as the result of more complex dynamics leading to a richer nonlinear mapping in phase-space as we move towards the Hopf bifurcation frontier. We notice that the region in the (P, η) plane of good memory and computing/processing fades away smoothly beyond the bifurcation lines, which were obtained from the non-driven dynamical system. MC and CA, however, are determined from the driven system with pump modulation. Hence, in the vicinity of the Hopf bifurcation lines, the reservoir dynamics will potentially involve limit cycles and steady states, thus resulting in a slowly changing performance rather than a sharp transition. The parity-asymmetric performance, despite the symmetrical position of the Hopf-bifurcation lines in the (P, η) plane and opposite signs of feedback strength for the optimal values of MC and CA near the instability boundary, remain unexplained. We conjecture that the closer location of the generalized Hopf bifurcation points to the optimal values for η > 0 may play a role in the asymmetry of the processing ability because of their higher codimension.

To analyze how the asymmetry in CA and MC jointly influence how our reservoir solves tasks, we used a multi-step prediction task on the Santa Fe time series with 3, 000 sampling points. To make negligible the impact of the transients, the first 1, 000 points O i are discarded, and cross-validation is performed based on a partitioning of the data. From the undiscarded output, 1, 000 target data points are randomly chosen, and the corresponding reservoir outputs were divided into 5 groups, comprising of 200 samples each; 5-fold cross-validation was performed by selecting one of the 200-samples group for testing, and the remaining 800 samples for training. The procedure was repeated 10 times for another 1, 000 random values from the output. The normalized mean square error (N MSE) was used as a metric to assess the performance, defined by:

N MSE = 1 L L ∑ i=1 (Y i -O i ) 2 σ 2 (Y i ) , ( 5 
)
where L is the total number of data points in the testing set.

While the Santa Fe one-step prediction task's relative simplicity has made it a popular benchmark task for analyzing RC algorithms in photonic devices [? ], the same simplicity does not make it the most appropriate task to correctly evaluate the generalization performance the network. Therefore, we extended the analysis of the predictive ability to a multi-step prediction task in which predict the data at the + k)th sampling point, for k = 2, ..., 50, using the nth sampling point. Figures 4(a-b), 2-and 3-step prediction, respectively, show that the best N MSE results correspond to the vicinity of the Hopf bifurcation boundaries, consistently with the computing potential displayed by MC and CA in the same region. A noticeable asymmetry is also observed, as in the MC and CA maps, with an advantage in the prediction performance for the positive feedback. As the number of prediction steps k increases, optimal performance remains fairly close to the Hopf bifurcation limit, while slowly degrading, as shown in Fig. 4(c). The minimum demonstrated N MSE level of 10 -2 is comparable with the results reported, e.g., in [? ] (10 -2 ), [? ] (4 • 10 -2 ), and [? ] (0.1, experimental). Provided that the typical relaxation oscillation frequency f RO of a semiconductor laser for the given parameters is about 4 GHz [? ], we estimate the system to perform the multi-step time series prediction task at the rate of 0.1 Gsample/s.

In conclusion, we have numerically characterized the potential of a laser diode with optoelectronic feedback for reservoir computing when introducing the input stream through modulation of the injection current. We observe that both the memory capacity (MC) and the computational ability (CA) improve, when increasing positively or negatively the feedback level, as the laser moves away from its free-running CW regime and close to periodic operation at the limit of instability, while a further increase in feedback strength η leads to a degradation of both quantities. The parity asymmetry in the performance with the feedback strength was also observed despite symmetrical Hopf bifurcation lines. The observations are robust to changes in the bias level P of the laser and consistent with the observation of an increase in the reservoir's performance, for a task of multi-step time series prediction.
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 1 Fig. 1. Schematic arrangement of the photonic TDRC system based on a semiconductor lased with high-pass-filtered optoelectronic feedback loop. In this figure: LD is a laser diode; PD is a photodetector; Amp is an amplifier; HPF is a high-pass filter. Black (red) lines are electric (optical) signals. Insets show exemplary time traces at the corresponding labeled points. The black dots in the inset C are the virtual node states I i,j .

  2. (a) Memory capacity MC as a function of the feedback strength η for different node numbers N and P = 0.21. (bd) 2D maps of the memory capacity MC in (η, P) plane at N = 48, at different scales. The color bar shows the corresponding MC. The magenta (cyan) lines depict supercritical (subcritical) Hopf bifurcation branches; the orange circles are the generalized Hopf bifurcation points. The bold lines correspond to the first Hopf bifurcation of the steady state. The subcritical Hopf branches for η < 0 are beyond the shown range.
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 3 Fig. 3. (a) Normalized computational ability CA as a function of the feedback strength η for different node numbers N and P = 0.21. (b) 2D map of the computational ability CA in (η, P) plane at N = 48. The colorbar shows the corresponding CA.
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 4 Fig. 4. lg(N MSE) for the Santa Fe time-series k-step prediction task at N = 48: lg(N MSE) in (η, P) plane for k = 2 (a), k = 3 (b); min lg(N MSE) with dependence to k for P = 0.26 (c).
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