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Abstract. We recently introduced a model of an asymmetric dumbbell made of two hydrodynamically coupled subunits as
a minimal model for a macromolecular complex, in order to explain the observation of enhanced diffusion of catalytically
active enzymes. It was shown that internal fluctuations lead to negative contributions to the overall diffusion coefficient and
that the fluctuation-induced contributions are controlled by the strength of the interactions between the subunits and their
asymmetry. We develop the theory further by studying the effect of anisotropy of the constituents on the diffusion properties of
a modular structure. We derive an analytic form for the diffusion coefficient of an asymmetric, anisotropic dumbbell and show
systematically its dependence on the internal and external symmetry. We give expressions for the associated polarisation fields,
and comment on their consequences for the alignment mechanism of the dumbbell. The present work opens the way to more
detailed descriptions of the effect of hydrodynamic interactions on the diffusion and transport properties of biomolecules with
complex structures.
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1. Introduction

Understanding the dynamics of biomolecules is crucial if we are to fully appreciate and potentially harness their
functionalities in the search for biocompatible micro- and nano-machines. Enzymes, in particular, have the ability
to perform very specific functions under conditions dominated by thermal fluctuations and viscous hydrodynamics
[1], and yet there is relatively little known about the physical characteristics of this remarkable class of biomolecules.
Recently, the question of the effect of catalytic activity of enzymes on their diffusion properties has been addressed:
Experiments with dilute solutions of enzyme molecules which catalyse exothermic reactions and typically have high
catalytic rates have revealed that their diffusion is substantially enhanced in a substrate-dependent manner when
they are catalytically active [2, 3, 4, 5].

The observations were followed by theoretical investigations into the underlying mechanism of the phenomenon
of enhanced diffusion. Initial explanations relied on the exothermicity and fast rate of catalysis of the chemical cycle
of an enzyme [6, 7, 5]. The effect of hydrodynamic coupling of enzyme molecules to their environment was also
studied [7, 8, 9, 10, 11]. These theories were based on the key idea that the non-equilibrium catalytic cycle is the
main driving force behind the observed phenomenon. However, as it later turned out, the observations appear to be
independent of the thermodynamic properties and the non-equilibrium activity of an enzyme; recent experiments
have demonstrated similar levels of enhancement of the diffusion coefficient of the endothermic and slow enzyme
aldolase [12]. In [13], we proposed a new theoretical approach for understanding the phenomenon, capable of
replicating all experimental observations. We introduced the classical dumbbell model as a minimal model to study
the effect of hydrodynamic interactions and catalytic activity of enzyme molecules, and the consequence on their
diffusivity.

The effect of hydrodynamic interactions on the dynamics of macromolecular suspensions is a long-standing
problem of polymer physics [14], whose study requires approaches from statistical physics, low Reynolds number
hydrodynamics and rheology. Models of flexible chains or dumbbells have been extensively studied and successfully
used to model the dynamics of real macromolecules. Equilibrium-like averaging procedures, pioneered by Zimm
[15] and subsequently refined [16, 17], have been proposed to account for hydrodynamic interactions. The so-called
‘pre-averaging’ strategies are known to be very accurate [14]. Numerical strategies allowing efficient sampling of the
configurations of such model polymers were employed to study, for instance, the behaviour of chains and dumbbells
under shear [14], their cyclisation dynamics [18, 19] or their diffusion properties. In Ref. [13], we investigated
effects that were overlooked so far, such as the effect of internal asymmetries, inherent in real macromolecules and
in particular in enzymes which bear an active site and therefore a built-in asymmetry, the effect of orientation
fluctuations of the subunits that constitute the dumbbell that couple to the compressional degrees of freedom, and
the effect of changes between the different conformational landscapes explored by the dumbbell during its catalytic
cycle.

In Ref. [13], the hydrodynamic tensors were approximated by the isotropic part which amounts to a
pre-averaging of the orientation dependence, a common method in studies of the hydrodynamic properties of
macromolecules in solution. However, orientation-pre-averaging compromises knowledge of the effect of local
anisotropy. This then raises questions on the effect of the inclusion of anisotropy on the dynamics of the system and
the problem of a consistent treatment of the orientation dependence. Here we present resolutions by considering a
more general case of the model introduced in Ref. [13] through the inclusion of hydrodynamic interactions due to
anisotropy, with the aim of completing our description. In so doing, we provide a comprehensive analytical theory
for the dynamics of modular structures, and we open the way to a better description of the effect of hydrodynamic
interactions on the diffusion and transport properties of biomolecules with complex structures.

2. The model

In order to study the effects of fluctuation-induced hydrodynamic coupling, we consider the simplest system, endowed
with a minimal number of degrees of freedom, exhibiting this type of phenomenon. We consider a pair of rigid,
unequal Brownian particles which are of arbitrary shape, suspended in an unbounded fluid. The particles are
coupled through hydrodynamic interactions and through an interaction potential U . We assume Stokes flow, so
that the forces and torques exerted by the subunits on the fluid are linearly related to the instantaneous linear and
angular velocities through hydrodynamic interactions [20, 21]. In addition, their positions xα and orientations ûα

undergo thermal fluctuations around the equilibrium configuration. As such, the system describes low Reynolds
number flow around an asymmetric dumbbell which accesses different compressional and orientation modes in a
fluctuation-dependent way. In the experiments reporting enhanced diffusion, the concentration of enzymes were
very low (10 nM in [12]), corresponding to a small volume fraction. This justifies our expectation of describing the
phenomenon with a single enzyme.
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Figure 1. The generalised dumbbell, which has typical size a and consists of two non-identical subunits at positions x
α and

orientations ûα which are hydrodynamically coupled and also interact via some potential U . The centre of mass of the dumbbell
is denoted by R and the elongation (i.e., separation of the subunits) by x. The subunits fluctuate about the equilibrium
configuration due to thermal fluctuations.

The interaction potential U is defined through the enabled modes of fluctuation: û
1 and û

2 are taken to be
coplanar and only fluctuations within the plane are considered (this simplification is justified on the premise that
fluctuations out of the plane are expected to be substantially weaker), specifically, our focus is on fluctuations in
the orientations û

α, fluctuations about the other two body axes of each subunit do not feature explicitly in our
calculations, though their inclusion is through a simple extension of our analysis, but no new phenomena would be
introduced. Therefore, the interaction potential may be expressed as a Legendre expansion in the angles between
the orientation vectors û1, û2 and n̂ as

U = V0(x) +
∑

α=1,2

Vα(x) n̂ · ûα + V12(x) û
1 · û2 (1)

at first order. The functions V0(x), Vα(x) and V12(x) are generic and distinct. V0(x) contributes only to the
extension of the dumbbell, while Vα(x) and V12(x) in addition quantify the strength of the constraints on orientation
fluctuations.

3. Smoluchowski equation

We begin our analysis with the Smoluchowski equation for a pair of interacting Brownian particles. The probability
P (x1,x2, û1, û2; t) of finding subunit α at position xα and with orientation û

α at time t has the following evolution
equation

∂tP =
∑

α,β=1,2

{

∇α ·Mαβ
TT · [(∇βU)P + kBT∇βP ] +∇α ·Mαβ

TR ·
[

(RβU)P + kBTR
βP
]

+ R
α ·Mαβ

RT · [(∇βU)P + kBT∇βP ] +R
α ·Mαβ

RR ·
[

(RβU)P + kBTR
βP
]}

, (2)

where M
αβ
AB are elements of a mobility matrix which couples the interactions between the translational (T) and

rotational (R) modes of the subunits. For α 6= β, Mαβ
AB correspond to the hydrodynamic interactions between

the subunits, for α = β it represents self-mobility in the presence of the other subunit. The mobility matrix is
symmetric and positive definite if the interacting particles are identical [14].

The interaction potential is U(x1,x2, û1, û2) as before and R
α = ûα × ∂ûα

is the rotational gradient operator
[14]. Equation (2) is known in polymer dynamics as the equation of motion for dilute polymer solutions as presented
in the Zimm model [14]. However, here the constituents are unequal and non-axisymmetric.

For convenience we separate the dynamics into pure translation, where the translational modes of the subunits
are coupled, and rotation, which incorporates coupling of rotational modes and also cross coupling of rotation and
translation. Equation (2) can then be written as

∂tP = LTP + LRP, (3)

where

LTP =
∑

α,β=1,2

∇α ·Mαβ
TT · [(∇βU)P + kBT∇βP ] ,

LRP =
∑

α,β=1,2

(

∇α ·Mαβ
TR +R

α ·Mαβ
RR

)

·
[

(RβU)P + kBTR
βP
]

+R
α ·Mαβ

RT · [(∇βU)P + kBT∇βP ]. (4)
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In the centre-of-mass R = (x1 +x2)/2 and separation x = x2 −x1 = xn̂ coordinates of the dumbbell, (4) becomes

LTP =

(

1

4
∇R ·M+

1

2
∇x · Γ

)

· kBT∇RP +

(

1

2
∇R · Γ+∇x ·W

)

· [(∇xU)P + kBT∇xP ] , (5)

and

LRP =
∑

α,β=1,2

{

(

1

2
∇R ·Φ(α) + (−1)α∇x ·Λ(α)

)

· [kBTR
αP + (RαU)P ] +

1

2
R

α ·Φ(α) · kBT∇RP

+ (−1)αRα ·Λ(α) · [(∇xU)P + kBT∇xP ] +R
α ·Xαβ · [kBTR

βP + (RβU)P ]

}

. (6)

Using the symmetry property M
αβ
AB = M

βα
BA (which follows from the Lorentz reciprocal theorem [20, 21]), the new

Smoluchowski equation is written in terms of new hydrodynamic tensors which are linear combinations of the old
ones, so that M, W and Γ are composed of the translation tensors, Ψ(α) and Xαβ the rotation tensors, and Λ(α)

and Φ(α) correspond to translation-rotation coupling. We continue our analysis by exploiting the difference in scale
between the centre-of-mass and separation coordinates.

4. Averaging procedure

The diffusion coefficient of the centre-of-mass of the dumbbell is given by an average over the configurations,
hence Deff = limt→∞

1
6

d
dt

∫

R

∫

x

∫

û
1

∫

û
2 R

2P . The calculation of Deff in this way, using the Smoluchowski equation
(equations (5) and (6)) involves higher-order correlation functions which may combine the external (R) and internal
(x, û1 and û

2) degrees of freedom. Furthermore, expressions for these correlation functions calculated using (5)
and (6) yield yet higher-order moments. This hierarchy is closed through the definition of an averaging procedure
which eventually leads to a closed expression after a suitable truncation approximation.

A well-defined averaging procedure is motivated by the identification of a separation of the time-scales in the
dynamics of the dumbbell: There are three time-scales, each describing the relaxation time of a degree of freedom.
The slowest of the three is the relaxation time of the centre-of-mass coordinate R. Given a potential that can be
Taylor expanded around the minimum, the quadratic term gives the effective spring constant of the potential (k)
and the time-scale for x to return to its equilibrium value, τs = ξ/k, where ξ is the friction coefficient of the enzyme.
The rotational diffusion time of the enzyme τr, which determines the rate of loss of memory of orientation through
〈n̂(t) · n̂(0)〉 = exp(−|t|/τr), is of the order ξa2/kBT . The ratio of the two times τs/τr goes as kBT/ka

2 ∼ δx/a,
the relative deformation of the enzyme due to thermal fluctuations, and is therefore bounded by unity. With this
consideration, we can average over the separation of the subunits assuming n̂, û1 and û

2 to be fixed. The average
is defined as 〈·〉 = 1

P

∫

dxx2 · P , where P =
∫

dxx2 · P .
The average over the separation x of the Smoluchowski equation requires expressions for the gradients of the

interaction potential, ∇xU and R
αU . Applying ∇x = n̂∂x − 1

x n̂×R and R
α to (1) gives

∇xU = n̂U ′ + (1− n̂n̂) ·

(

V1(x)

x
û
1 +

V2(x)

x
û
2

)

, (7)

and

R
αU = V12(x)(û

α × û
β) + Vα(x)(û

α × n̂). (8)

Furthermore, for a hydrodynamic tensor A, ∇x · A = ∇x · (n̂n̂ ·A+ (1− n̂n̂) ·A), has just one contribution
−(n̂×R) · (1− n̂n̂) · Ax after averaging over the separation. The full expression for the evolution of the separation-

averaged distribution P(R, n̂, û1, û2; t) is given by the sum of the following

LTP =

[

1

4
∇R · 〈M〉 −

1

2
(n̂×R) · (1− n̂n̂) ·

〈

Γ

x

〉]

· kBT∇RP

−
kBT

2
∂Ri

ǫjkl

[

Rl

(

〈

Γij

x

〉

n̂kP

)

−

〈

Rl

(

Γij

x
n̂k

)〉

P

]

+ kBT (n̂×R)i(1− n̂n̂)ijǫklm

[

Rm

(

〈

Wjk

x2

〉

n̂lP

)

−

〈

Rm

(

Wjk

x2
n̂l

)〉

P

]

+

[

1

2
∇R ·

∑

α=1,2

〈

ΓVα(x)

x

〉

− (n̂×R) · (1− n̂n̂) ·
∑

α=1,2

〈

W Vα(x)

x2

〉

]

· (1− n̂n̂) · ûαP , (9)
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and

LRP =
∑

α,β=1,2

{

kBT

2
∂Ri

[

Rα
j (〈Φ

(α)
ij 〉P)−

〈

Rα
j Φ

(α)
ij

〉

P
]

+ kBTR
α
i

[

Rβ
j

(

〈Xαβ
RR ij〉P

)

− 〈Rβ
jX

αβ
RR ij〉P

]

+
1

2
∇R ·

[

〈Φ(α)V12〉 · (û
α × û

β)P + 〈Φ(α)Vα〉 · (û
α × n̂)P

]

−R
α ·
[

〈Xαβ
RRV12〉 · (û

α × û
β)P + 〈Xαβ

RRVβ〉 · (û
β × n̂)P

]

+R
α ·
[

〈Φ(α)V12〉 · (û
α × û

β)P + 〈Φ(α)Vα〉 · (û
α × n̂)P

]

− kBT (−1)αRα
i ǫjkl

[

Rl

(〈

Λ
(α)
ij

x

〉

n̂kP

)

−

〈

Rl

(

Λ
(α)
ij

x
n̂k

)〉

P

]

+ (−1)αRα ·

[

〈

Λ(α)Vβ
x

〉

· (1− n̂n̂) · ûβP

]

− kBT (n̂×R)k(1− n̂n̂)ik(−1)α

[

Rα
j

(〈

Λ
(α)
ij

x

〉

P

)

−

〈

Rα
j

Λ
(α)
ij

x

〉

P

]

+ (n̂×R) · (1− n̂n̂) ·

[

〈

Λ(α)V12
x

〉

· (ûα × û
β)P +

〈

Λ(α)Vα
x

〉

· (ûα × n̂)P

]}

(10)

We have used the relation

〈U ′φ(x)〉 = kBT

〈

φ′(x) + 2
φ(x)

x

〉

, (11)

valid for any function φ of the separation coordinate and under the assumption that the x-dependence of P is
Boltzmann-like, so that P ∝ e−U/kBT . Note that there are no terms with the coefficient V12 in (9), as such terms
are due to the action of rotation gradient operator Rα on the interaction potential.

5. Moment expansion

The next step in the calculation is a treatment of the orientations of the dumbbell. Analytic studies of low Reynolds
number dynamics typically involve a description of the continuum equations; following previous work [22, 23, 24, 25]
we turn to a macroscopic description of the system where we consider the evolution of the probability density
ρ =

∫

n̂,û1,û2 P . The local density ρ, and the local polarisations p, pα, are constant over time-scales that large
compared to the time-scale of fluctuations, and lengths that are are large on the scale of the typical size of the
dumbbell, and so are appropriate quantities for describing diffusion of the centre-of-mass [23]. However, the evolution
equation for the density is not closed and involves polarisation fields p =

∫

n̂,û1,û2 n̂P and pα =
∫

n̂,û1,û2 û
αP—

inevitably, the equations satisfied by the polarisation fields are also not closed and involve higher-order moments of

the distribution such as the second order nematic tensor Qαβ =
∫

(

û
α
û
β − 1

3δ
αβ1

)

P (where α, β = 0 corresponds

to n̂), which must be re-expressed in terms of lower order moments.
A discussion of orientation requires a statement on the functional dependence of the hydrodynamic tensors on

the orientations of the dumbbell. With the orientation-pre-averaging approximation, where hydrodynamic tensors
were approximated as isotropic, and written A ≃ a01, we had previously described a coarse-grained dynamics. We
now switch on anisotropic hydrodynamic interactions.

The hydrodynamic tensors in Eqs. (5) and (6) are functions of the geometry, orientation, and separation of
the subunits. The dependence on separation at least will be non-linear, but an explicit form of this dependence is
not required for our analysis so we make no further speculation here. Rather, we posit the following expansion in
orientations:

M = M11
TT +M22

TT + 2M12
TT ≃ [m0(x) +m1(x)û

1 · n̂+m2(x)û
2 · n̂+m12(x)û

1 · û2 + . . .] 1,

W = M11
TT +M22

TT − 2M12
TT ≃ [w0(x) + w1(x)û

1 · n̂+ w2(x)û
2 · n̂+ w12(x)û

1 · û2 + . . .] 1,

Γ = M22
TT −M11

TT ≃ [γ0(x) + γ1(x)û
1 · n̂+ γ2(x)û

2 · n̂+ γ12(x)û
1 · û2 + . . .] 1,

Φ(1) = M11
TR +M21

TR ≃ [φ
(1)
0 (x) + φ

(1)
1 (x)û1 · n̂+ φ

(1)
2 (x)û2 · n̂+ φ

(1)
12 (x)û

1 · û2 + . . .] 1,

Φ(2) = M22
TR +M12

TR ≃ [φ
(2)
0 (x) + φ

(2)
1 (x)û1 · n̂+ φ

(2)
2 (x)û2 · n̂+ φ

(2)
12 (x)û

1 · û2 + . . .] 1,
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Figure 2. The effective diffusion coefficient of two axisymmetric dumbbells with asymmetries ζ = 2 and ζ = 1.5 as a function
of relative fluctuations ǫ, with v1 = 0.1, v2 = 0.13, v12 = 0.15 and a1/a = 0.3. Dave is the first term of Deff; Dave +O(2) is the

sum of the first two terms; Dave +O(3) includes δDαα
2

; and Dave +O(4) includes δDαβ
3

.

Λ(1) = M11
TR −M21

TR ≃ [λ
(1)
0 (x) + λ

(1)
1 (x)û1 · n̂+ λ

(1)
2 (x)û2 · n̂+ λ

(1)
12 (x)û

1 · û2 + . . .] 1,

Λ(2) = M22
TR −M12

TR ≃ [λ
(2)
0 (x) + λ

(2)
1 (x)û1 · n̂+ λ

(2)
2 (x)û2 · n̂+ λ

(2)
12 (x)û

1 · û2 + . . .] 1,

Ψ(1) = M11
RR ≃ [ψ

(1)
0 (x) + ψ

(1)
1 (x)û1 · n̂+ ψ

(1)
2 (x)û2 · n̂+ ψ

(1)
12 (x)û

1 · û2 + . . .] 1,

Ψ(2) = M22
RR ≃ [ψ

(2)
0 (x) + ψ

(2)
1 (x)û1 · n̂+ ψ

(2)
2 (x)û2 · n̂+ ψ

(2)
12 (x)û

1 · û2 + . . .] 1,

X
(αβ) = M

αβ
RR ≃ [χ

(αβ)
0 (x) + χ

(αβ)
1 (x)û1 · n̂+ χ

(αβ)
2 (x)û2 · n̂+ χ

(αβ)
12 (x)û1 · û2 + . . .] 1, (12)

again to first order in the angles of rotation. In this notation coefficients with a subscript zero are order zero in the
moment expansion and otherwise first order.

With the inclusion of anisotropy in the hydrodynamic tensors, the zeroth and first order moments of the
separation-averaged Smoluchowski equation give the following dynamical equations for the density and polarisation
fields:

∂tρ =
kBT

4
〈m0〉∇

2
Rρ+ kBT

〈γ0
x

〉

∇R · p+
∑

α6=β

{

1

3

〈

γ0Vα
x

〉

∇R · pα +
1

9

〈

γ12Vα
x

〉

∇R · pβ

}

, (13)

∂tpi = −
kBT

3

〈γ0
x

〉

∂Ri
ρ− 2kBT

〈w0

x2

〉

pi −
2

3

∑

α6=β

{

〈

w0Vα
x2

〉

pαi +
1

3

〈

w12Vα
x2

〉

pβi

}

, (14)

∂tp
α
i =

1

9

[〈

γ0Vα
x

〉

+
1

3

〈

γ12Vβ
x

〉]

∂Ri
ρ−

2

3

[

〈

ψ
(α)
0 Vα

〉

+
1

3

〈

(ψ
(α)
β − χ

(αβ)
β )V12

〉

+
1

3

〈

χ
(αβ)
12 Vβ

〉

]

pi

− 2kBT
〈

ψ
(α)
0

〉

pαi −
2

3

[

〈

(ψ
(α)
0 − χ

(αβ)
0 )V12

〉

−
1

3

〈

χ(αβ)
α Vβ

〉

+ kBT
〈

χ
(αβ)
12

〉

]

pβi . (15)

We note that the hydrodynamic equations are not closed because of asymmetry, and that the complications in the
moment expansion are precisely due to this reason. The hierarchy is truncated by a closure scheme which yields
a closed set of dynamical equations for the density and polarisation fields. In equations (13)-(15), we have kept
terms upto the lowest order in spatial derivatives (∇2

R
ρ, ∇R · p and ∇R · pα), and rewritten higher-order moments

according to the expressions in Appendix A, keeping only the traceless symmetric part of the corresponding tensors.
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Figure 3. In both figures, ζ = 1.5, v2 = 0.1, v12 = 0.15 and a1/a = 0.3. (a): The effective diffusion coefficient of an
axisymmetric dumbbell as a function of the constant constraint parameter v1, with ǫ = 0.01. (b): Relative decrease in diffusion
coefficient for different values of ǫ.

6. Closure approximation and the diffusion equation

6.1. Closure scheme and its implications for alignment

From the set of equations (13)-(15) we derive a closed diffusion equation with an appropriate closure scheme. By
assuming time scales that are large compared to the relaxation time of fluctuations, we can assume ∂tp = 0 and
∂tp

α = 0 and find expressions for the polarisation fields that are linear in density:

pi = [S0 + S2 + S3 +O(4)] ∂Ri
ρ (16)

where

S0 = −
1

6

〈γ0/x〉

〈w0/x2〉
,

S2 = −
1

6

1

(3kBT )

1

〈w0/x2〉

∑

α6=β

gα

〈

w0Vα
x2

〉

,

S3 = −
1

18

1

(3kBT )2
1

〈w0/x2〉

∑

α6=β

〈

w0Vα
x2

〉

〈

γ12Vβ

x

〉

+ 〈γ0/x〉
〈w0/x2〉

[〈

(ψ
(α)
β − χ

(αβ)
β )V12

〉

+
〈

χ
(αβ)
12 Vβ

〉]

〈

ψ
(α)
0

〉

+
1

6

1

(3kBT )2
1

〈w0/x2〉

∑

α6=β

gβ

〈

w0Vα
x2

〉

〈(

ψ
(α)
0 − χ

(αβ)
0

)

V12

〉

+ kBT
〈

χ
(αβ)
12

〉

〈

ψ
(α)
0

〉

−
1

18

1

(3kBT )

1

〈w0/x2〉

∑

α6=β

gβ

〈

w12Vα
x2

〉

, (17)

and

pαi = [T1 + T2 + T3 +O(4)] ∂Ri
ρ (18)

where

T1 =
1

6
gα,

T2 =
1

18

1

(3kBT )

〈

γ12Vβ

x

〉

+ 〈γ0/x〉
〈w0/x2〉

[〈

(ψ
(α)
β − χ

(αβ)
β )V12

〉

+
〈

χ
(αβ)
12 Vβ

〉]

〈

ψ
(α)
0

〉

−
1

6

1

(3kBT )

〈

(ψ
(α)
0 − χ

(αβ)
0 )V12

〉

+ kBT
〈

χ
(αβ)
12

〉

〈

ψ
(α)
0

〉 gβ,
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Figure 4. δD0 as a function of ǫ, for a1/a = 0.3. δD0 is the first term of δDfluc, which is expected to be negative. The
magnitude of δD0 increases with asymmetry of the dumbbell.

T3 =
1

6

1

(3kBT )2
1

〈w0/x2〉

〈

ψ
(α)
0 Vα

〉

〈

ψ
(α)
0

〉

∑

γ

〈

w0Vγ
x2

〉

gγ . (19)

The dimensionless coefficient

gα =
1

3kBT
〈

ψ
(α)
0

〉

[〈

γ0Vα
x

〉

+
〈γ0/x〉

〈w0/x2〉

〈

ψ
(α)
0 Vα

〉

]

(20)

gives the scale of polarisation of subunit α at leading order: The scale of polarisation of the complex is given by
〈γ0/x〉 /

〈

w0/x
2
〉

at leading order. The index of the coefficients Si and Ti gives their order in the joint expansion
of potential and mobilities. The effect of anisotropy is seen in the coefficients S3 and T2, that is, at second order in
the polarisation of a subunit and at third order in the polarisation of the complex.

6.2. The diffusion equation

In this limit the following effective diffusion coefficient is deduced

Deff =
kBT

4
〈m0〉 −

kBT

6

〈γ0/x〉
2

〈w0/x2〉



1−
∑

α6=β

(

δDαα
2 + δDαβ

3

)



+O(4), (21)

where the first term is the thermal average of contributions from translational modes of the dumbbell; the leading
order correction is due to asymmetry in the self mobilities of the subunits; and δDαβ

i is a fluctuation-induced
correction of order i in the moment expansion. Explicitly

δDαα
2 =

〈

w0/x
2
〉

〈γ0/x〉
hαgα,

δDαβ
3 = −

1

3kBT

〈

w0/x
2
〉

〈γ0/x〉
hαgβ

〈(

ψ
(α)
0 − χ

(αβ)
0

)

V12

〉

+ kBT
〈

χ
(αβ)
12

〉

〈

ψ
(α)
0

〉

+
1

3

1

(3kBT )

〈γ0/x〉

〈w0/x2〉
hα

[〈

(ψ
(α)
β − χ

(αβ)
β )V12

〉

+
〈

χ
(αβ)
12 Vβ

〉]

〈w0/x
2〉

〈γ0/x〉
+ 〈γ12Vβ/x〉

〈

ψ
(α)
0

〉

+
1

3

1

(3kBT )

1

〈γ0/x〉
gα

[〈

w12Vβ
x2

〉

+

〈

γ12Vβ
x

〉

〈γ0/x〉

〈w0/x2〉

]

, (22)



Fluctuation-induced hydrodynamic coupling in an asymmetric, anisotropic dumbbell 9

Figure 5. (a): The coefficient g1 as a function of ǫ. (b): g1 as a function of v1 ≪ 1, with a1/a = 0.3.

where gα is as in (20), and we have defined another dimensionless quantity

hα =
1

3kBT

[

〈γ0Vα/x〉

〈γ0/x〉
−

〈

w0Vα/x
2
〉

〈w0/x2〉

]

. (23)

Unlike gα, hα does not vanish if the subunits are identical and is independent of rotational motion.
The motion of the dumbbell is retarded by asymmetry through hydrodynamic interactions between the subunits.

The correction δDαα
2 , previously reported in [13], is of order one and is estimated to be positive for harmonic-

like potentials. Corrections are observed at a time-scale governed by the separation relaxation time (a detailed
calculation is given in [13]). As expected from the equation for the rotational gradient of the interaction potential
(8), V12(x) is coupled to the hydrodynamic tensors for rotational modes of the dumbbell. The effect of anisotropy is
first seen at third order where it is coupled to asymmetry. A notable absence in Deff is that of translation-rotation
coupling which would be introduced by the tensors Φ(α) and Λ(α), representing the off-diagonal blocks of the
mobility matrix. Such a coupling will be produced if the system is given a feature which breaks the corresponding
chiral symmetry, such as a macroscopic constraint [26].

Having truncated the moment expansion at third order, eq. (21) for the effective diffusion coefficient holds for
sufficiently small constraint functions Vα(x) and V12(x). Within the regime considered, we suggest that additional
terms which are the result of higher order contributions in either the potential or mobility expansions will have only
minor quantitative contributions to Deff. In the same way, we expect that fluctuations about the two remaining
Euler angles of each subunit yield separate, but comparable corrections—overall contributing negatively.

To fourth order in the moment expansion, we can write the fluctuation-induced corrections as the product of
internal (〈γ0/x〉) and external asymmetry by comparison with (16) and (18)

δDfluc =
kBT

6

〈γ0
x

〉

[

〈γ0/x〉

〈w0/x2〉
− hαgα + hαgβ

〈(

ψ
(α)
0 − χ

(αβ)
0

)

V12

〉

+ kBT
〈

χ
(αβ)
12

〉

3kBT
〈

ψ
(α)
0

〉

−
〈γ0/x〉

〈w0/x2〉
hα

[〈

(ψ
(α)
β − χ

(αβ)
β )V12

〉

+
〈

χ
(αβ)
12 Vβ

〉]

+ 〈γ12Vβ/x〉
〈γ0/x〉
〈w0/x2〉

9kBT
〈

ψ
(α)
0

〉

−
1

9kBT

1

〈w0/x2〉
gα

[〈

w12Vβ
x2

〉

+

〈

γ12Vβ
x

〉

〈γ0/x〉

〈w0/x2〉

]

]

. (24)

Simply, since the reduction in diffusion coefficient is driven by asymmetry, any reduction in asymmetry will lead to
a positive contribution to Deff. If the external symmetry is broken the effect of symmetry breaking on the diffusion
coefficient can be determined by recalculating the polarisation fields with an appropriate expansion to replace (12).
The equilibrium model proposed in Ref. [13] for a catalytically active enzyme demonstrates the case when there is
a change in internal symmetry. In the case of internal symmetry breaking the effect is introduced by redefining the
average over the internal degrees of freedom.
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Figure 6. (a): The coefficient h1 as a function of ǫ. (b): h1 as a function of v1 ≪ 1, with a1/a = 0.3.

7. Harmonic potential

To provide a more quantitative analysis of the role of the interaction on Deff, we consider an example of rigid
spherical subunits of radii a1 and a2 with a2 > a1. The subunits interact via a potential U that has harmonic

x-dependence so that U = 1
2k(x − a)2

[

1 +
∑

α=1,2 vα n̂ · ûα + v12 û
1 · û2

]

for x > a1 + a2 and ∞ otherwise. In

U , a is the typical size of the dumbbell and vα and v12 are the constraint parameters which are independent of x.
The mobility functions for interacting particles are widely known for such axisymmetric geometries. We provide
some preliminary plots of Deff, which were made using the mobility functions of [27] for widely separated spheres.
We have defined the dimensionless numbers ǫ =

√

kBT/ka2, a measure of the fluctuations of the dumbbell around
its equilibrium, ζ = a2/a1, the geometric asymmetry and the ratio a1/a. Since we perform an expansion in the
constraints, (21) is bounded by vα, v12 ≪ 1.

Fig. 2 shows the relation between Deff and the relative fluctuations of the dumbbell. As expected, the diffusion
coefficient of the dumbbell is lowered when its asymmetry is increased. Furthermore, Deff increases with the stiffness
of the potential, and its maximum value is attained in the limit of a rigid potential.

Fig. 3(a) shows the dependence of Deff on the constraint parameter v1, with constant v2 and v12. There is
a clear reduction in the effective diffusion upon the inclusion of the fluctuation induced corrections, particularly
δDαα

2 , even at small relative deformations. In the far-field limit where the separation of the subunits is much greater
than the typical size of the dumbbell, the mobility functions are given by a series expansion in 1/x so that a small
deformation in the dumbbell can have significant contributions to the diffusion coefficient. In fig. 3(b) it can be
seen that the relative decrease in the diffusion coefficient due to fluctuation-induced corrections increases with the
stiffness of the potential.

It is instructive to study the behaviour of the coefficients δD0 = 〈γ0/x〉 /
〈

w0/x
2
〉

, gα and hα which are present
in every term of δDfluc and are fully captured by an axisymmetric geometry. In figures 4-6 we show their dependence
on the constraint parameter v1 and relative fluctuations for two axisymmetric dumbbells. It can be seen that δD0

has the largest contribution which is negative; typical values of gα are negative but an order of magnitude smaller;
and as a function of vα and ǫ, hα is positive, but crucially negligible. Therefore, within the regime of the moment
expansion, terms linear in hα are negligible in δDfluc. The last surviving term in (24) cannot be determined in this
example because it contains anisotropy. Nonetheless, it is expected to be considerably smaller than δD0.

8. Conclusion

We have proposed a new theoretical framework for understanding the effect of internal hydrodynamic interactions
on the stochastic translational motion of modular structures in a fluid environment under low Reynolds number
conditions. In an asymmetric modular structure, such interactions (here caused by thermal fluctuations) result in
a decrease in the diffusion coefficient of the object, hence there is a fluctuation–induced correction to the diffusion
coefficient. We show that this correction is driven by an interplay between internal and external asymmetry.
Although the full result is presented for a general dumbbell, where anisotropy is a relevant measure, we consider the
case of an axisymmetric dumbbell (for which the hydrodynamic functions are well known) to provide a quantitative
example.
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We have shown that the hydrodynamic equations which describe the evolution of moments of the distribution
function of the generalised dumbbell are not closed, but with a careful consideration of the motion of such an object,
one is able to close these equations at any order.

The present work then gives an insight into the effect of internal fluctuations and asymmetries on the effective
diffusion coefficient of a model modular macromolecule. The ideas presented here are very generic, and could be
specified to different real systems. In particular, it would be of interest to study more complex structures that
reproduce faithfully the structure of specific enzyme molecules. This could be achieved using extensive numerical
simulations that would include both stochastic dynamics and hydrodynamic interactions, and could be the topic of
future work.
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Appendix A. Traceless symmetric tensors

Traceless symmetric tensors are commonly used in moment expansions [23]. Starting from the second order nematic
tensor

Qαβ
ij =

∫
(

uαi u
β
j −

1

3
δijδ

αβ

)

P ; (A.1)

at third order

Qα
ijk =

∫

[uαi u
α
j u

α
k −

1

5
(δiju

α
k + δiku

α
j + δjku

α
i )]P ; Tαβγ

(ij)k =

∫

[uαi u
β
j u

γ
k −

1

3
uδkδijδ

αβ ]P ; (A.2)

at order four

Qα
ijkl =

∫

[uαi u
α
j u

α
ku

α
l −

1

15
(δijδkl + δikδjl + δilδjk)]P ; Tαβγδ

(ij)(kl) =

∫

[uαi u
β
j u

γ
ku

δ
l −

1

9
δijδklδ

αβδγδ]P ;(A.3)

and finally at order five

Qα
ijklm =

∫
{

uαi u
α
j u

α
ku

α
l u

α
m −

1

21

[

uαm(δijδkl + δikδjl + δilδjk) + uαl (δijδkm + δikδjm + δimδjk)

+ uαk (δijδlm + δilδjm + δimδjl) + uαj (δikδlm + δilδkm + δimδkl) + uαi (δjkδlm + δjlδkm + δjmδkl)
]

}

P

Tαβγδǫ
(ijkl)m =

∫

[uαi u
β
j u

γ
ku

δ
l u

ǫ
m −

1

15
uǫm(δijδkl + δikδjl + δilδjk)δ

αβγδ]P ;

Tαβγδǫ
(ijk)(lm) =

∫

[uαi u
β
j u

γ
ku

δ
l u

ǫ
m −

1

15
(uγkδij + uβj δik + uαi δik)δlmδ

αβγδδǫ]P ;

Tαβγδǫ
(ij)(kl)m =

∫

[uαi u
β
j u

γ
ku

δ
l u

ǫ
m −

1

9
uǫmδijδklδ

αβδγδ]P ,

(A.4)

the highest order encountered in our moment expansion. Parentheses denotes symmetry in the isolated subscripts
and the tensors are traceless on contraction of those indices. The sum over Greek letters runs over 0, 1 and 2, where
we have used the notation û

0 = n̂.
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