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We investigate the collective dynamics of self-propelled droplets, confined in a one dimensional
micro-fluidic channel. On one hand, neighboring droplets align and form large trains of droplets
moving in the same direction. On the other hand, the droplets condensates, leaving large regions
with very low density. A careful examination of the interactions between two ”colliding” droplets
demonstrates that local alignment takes place as a result of the interplay between the dispersion of
their speeds and the absence of Galilean invariance. Inspired by these observations, we propose a
minimalistic 1D model of active particles reproducing such dynamical rules and, combining analytical
arguments and numerical evidences, we show that the model exhibits a transition to collective motion
in 1D for a large range of values of the control parameters. Condensation takes place as a transient
phenomena which tremendously slows down the dynamics, before the system eventually settles into

a homogeneous aligned phase.

Collective dynamics in systems of active particles have
been the topic of a fantastic amount of work [IH3]. Both
the transition to collective motion [Il 4H6] and the Motil-
ity Induced Phase Separation (MIPS) [7] are now well
understood. The interplay of alignment and crowding ef-
fects have been investigated more recently [S8HI2]. The
majority of these studies have however been conducted
in two dimensional space and much less is known about
active systems in one dimension.

Yet the physics of active system in 1D is relevant as
soon as the confinement breaks the continuous symme-
try of the order parameter describing collective motion.
It is the case in systems of highly confined bacteria [I3],
pedestrians [14] or molecular motors [I5]. Also, from a
more theoretical point of view, 1D systems often exhibit
peculiar dynamics [16], [17], resulting from the presence
of strong correlations, as exemplified by single-file diffu-
sion [I8, [19], 1D inelastic dynamics [20H22] or 1D exclu-
sion processes [23].

In the context of active matter, kinetic theory re-
sults [0, 24] or generic arguments relying on the non con-
servation of momentum [25] do not easily generalize in 1D
because of the discrete symmetry of the polar order pa-
rameter. Despite this limitation, a few models were put
forward to describe 1D active systems. The “active Ising
model” [B] 26], a stochastic lattice gas model, has been
decisive in our current understanding of the transition to
collective motion in terms of a bona fide liquid-gas phase
transition. It however does not include steric interactions.
Conversely, several models were proposed to describe the
clustering transition in assemblies of excluding run-and-
tumble particles, but do not include alignment [27H30].
Finally, hydrodynamic limits were derived exactly pro-
vided that the different processes have appropriate scal-
ings [31], but this approach still lacks the combined effect
of volume-exclusion and alignment.

-1000
6000 t

2000 4000

FIG. 1. Collective dynamics of swimming droplets in
a micro-fluidic serpentine (a) Part of the set-up; (b,c)
Spatio-temporal diagram of the dynamics for packing fraction
¢ = Na/L = [0.082;0.122] (blue and red colors code for the
direction of motion; a trajectory changes color when a droplet
reverses its direction; time in s and space in droplet diameter).
(d,e) Polarisation m and participation ratio r (see main text)
vs. time for ¢ = 0.082 (black) and ¢ = 0.122 (red).

In this Letter we first report on the observation of col-
lective alignment and spatial condensation in a one di-
mensional system of swimming droplets (Fig. : ‘trains
of droplets’ spontaneously form and move coherently. To
the best of our knowledge, this is the first experimental
realization and observation of the onset to collective mo-
tion in a one-dimensional active system. The analysis of
the short time dynamics, resulting from the interaction of
two droplets, reveals that the local alignment results from
the interplay between the dispersion of the droplet speeds
and the absence of Galilean invariance. Wether such a
mechanism leads to a large scale transition to collective
motion, especially in 1D, is far from obvious. We propose
a minimal model based on these observations, and, com-
bining analytical arguments and numerical evidences, we
show that a system of active particles reproducing the



observed local dynamical rules exhibits a transition to
collective motion for a large range of values of the con-
trol parameters. Condensation takes place as a transient
phenomena which tremendously slows down the dynam-
ics, before the system eventually reaches a homogeneous
aligned phase. Let us stress that our model does not aim
at being a model of swimming droplets. Rather the swim-
ming droplets experiments have pointed at an intriguing
phenomena, raising a conceptual interrogation, which we
answer to.

The experimental system is composed of N € [50—500]
swimming water droplets [32] of diameter a = 200 pm,
confined in a micro-fluidic square channel of section
h? =200 x 200 ym? and length L [Fig. a)], filled with
a surfactant-in-oil solution, with concentration far above
the critical micellar concentration. The swimming mo-
tion of the water droplets results from the combination of
two ingredients [32 [33]. First, the system is away from its
physico-chemical thermodynamic equilibrium: a slow but
steady flux of water takes place from the droplet to the
surfactant micelles. Second, the resulting isotropic con-
centration field of swollen micelles is unstable against an
infinitesimal flow disturbance: concentration gradients
parallel to the droplet surface spontaneously form, and
induce Marangoni stresses and phoretic flows, which are
in turn responsible for the motion of the droplet. The
droplets are introduced in a micro-fluidic serpentine us-
ing standard micro-fluidic techniques. Once all external
fluxes are interrupted, their swimming motion is tracked
with a high resolution CCD camera to obtain their curvi-
linear abscissa x;(t), ¢ € [1, N], corrected from residual
drifts, displayed in Fig.[[{b,c). (see also Supp. Mat. [40]).

Initially each droplet picks up a random direction. It
swims straight, with no tumbling, until it interacts with
another droplet. Once the droplets interact, trains of
droplets moving in the same directions form, pointing at
the presence of an alignment mechanism. These trains
of droplets interact with each other leading to the rich
spatio-temporal dynamics reported in Fig. (b,c). Note
that the droplets in a train are close to but do not
touch each other (see Movie-1 of Supp. Mat. ?77). We
define the average polarisation m(t) = (s;(¢)), which
characterizes the amount of orientational ordering the
d;
)
the homogenitiy of the spacing between droplets, where
si(t) = %1 codes for the orientation of the droplet mo-
tion, dz(t) = $i+1(t) - l‘i(t) and <.> = % Zz(.) While
the condensation is nicely confirmed by the monotonous
decrease of r [Fig. e)], the dynamics of the polarisation
is far more complex [Fig. d)]: large and slow variations
of m suggest large scale reorganizations of the aligned
domains, but no clear tendency towards a global polar-
ization on the time scale of the experiment.

and the participation ratio r(t) = , which quantifies

Let us now focus on the interaction between pairs of
droplets [Fig. . When two droplets moving in opposite
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FIG. 2. Binary interactions : velocities v1,v2 of two inter-
acting droplets (one red, one blue line); and center of mass
velocity vy (black line) for two different collisions; the vertical
dashed line indicates the time of collision; the arrow indicates
the time at which relaxation towards the nominal velocity
takes place: (a) |6v|> ‘v; ’: the droplets bounce against each

other; (b) |6v'| < ’v;‘ : the droplets motion align.

direction encounter, their speeds, just after the collision,
are smaller than before, suggesting to describe the inter-
action as an effective inelastic collision. On the basis of
a statistical analysis of several hundreds of collisions, we
could evaluate a restitution coefficient o ~ 0.4 £ 0.15.
The droplets being active, their speeds then relaxe to-
wards their nominal active speed vg. This relaxation pro-
cess is slow and is generally interrupted by a new interac-
tion event. Therefore, even for the dilute systems consid-
ered here, the speed of the droplets are strongly dispersed
and essentially never relaxed to vy. The standard devia-
tion of the speed is typically o, ~ 0.3vy. As a result, in
most collisions, incoming droplets have different speeds,
and the velocity of the center of mass is generically non
zero. [Fig.[P[a)] and [Fig.[2|(b)] illustrate the two possible
scenario taking place in such a context. Denoting with
a prime the velocities after collision, one sees that, in
[Fig. P[a)] (resp. [Fig. 2b]), |6v| = v — v]| /2 is larger
(resp. smaller) than |v}| = [v} 4 v}| /2. Therefore, the
velocities of the two droplets, just after collision and be-
fore relaxation, have opposite (resp. equal) signs. At that
point starts the active relaxation towards vg. When the
velocities after collision have opposite sign, everything
takes place as if the two droplets had bounced on each
other. On the contrary, when the velocities after collision
have equal sign, the relaxation leads to a net alignment.
Note the importance of studying the collisions in the ref-
erence frame of the lab : it is the combination of speed
dispersion and the absence of Galilean invariance, which
is at the root of the alignment mechanism.

Wether the above minimal ingredients are sufficient to
observe a transition to collective alignment is far from ob-
vious. First, regarding the present system of droplets, the
hydrodynamics and the non linear coupling to diffusion
may well not reduce to such a simple description. Second,
from a more general perspective, long range order in one
dimension is prone to be destroyed by fluctuations. It is
therefore of interest to investigate the onset of collective
motion within a minimal model, which share the same lo-
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FIG. 3. Spatiotemporal dynamics. Numerical simulations of 100 particles on 1000 sites (¢ = 0.1). (a) Transients on the
same time and length scales as the experiment with a relaxation rate v = 1 and an inelastic coefficient oo = 0.43 (zoom-in on

the whole trajectory). Particles with positive (resp. negative) velocity are colored in red (resp. blue) :

a trajectory changes

color when a droplet reverses its direction. (b, ¢, d) Typical trajectories observed for o = 0.2 and v = 100, 10,1 (from top to
bottom). (e-j) Magnetization and participation ratio (averaged over 100 realizations) as a function of time for different values
of a and the relaxation rates corresponding to the central panels: v = 100 (e-f), v = 10 (g-h) and v =1 (i-)).

cal dynamics as the one reported above. The stochastic
model we propose is as follow. N particles evolve on a 1D
lattice of L sites with periodic boundary conditions (site
L+ 1 =site 1), the density is ¢ = N/L. The N particles
are initially placed at random on the lattice with the con-
dition that there can only be one particle per site. The
initial velocity of each particle v;(0) is drawn uniformly
from the interval [—1, 1] and the centre-of-mass velocity
is subtracted from the initial velocity of each particle. At
time ¢, the velocity obeys the exponential relaxation law:

v (t) = sgn(ve,;)vo + [Vei — sgn(vc,i)vo]e_"’(t_t“')7 (1)

where t.; is the last collisional time for particle ¢, v ; its
velocity right after that collision, and - is the relaxation
rate..

At each time step, a particle ¢ at site x; is chosen at
random. Say v; > 0; three situations can occur depend-
ing on the occupation of site z; +1: (i) if site x; 41 is free,
particle moves to this location with probability |v;(t)| /vo;
(ii) if site z; + 1 is occupied but v;11 > v; > 0, nothing
happens; (iii) if site 2; + 1 is occupied and v; > v;41, a
collision occurs with probability (v; —v;11)/vg, following
the inelastic collision rule:

/ l-a 14«
U; - 5 V;
< /z > (1—i2-a 1Ea> ( i ) ’ (2)
Vit1 2 2 Vit1

where « € [0, 1] is the inelastic coefficient. The nominal
velocity vg = 1 and the lattice spacing a = 1 so that time
is measured in units of a/vg. On average, each particle

only moves every N time steps, so that one time unit
corresponds to N Monte-Carlo time steps.

The model encodes the binary interactions observed
experimentally, namely that alignment takes place as
soon as |[0v'| = |vf —v}y|/2 is smaller than |v)| =
v} + vj41| /2. The first key observation, it that the tran-
sient collective dynamics reproduces qualitatively the ex-
perimentally observed formation of trains of droplets and
the way they interact [Fig B(a)]. The effective micro-
scopic rules we designed are thus sufficient to mimic the
experimental system and we can now take advantage of
the numerical simulations to characterize the long time
dynamics in a wide range of parameters. We observe
three possible evolutions of the initial disordered state.
For large v or a ~ 1, particles relax rapidly to the nomi-
nal velocity between collisions and behave effectively like
elastic particles [Fig. [3[(b)]. In this situation, the absolute
polarization averaged over initial conditions and noise re-
alizations, o = |m/, remains close to 0 [Fig. e—g—i)—red
to orange curves] and the participation ratio is close to
its homogeneous value (1—¢)/(2— @) [Fig. [3|(f-h-j)-red to
orange curves]. For lower values of 7, or a, the speed lost,
resulting from the inelastic collisions, is not immediately
compensated; dispersion of speeds set in and alignment
emerges. The transition to collective motion may take
two different routes. For intermediate values of v and «,
the polarization increases rapidly from 0 to 1 while the
system remains spatially homogeneous. An example of
such an evolution is shown on Fig. C). For even smaller
values of 7y or «, the transition to the aligned state is in-
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FIG. 4. Phase diagram. (a) Parameter space (a,7y) color
coded by the magnetization computed at tmax = 107, aver-
aged over 100 realizations, and ¢ = 0.1 (100 particles on 1000
sites). The solid line is a plot of ye(a) with d =1 (Eq. (B)).
(b) Transition time ¢* (at which 0 = 0.1 for the first time)
vs. a for y =10.1 and ¢ = 0.1 (inset : ¢t* vs. (ac — a)/a. for
N = 1000 and different choices of a. as given in the legend).

terrupted by the formation of large clusters made of two
groups of particles (one with positive velocity, one with
negative velocity), before it eventually resumes, when the
boundary between the two groups reaches the edge of
the cluster [Fig. [3(d)]. This transient clustering trans-
lates into a significant drop of the participation ratio, as
observed on [Fig. Bf(h.j)].

Fig. a) displays the corresponding phase diagram, ob-
tained from the values of o, recorded at t,,.x, the end of
the simulation. The system exhibits a transition from
a disordered quasi-elastic regime at large v and « to an
ordered collectively moving polar phase at small v and a.
The existence of the transition is confirmed by a finite-
size scaling analysis of the transition time t*, defined as
the time above which the polarization o > 0.1 [Fig. [4[b)].
The later diverges as a power law for a finite a.(v) < 1,
the value of which decreases away from 1 when the sys-
tem size increases. Our result contradicts a recent obser-
vation made for the dynamics of interacting dissipative
active particles [34]. Deriving and solving kinetic equa-
tions, the authors show that, in the absence of noise, —
remember that tumbling is absent from our model — the
disordered state is always unstable. These results how-
ever strongly relies on the assumption that the velocity
distributions are Gaussian. In the present case (see plots
in the Supp. Mat. ??), the distributions have a highly
non Gaussian shape; they exhibit a complex structure
originating from the interplay between dissipation and
activity. We believe such a qualitative difference can be
responsible for this apparent contradiction. A further ar-
gument in favor of the stability of the disordered phase
for aw < 1 runs as follow. Suppose a fluctuation allows for
the formation of a train of n particles. For simplicity, we
assume the particles inside the train are regularly spaced
by a distance d < 1/¢. In order to know whether this
train grows, we compute the conditions under which it
adsorbs a particle coming in the opposite direction (see
Supp. Mat. ??). In the limit of n — oo, adsorption takes
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FIG. 5. Transient clogs. (a) Parameter space («,y) color
coded by the minimal participation ratio rmin observed during
the simulation, averaged over 100 realizations, and ¢ = 0.1
(100 particles on 1000 sites). (b) Mean cluster size 72 vs. time,
for v = 0.1 (10® particles on a lattice of 10* sites, average over
100 realizations). Inset: 7 rescaled by ¢'/3.

place when v < 7. with:

Vo 2 vl —«a
c=—2—1 - — . 3
" dnl—l—a dl+a (3)

The corresponding curve with d = 1, above which even
infinitely long trains do not grow is plotted on top of the
phase diagram [Fig. C)] For low «, 7. underestimates
the location of the transition because the velocity fluctu-
ations within the train are likely to be very important.
But for large enough «, it provides a very good estimate
of the transition location, and therefore clearly points at
the existence of a finite size region of the parameter space
where collective alignment does not take place.

We finally discuss the transient condensation observed
at low values of v and « [Fig. 3(d)]. [Fig. [5fa)] presents
the phase diagram of the transient states, as obtained
from the minimal value of the participation ratio 7y
recorded during the entire simulation. For low enough
~ and «, the transition towards collective motion always
takes place via transient clogs. As observed on numeri-
cal trajectories, a cluster, composed of two domains with
opposite alignment facing each other, remains at rest for
a typical time 7 until the boundary between the two do-
mains eventually diffuses up to an edge of the cluster [Fig.
[b)]. The latter is then free to travel in the form of a
train until it collides with the nearest arrested cluster or
train, and so on. The growth rate of the polar ordering is
then dominated by the slow diffusion process inside the
clogs. The mass-weighted average cluster size [35]:

>, MWy
Do Wn .
with w,, the mass fraction in clusters of size n is indeed
observed to grow as a weak power law, i ~ t'/3, before
it saturates to the system size [Fig. [B[b)]. This can be
understood within the context of a simple mean-field ap-
proximation. Let K(m,n) be the rate at which two clus-
ters of size m and n aggregate to form a cluster of size
m-+n. Assuming that K(am,an) ~ a*K(m,n), the typi-
cal cluster size obeys i ~ 2, up to some proportionality

n =

(4)



constant [36 [37]. When \ < 1, this yields 7 ~ ¢1/0=2),
For a domain boundary diffusing as a random walker on
a lattice, the mean first-passage time would scale as 7>
[38, 39]. Therefore, A = 2 and 7 ~ t'/3

Altogether, inspired by the intriguing observation of
the onset of collective motion in a 1D system of swim-
ming droplets, we have proposed a minimalistic model
of active inelastic particles, in which the local alignment
emerges from the combination of the spontaneous disper-
sion of speeds and absence of Galilean invariance. We
have shown that such local dynamical rules, are sufficient
to induce a large scale transition to collective motion in
1D. The underlying mechanism could also be at play in
higher dimension. Our results thus call for the devel-
opment of a kinetic theory of active particles taking into
account velocity fluctuations beyond the gaussian approx-
imation [34]. Identifying a proper Ansatz for the velocity
distribution is certainly one of the most challenging issue
in the field of active liquids. The distributions reported
here provide a first step in this direction.
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