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Introduction

The Lambert W function, which is the multivalued inverse of the function z → ze z has many applications in many areas of mathematics. In a theory of random matrices, it appears in a formula of a eigenvalue distribution of a certain Wishart-type ensemble (cf. Cheliotis [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF]). In the previous paper [START_REF] Nakashima | Wigner and Wishart ensembles for graphical models[END_REF], we found that, for a certain class of Wishart-type ensembles, the corresponding eigenvalue distributions can be described by using the main branch of the inverse function of z → z 1+γz 1 + z κ κ , where γ, κ are real parameter. The aim of this paper is to give a complete analysis of this function, which we call the Lambert-Tsallis function.

Preliminaries

For a non zero real number κ, we set exp κ (z) := 1 + z κ

κ (1 + z κ ∈ C \ R ≤0 ),
where we take the main branch of the power function when κ is not integer. If κ = 1 1-q , then it is exactly the so-called Tsallis q-exponential function (cf. [START_REF] Amari | Geometry of q-exponential family of probability distributions[END_REF][START_REF] Zhang | Information geometry on the curved q-exponential family with application to survival data analysis[END_REF]). By virtue of lim κ→∞ exp κ (z) = e z , we regard exp ∞ (z) = e z .

For two real numbers κ, γ such that κ = 0, we introduce a holomorphic function f κ,γ (z), which we call generalized Tsallis function, by

f κ,γ (z) := z 1 + γz exp κ (z) (1 + z κ ∈ C \ R ≤0 ).
Analogously to Tsallis q-exponential, we also consider f ∞,γ (z) = ze z 1+γz (z ∈ C). In particular, f ∞,0 (z) = ze z . Let D(f κ,γ ) be the domain of f κ,γ , that is, if κ is integer then

D(f κ,γ ) = C \ {-1 γ } if κ is not integer, then D(f κ,γ ) = C \ x ∈ R; 1 + x κ ≤ 0, or x = - 1 γ .
The purpose of this work is to study an inverse function to f κ,γ in detail. A multivariate inverse function of f ∞,0 (z) = ze z is called the Lambert W function and studied in [START_REF] Corless | On the Lambert W function[END_REF]. Hence, we call an inverse function to f κ,γ the Lambert-Tsallis W function. Since we have

f κ,γ (z) = γz 2 + 1 + 1/κ z + 1 (1 + γz) 2 1 + z κ κ-1 , (1) 
the function f κ,γ (z) has the inverse function w κ,γ in a neighborhood of z = 0 by the fact f κ,γ (0) = 1 = 0. Let z = x + yi ∈ C and we set for κ = ∞ θ(x, y) := Arg 1 + z κ ,

where Arg(w) stands for the principal argument of w; -π < Arg(w) ≤ π. Since we now take the main branch of power function, we have for κ = ∞

1 + z κ κ = exp κ log 1 + z κ + iArg 1 + z κ = 1 + x κ 2 + y 2 κ 2 κ 2 e iκθ(x,y) = 1 + x κ 2 + y 2 κ 2 κ 2
cos(κθ(x, y)) + i sin(κθ(x, y)) .

If κ = ∞, then we regard κθ(x, y) as y because we have lim κ→+∞ exp κ (z) = e z = e x (cos y + i sin y).

Since z 1 + γz = z(1 + γ z) |1 + γz| 2 =
(x + γx 2 + γy 2 ) + i(y + γxy -γxy)

(1 + γx) 2 + γ 2 y 2 = (x + γx 2 + γy 2 ) + iy (1 + γx) 2 + γ 2 y 2 ,
we have

f κ,γ (z) = (1 + x/κ) 2 + (y/κ) 2 κ 2
(1 + γx) 2 + γ 2 y 2 (x + γx 2 + γy 2 ) cos(κθ(x, y)) -y sin(κθ(x, y)) +i (x + γx 2 + γy 2 ) sin(κθ(x, y)) + y cos(κθ(x, y)) .

Then, f κ,γ (z) ∈ R implies (x + γx 2 + γy 2 ) sin(κθ(x, y)) + y cos(κθ(x, y)) = 0.

(

) 3 
If sin(κθ(x, y)) = 0, then cos(κθ(x, y)) does not vanish so that y needs to be zero. Thus, if z = x+yi ∈ f κ,γ (R) with y = 0, then we have sin(κθ(x, y)) = 0. Thus, the equation (3) for sin(κθ(x, y)) = 0 can be rewritten as F (x, y) := (x + γx 2 + γy 2 ) + y cot(κθ(x, y)) = 0.

For y = 0, we set F (x, 0) := lim y→0 F (x, y). If x = 0, then we have θ(0, y) = Arctan( y κ ) and hence F (0, 0) = lim y→0 y cot(κArctan( y κ )) = 1. Let us introduce the connected set Ω = Ω κ,γ by

Ω = Ω κ,γ := {z = x + yi ∈ D(f κ,γ ); F (x, y) > 0} • ,
where A • is the connected component of an open set A ⊂ C containing z = 0. Note that since F is an even function on y, the domain Ω is symmetric with respect to the real axis. Set

S := R \ f κ,γ Ω κ,γ ∩ R . (5) 
Definition 1.1. If there exists a unique holomorphic extension W κ,γ of w κ,γ to C \ S, then we call W κ,γ the main branch of Lambert-Tsallis W function. In this paper, we only study and use W κ,γ among other branches so that we call W κ,γ the Lambert-Tsallis function for short. Note that in our terminology the Lambert-Tsallis W function is multivalued and the Lambert-Tsallis function W κ,γ is single-valued.

Our goal is to prove the following theorem.

Theorem 1.2. Let f κ,γ be a generalized Tsallis function. Then, there exists the main branch of Lambert-Tsallis function if and only if (i) 0 < κ < 1 and γ ≤ 0, (ii) κ ≥ 1 and γ ≤ 1 4 (1 + 1 κ ) 2 , (iii) -1 < κ < 0 and γ ≤ 1 κ , (iv) κ ≤ -1 and γ ≤ 1 4 (1 + 1 κ ) 2 , and (v) κ = ∞ and γ ≤ 1 4 . Remark 1.3. In the case κ > 1 and D(0) < 0, the function f κ,γ maps Ω ∩ C + to C + two-to-one, and hence the extension exists on a smaller domain in Ω which f κ,γ maps to C \ S, but it is not unique. In the case 0 < κ < 1 and γ > 0, we need to extend the defining domain of f κ,γ so that there does not exists a complex domain such that f κ,γ maps to C \ S.

The proof of this theorem is done in two steps, that is, we first give an explicit expression of Ω = Ω κ,γ , and then show that f κ,γ maps Ω to C\S bijectively. At first, we suppose that 0 < κ < +∞. Let us change variables in (4) by

re iθ = 1 + z κ (r > 0, θ ∈ (0, π)), or equivalently x = κ(r cos θ -1), y = κr sin θ, (6) 
and set a := γκ and b(θ) = (1 -2a) cos θ + sin θ cot(κθ).

Then, the equation ( 4) can be written as

ar 2 + b(θ)r + a -1 = 0. (8) 
In fact, we have

κ(r cos θ -1) + γ (κ(r cos θ -1)) 2 + (κr sin θ) 2 + κr sin θ cot(κθ) = 0 ⇐⇒ γκ 2 r 2 + κ cos θ -2γκ 2 cos θ + κ sin θ cot(κθ) r + (γκ 2 -κ) = 0 ⇐⇒ γκr 2 + (1 -2γκ) cos θ + sin θ cot(κθ) r + γκ -1 = 0.
If sin(κθ) = 0, then (8) has a solution

r = r ± (θ) = -b(θ) ± b(θ) 2 -4a(a -1) 2a .
Thus, for each angle θ, there exists at most two points on f -1 κ,γ (R). Since the change (6) of variables is the polar transformation, we need to know whether r ± (θ) is positive real or not. We note that

r ε (θ) = 1 2a -b (θ) + ε 2b(θ)b (θ) 2 D(θ) = -εb (θ) 2a • -b(θ) + ε D(θ) D(θ) = -εb (θ) r ε (θ) D(θ) (9) 
for ε = ±1. Set D(θ) := b(θ) 2 -4a(a -1). Then, r ± (θ) are real if and only if D(θ) ≥ 0, and we have

D (θ) = 2b(θ)b (θ).
Let α 1 , α 2 be the two solutions of

q(z) := γz 2 + 1 + 1/κ z + 1 = 0. ( 10 
)
If α i are real, then we assume that α 1 ≤ α 2 , and if not, then we assume that Im α 1 > 0 and Im

α 2 < 0. Then, f (z) = 0 implies z = α i (i = 1, 2) or z = -κ if κ > 1. It is clear that α 1 , α 2 are real numbers if and only if 1 + 1 κ 2 -4γ ≥ 0 ⇐⇒ γ ≤ 1 4 1 + 1 κ 2 .
These two points α i , i = 1, 2 correspond to the solutions of ( 8) with parameter θ = 0. In fact, if θ = 0, then r = 1 + x κ and b(0

) := lim θ→0 b(θ) = κ + 1 κ -2a, (11) 
and hence the equation ( 8) with θ = 0 is described as

0 = ar 2 + b(0)r + a -1 = a(r -1) 2 + (1 + 1 κ )(r -1) + 1 κ = a • x 2 κ 2 + (1 + 1 κ ) x κ + 1 κ = 1 κ γx 2 + 1 + 1 κ x + 1 .
We note that q -

1 γ = a -1 a , q(-κ) = (a -1)κ, (12) 
and

D(0) = b(0) 2 -4a(a -1) = 1 + 1 κ 2 - 4a κ .
In order to know whether the equation ( 8) has a positive solution, we need to study the signature of D(θ), and hence that of b(θ) and b (θ). To do so, we introduce three functions H α , F κ and J κ as below, and investigate them in detail.

For α > 0, we set H α (x) := sin(αx) -α sin(x) (x ∈ R). Let us investigate the signature of H α (x) on the interval I 1 = (0, min( 2π α , 2π)). Note that if α = 1 then we have H 1 ≡ 0, and hence we exclude the case α = 1. By differentiating, we have

H α (x) = α cos(αx) -α cos x = -2α sin α + 1 2 x sin α -1 2 x . H α (x) = 0 implies that x = 2nπ α+1 (n ∈ Z) or x = 2mπ α-1 (m ∈ Z). Lemma 1.4. (1) If 0 < α ≤ 1 2 , then one has H α (x) > 0 for any x ∈ I 1 . (2) If 1 2 < α < 1,
then there exists a unique y * such that H α (y * ) = 0, and one has H α (x) > 0 for x ∈ (0, y * ) and H α (x) < 0 for x ∈ (y * , 2π).

(3) If 1 < α < 2, then there exists a unique y * ∈ I 1 such that H α (y * ) = 0, and one has H α (x) < 0 for x ∈ (0, y * ) and H α (x) > 0 for x ∈ (y * , 2π α ).

(4) If α ≥ 2, then one has H α (x) < 0 for any x ∈ I 1 .

Proof. It is obvious that H α (0) = 0. First, we assume that 0 < α < 1. In this case, since 1 1-α ≤ 1 and 1 2 < 1 α+1 < 1, we have

0 < 2π α + 1 < 2π < min 2π α + 1 , -2π α -1 .
This means that H α (x) > 0 when x ∈ (0, 2π α+1 ), and H α (x) < 0 when x ∈ ( 2π α+1 , 2π). On the other hand, we have H α (2π) = sin(2πα) -α sin(2π) = sin(2πα). If 0 < α ≤ 1 2 , then we have 0 < 2απ ≤ π and thus H α (2π) ≥ 0, and if 1 2 < α < 1 then we have π < 2πα < 2π which implies H α (2π) < 0. Thus, we obtain the assertions (1) and ( 2).

Next we assume that α > 1. In this case, since 2 α+1 > 1 α , we have

0 < 2π α + 1 < 2π α < min 4π α + 1 , 2π α -1 .
This means that H α (x) < 0 when x ∈ (0, 2π α+1 ), and H α (x) > 0 when x ∈ ( 2π α+1 , 2π α ). On the other hand, we have

H α ( 2π α ) = sin(2π) -α sin( 2π α ) = -α sin( 2π α ). If 1 < α < 2, then we have π < 2π α < 2π and hence H α ( 2π α ) > 0. If α ≥ 2, then we have 0 < 2π α ≤ π so that H α ( 2π α ) ≤ 0.
Therefore, we have proved the assertion (3) and (4).

For κ > 0, we set

F κ (x) := tan x • cot(κx) (x ∈ R).
Let us investigate the behavior of F κ (x) on the interval I 0 = (0, min( π κ , π)). Since F 1 ≡ 1, we exclude the case κ = 1. Notice that if κ < 2, then F κ (x) has a pole at x = π 2 in the interval I 0 . At first, we see that

F κ (0) := lim x→+0 F κ (x) = lim x→+0 sin x sin(κx) • cos(κx) cos x = 1 κ > 0. If κ < 1, then it is obvious that F κ (π) = 0. On the other hand, if 1 < κ < 2, then π 2 < π κ < π, and if κ ≥ 2 then 0 < π κ ≤ π 2
, and hence we have lim

x→ π κ -0 F κ (x) = +∞ (if 1 < κ < 2), -∞ (if κ ≥ 2).
By differentiating, we have

F κ (x) = cot(κx) cos 2 x - κ tan x sin 2 (κx) = H κ (2x) 2(cos x sin(κx)) 2 .
For the case 1 2 < κ < 2 (κ = 1), Lemma 1.4 tells us that H κ has a unique zero point y * in the interval (0, min(2π, 2π κ )). If we set x * = y * 2 , then we have x * ∈ I 0 and F κ (x * ) = 0. Lemma 1.5. If 1 2 < κ < 1, then one has F κ (x * ) < 1, and if 1 < κ < 2, then one has F κ (x * ) > 1. Proof. We first assume that 1 2 < κ < 1. In this case, since 0 < 1 -κ < 1 2 and since π 2 < x * < π, we have sin((1 -κ)x * ) > 0. Thus, since cos x * < 0 and sin(κx * ) > 0, we obtain

sin((1 -κ)x * ) > 0 ⇐⇒ sin x * cos(κx * ) -cos x * sin(κx * ) > 0 ⇐⇒ sin x * cos(κx * ) > cos x * sin(κx * ) ⇐⇒ F κ (x * ) = sin x * cos(κx * ) cos x * sin(κx * ) < 1.
Next, we assume that 1 < κ < 2. In this case, since 0 < κ -1 < 1 and since π 2 < x * < π κ < π, we have sin((κ -1)x * ) > 0. Thus, since cos x * < 0 and sin(κx * ) > 0, we obtain

sin((κ -1)x * ) > 0 ⇐⇒ cos x * sin(κx * ) -sin x * cos(κx * ) > 0 ⇐⇒ cos x * sin(κx * ) > sin x * cos(κx * ) ⇐⇒ F κ (x * ) = sin x * cos(κx * ) cos x * sin(κx * ) > 1.
We have proved the lemma.

Lemmas 1.4 and 1.5 yield the following table.

Lemma 1.6. One has the following increasing/decreasing table of F κ .

(A) 0 < κ ≤ 1 2 x 0 • • • π 2 • • • π F κ + × + F κ 1 κ +∞ × -∞ 0 (B) 1 2 < κ < 1 x 0 • • • π 2 • • • x * • • • π F κ + × + 0 - F κ 1 κ +∞ × -∞ F κ (x * ) 0 F κ (x * ) < 1 (C) 1 < κ < 2 x 0 • • • π 2 • • • x * • • • π κ F κ - × - 0 + F κ 1 κ -∞ × +∞ F κ (x * ) +∞ × F κ (x * ) > 1 (D) κ ≥ 2 x 0 • • • π κ F κ - × F κ 1 κ -∞ ×
For κ > 0, we set

J κ (x) := 2x -2κ -1 4κx -2κ -1 = 1 2κ • x -2κ+1 2 x -2κ+1 4κ = 1 2κ - 4κ 2 -1 8κ 2 • 1 x -2κ+1 4κ .
Then, we have

J κ (0) = 1, J κ (1) = -1, lim x→+∞ J κ (x) = lim x→-∞ J κ (x) = 1 2κ . ( 13 
)
Note that, if we set κ = 1 2 , then J 1 2 ≡ 1. The following lemma is trivial.

Lemma 1.7. Suppose that κ = 1 2 . Then, J κ has a pole at x = 1 2 + 1 4κ . If 0 < κ < 1 2 , then it is monotonic decreasing on R, and if κ > 1 2 , then it is monotonic increasing on R.

We now consider the function b(θ). If κ = 1, then we have b(θ) = 2(1 -a) cos θ. Otherwise, since b(θ) can be described as

b(θ) = (1 -2a) + F κ (θ) cos θ (if cos θ = 0),
the signature of b(θ) can be determined by using F κ . Note that, cos θ = 0 occurs when κ < 2, and in this case, we have

b π 2 = 0 + 1 • cot κπ 2 = cot κπ 2 .
It is positive if κ < 1, and negative if 1 < κ < 2. These observations together with Lemma 1.5 yield the following table.

Lemma 1.8. The signature of b(θ) on the interval I 0 = (0, min(π, π κ )) is given as follows.

0 < κ ≤ 1 2 2a -1 > 1 κ θ 0 • • • ϕ • • • π b(θ) -0 + ϕ < π 2 0 ≤ 2a -1 ≤ 1 κ θ 0 • • • π b(θ) + 2a -1 < 0 θ 0 • • • ϕ • • • π b(θ) + 0 - ϕ > π 2 1 2 < κ < 1 2a -1 > 1 κ θ 0 • • • ϕ • • • π b(θ) -0 + ϕ < π 2 F κ (θ * ) < 2a -1 ≤ 1 κ θ 0 • • • π b(θ) + 0 ≤ 2a -1 ≤ F κ (θ * ) θ 0 • • • ϕ 1 • • • ϕ 2 • • • π b(θ) + 0 - 0 + ϕ i > π 2 2a -1 < 0 θ 0 • • • ϕ • • • π b(θ) + 0 - ϕ > π 2 1 < κ < 2 2a -1 ≥ F κ (θ * ) θ 0 • • • ϕ 1 • • • ϕ 2 • • • π κ b(θ) - 0 + 0 - ϕ i > π 2 1 κ ≤ 2a -1 < F κ (θ * ) θ 0 • • • π κ b(θ) - 2a -1 < 1 κ θ 0 • • • ϕ • • • π κ b(θ) + 0 - ϕ < π 2 κ ≥ 2 2a -1 ≥ 1 κ θ 0 • • • π κ b(θ) - 2a -1 < 1 κ θ 0 • • • ϕ • • • π κ b(θ) + 0 - In this table, ϕ or ϕ i (i = 1, 2) are solutions in I 0 of b(θ) = 0. If 2a -1 = F κ (x * ), then ϕ 1 = ϕ 2 .
Let us consider the function b (θ). If κ = 1 2 , then we have

b (θ) = (1 -2a) cos θ + 2 sin θ cos θ 2 sin θ 2 = (1 -2a) cos θ + 2 cos 2 θ 2 = 2(a -1) sin θ. ( 14 
)
Let us assume that κ = Let us set

B(θ) := 2 sin 2 (κθ)b (θ) = H 2κ+1 (θ) + 4a sin θ sin 2 (κθ), (κ, a) := 4aκ -2κ -1. ( 16 
)
Then, the signatures of b (θ) and B(θ) are the same, and the derivative of B(θ) is given as, if (κ, a) = 0 then

B (θ) = 2 (κ, a) cos θ sin 2 (κθ) F κ (θ) + J κ (a) , (17) 
and if (κ, a) = 0 then

B (θ) = 1 -4κ 2 κ cos θ sin 2 (κθ). ( 18 
)
In fact, we have

B (θ) = -2(2κ + 1) sin((κ + 1)θ) sin(κθ) + 4a(sin κθ)(cos θ sin(κθ) + 2κ sin θ cos(κθ)) = (4a -4κ -2) cos θ sin 2 (κθ) + (8aκ -4κ -2) sin θ sin(κθ) cos(κθ) = 2 cos θ sin 2 (κθ)(2a -2κ -1 + (4aκ -2κ -1) tan θ cot(κθ)) = 2(4aκ -2κ -1) cos θ sin 2 (κθ) F κ (θ) + 2a -2κ -1 4aκ -2κ -1 .
Note that two conditions (κ, a) = 0 and 2a -2κ -1 = 0 occur simultaneously only when κ = 1 2 . Set

G(x) := 2x 2 + 3x + 1 6x .
Lemma 1.9.

(1) Suppose that 0 < κ < 1 2 , or κ > 1. If a > G(κ), then there exists a unique ϕ * ∈ I 0 such that b (ϕ * ) = 0, and one has b (θ) > 0 for θ ∈ (0, ϕ * ), and b (θ) < 0 for θ ∈ (ϕ * , π). If a ≤ G(κ), then one has b (θ) for any θ ∈ I 0 .

(2) Suppose that 1 2 < κ < 1. If a < G(κ), then there exists a unique ϕ * ∈ I 0 such that b (ϕ * ) = 0, and one has b (θ) < 0 for θ ∈ (0, ϕ * ), and b (θ) > 0 for θ ∈ (ϕ * , π). If a < G(κ), then one has b (θ) > 0 for any θ ∈ I 0 .

Proof. Since we have (17) or (18), we can use Lemmas 1.5 and 1.7. This lemma can be obtained by dividing cases and by elementary but tedious calculations. Note that 2κ 2 +3κ+1 6κ comes from the equation 0 = F κ (0) + J κ (a). By differentiating b(θ) by using expression [START_REF] Dykema | DT-operator and decomposability of Voiculescu's circular operator[END_REF], we obtain

b (θ) = (2a -1) sin θ + cos θ cot(κθ) - κ sin θ sin 2 (κθ)
,

and hence b (θ) sin 2 (κθ) = (2a -1) sin θ(1 -cos 2 (κθ)) + cos θ sin(κθ) cos(κθ) -κ sin θ = (2a -κ -1) sin θ + (2a -1) sin θ cos 2 (κθ) + cos θ sin(κθ) cos(κθ) = (2a -κ -1) sin θ + cos θ sin(κθ) cos(κθ)((2a -1)F κ (θ) + 1). If ϕ i satisfies B (ϕ i ) = 0, then we have F κ (ϕ i ) + J κ (a) = 0 and hence (2a -1)F κ (ϕ i ) + 1 = -(2a -1)(2a -2κ -1) + (4aκ -2κ -1) (κ, a) = 4a(a -1) (κ, a) . ( 19 
)
The non-trivial cases are given as (i)

1 2 < κ < 1 and 0 ≤ -J κ (a) ≤ F κ (x * ), or (ii) 1 < κ < 2 and -J κ (x) > F κ (x * ).
first we consider the case (i). In this case, Lemma 1.7 tells us that we have (κ, a) > 0. Since -J κ (a) is monotonic decreasing when (κ, a) > 0 and since -J κ (1) = 1 by (13), we see that a need satisfy a ∈ (1, 1 2 + κ) because F κ (x * ) < 1 by Lemma 1.5. Thus, we have 2a -κ -1 > 0. Again by Lemma 1.5, the equation

B (θ) = F κ (θ) + J κ (a) = 0 has at most two solutions ϕ i ∈ ( π 2κ , π), i = 1, 2. Set ϕ 1 ≤ ϕ 2 . Then, since B(0) = 0, B(π) = sin(2κπ) > 0, we have θ 0 • • • π 2 • • • ϕ 1 • • • ϕ 2 • • • π (κ, a) + + + + cos θ + 0 - - - F κ + J κ + - 0 + 0 - B (θ) + + 0 - 0 + B(θ) 0 B(π) > 0 We shall show that B(ϕ i ) > 0, (i = 1, 2), which implies b (θ) > 0. Since a > 1, we have (2a - 1)F κ (ϕ i ) + 1 > 0 by (19). Since ϕ i ∈ ( π 2κ , π), we see that cos ϕ i sin(κϕ i ) cos(κϕ i ) > 0 and hence we obtain B(ϕ i ) > 0.
Next, we consider the case (ii). Then, since F κ (x * ) > 1 by Lemma 1.5 and since J κ (1) = -1 by (13), we need to have (κ, a) > 0 and a < 1, whence 2a -κ -1 < 0. Lemma 1.7 tells us that the function -J κ (a) is monotonic decreasing if (κ, a) > 0. Again by Lemma 1.5, the equation

B (θ) = F κ (θ) + J κ (a) = 0 has at most two solutions ϕ i ∈ ( π 2κ , π), i = 1, 2. Let ϕ 1 ≤ ϕ 2 . Then, since B(0) = 0, B π κ = -2κ sin π κ < 0, we have θ 0 • • • π 2 • • • ϕ 1 • • • ϕ 2 • • • π κ (κ, a) + + + + cos θ + 0 - - - F κ + J κ - + 0 - 0 + B (θ) - - 0 + 0 - B(θ) 0 B( π κ ) < 0 Since a < 1, we have (2a-1)F κ (ϕ i )+1 < 0 b y(19). Since ϕ i ∈ ( π 2 , π κ ),
we have cos ϕ i sin(κϕ i ) cos(κϕ i ) > 0 so that we obtain B(ϕ i ) < 0.

The domain Ω for κ < +∞

In this section, we shall determine Ω for finite κ > 0, which is the connected component of the set {z = x + yi ∈ D(f κ,γ ); F (x, y) > 0} containing z = 0. Let r ± (θ) be the solutions of the equation ( 8) and let α i , i = 1, 2 are the solutions of the equation (10). Since F (x, y) is a continuous function, the boundary ∂Ω is included in the set {z

= x + yi ∈ C; F (x, y) = 0} ⊂ f -1 κ,γ (R).
Since F is even function on y, the domain Ω is symmetric with respect to the real axis, and hence we consider

D := Ω ∩ C + . Proposition 2.1. Suppose that κ = 1. (1) If γ > 1, then one has Ω = C \ {-1 γ }. (2) If 0 < γ ≤ 1, then one has Ω = z = x + yi ∈ D(f κ,γ ); x + 1 γ 2 + y 2 > 1-γ γ 2 . (3) If γ = 0, then one has Ω = {z = x + yi ∈ D(f κ,γ ); 1 + 2x > 0}. (4) If γ < 0, then one has Ω = z = x + yi ∈ D(f κ,γ ); x + 1 γ 2 + y 2 < 1-γ γ 2
. In particular, Ω is bounded.

Proof. For z = x + yi, we have

f 1,γ (z) = (x + γx 2 + γy 2 + yi)(x + 1 + yi) (1 + γx) 2 + γ 2 y 2 = 1 (1 + γx) 2 + γ 2 y 2 (x + γx 2 + γy 2 )(1 + x) -y 2 iy(1 + 2x + γx 2 + γy 2 ) . Thus, f 1,γ (z) ∈ R implies y = 0 or 1 + 2x + γx 2 + γy 2 = 0 ⇐⇒    x + 1 2γ 2 + y 2 = 1-γ γ 2 (if γ = 0), x = -1 2 (if γ = 0). Therefore, we have Ω = z ∈ D(f κ,γ ); Re z > -1 2
when γ = 0 because it contains z = 0. Suppose that γ = 0 and set

C = z = x + yi ∈ C; 1 + 2x + γx 2 + γy 2 = 0 . If γ > 1, then C = ∅, which implies Ω = C \ {-1 γ }. Assume that 0 < γ ≤ 1.
Then, C = ∅ and z = 0 does not contained in the interior of C and hence Ω is the out side of C, which is written as Ω = z = x + yi ∈ C; 1 + 2x + γx 2 + γy 2 > 0 . Assume that γ < 0. Then, C = ∅ and z = 0 is contained in the interior of C, and thus Ω is the interior of C, which is written as

Ω = z = x + yi ∈ D(f κ,γ ); 1 + 2x + γx 2 + γy 2 > 0 .
The proof is completed.

Recall that a = κγ. Set θ 0 := π κ and let I 0 be the interval (0, min(π, θ 0 )). Proposition 2.2. Let κ > 0 with κ = 1. For z ∈ C \ {x ≤ -κ}, one sets re θ = 1 + z κ . Then, Ω can be described as follows.

(1) If a < 0, then there exists a unique θ * ∈ (0, π κ+1 ) such that r + (θ * ) = r -(θ -) and that r ± (θ) are both positive with r -(θ) ≤ r + (θ) on (0, θ * ). Moreover, one has

Ω = {z ∈ D(f κ,γ ); |θ| < θ * and r -(θ) < r < r + (θ)} .
In particular, Ω is bounded. One has α 1 , α 2 ∈ ∂Ω and -

1 γ ∈ Ω, whereas -κ ∈ Ω. (2) If a = 0, then one has r(θ) = r ± (θ) = sin(κθ)
sin((κ+1)θ) which is positive on the interval (0, π κ+1 ). Moreover, one has

Ω = z ∈ D(f κ,γ ); |θ| < π κ + 1
and r > r(θ) .

Ω has an asymptotic line y = ±(x

+ κ 2 κ+1 ) tan θ 1 . One has α 1 = α 2 = -κ κ+1 ∈ ∂Ω and -κ ∈ Ω. (3) If 0 < a < 1, then r + (θ)
is the only positive solution of (8) on I 0 , and one has One has α 2 = -1 ∈ ∂Ω, while α 1 = -κ = -1 γ ∈ Ω. Moreover, Ω has an asymptotic line y = ±(tan θ 0 )(x + κ -1 a ). ( 5) Suppose that a > 1.

Ω = {z ∈ D(f κ,γ ); |θ| < min(θ 0 , π) and r > r + (θ)} . If κ > 1, then Ω has an asymptotic line y = ±(tan θ 0 )(x + κ -1 a ). One has α 2 ∈ ∂Ω, whereas α 1 , -1 γ , -κ ∈ Ω. ( 4 
(a) If κ > 1 with D(0) ≥ 0, then r ± (θ) are both positive in I 0 with r -(θ) ≤ r + (θ), and one has

Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 and r > r + (θ)} . Ω has an asymptotic line y = ±(tan θ 0 )(x+κ-1 a ). One has α 2 ∈ ∂Ω, while -κ, -1 γ , α 1 ∈ Ω. (b) If κ > 1
and D(0) < 0, then there exists a unique θ * ∈ (0, θ 0 ) such that D(θ * ) = 0, and r ± (θ) are both positive in the interval (θ * , θ 0 ). Moreover, one has

Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 and if |θ| ≥ θ * then 0 < r < r -(θ) or r > r + (θ)} .
In this case, α i , i = 1, 2 are both non-real and one has α i , -κ ∈ ∂Ω and -1 γ ∈ Ω. Moreover, Ω has an asymptotic line y = ±(tan θ 0 )(x + κ -1 a ). (c) If 0 < κ < 1, then there are no θ such that D(θ) > 0, and one has Ω = D(f κ,γ ).

Recall that, since Ω is symmetric with respect to the real axis, it is enough to determine the boundary ∂Ω of Ω in the upper half plane. (11). Let θ 1 := π κ+1 . Then, Lemmas 6.2 and 1.4 tells us that b (θ) ≤ 0 for any θ ∈ (0, θ 1 ). In fact, if κ does not satisfy 1 2 < κ < 1, then it is a direct consequence of Lemma 6.2, and if 1 2 < κ < 1 then we can verify it by Lemma 6.2 and by the fact that b (θ 1 ) = H 2κ+1 (θ 1 ) + 2a sin θ 1 < 0 by Lemma 1.4. Therefore, b(θ) is monotonic decreasing on the interval (0, θ 1 ). If b(θ 1 ) < 0, then there exists a unique ϕ ∈ (0, θ 1 ) such that b(ϕ) = 0, and if b(θ 1 ) ≥ 0 then we set ϕ = θ 1 . Since we have

Proof. (1) Assume that a < 0. Since r + (θ) • r -(θ) = a-1 a > 0, we see that r ± (θ) have the same signature if r ± (θ) ∈ R. Since a < 0, we have b(0) = 1 + 1 κ -2a > 0 by
D(0) = 1 + 1 κ 2 - 4a κ > 0 and D(θ 1 ) = (-2a cos θ 1 ) 2 -4a(a -1) = 4a 2 cos 2 θ 1 -4a 2 + 4a = 4a -4a 2 sin 2 θ 1 = 4a(1 -a sin 2 θ 1 ) < 0 and D (θ) = 2b(θ)b (θ), the increasing/decreasing table of D(θ) is given as θ 0 • • • ϕ • • • θ 1 b(θ) + 0 - b (θ) - - - D (θ) - 0 + D(θ) D(0) > 0 D(ϕ) D(θ 1 ) < 0
and hence there exists a unique θ * ∈ (0, ϕ) such that D(θ * ) = 0. In particular, D is monotonic decreasing in the interval (0, θ * ), and D(θ * + δ) < 0 for δ > 0 such that θ * + δ < ϕ. Therefore, since r + (θ) + r -(θ) = -b(θ)/a, the signatures of r ± (θ) is the same as that of b(θ) if r ± are real so that r ± are positive on (0, θ * ] and r ± are not real for θ ∈ (θ * , ϕ). Since r + (θ * ) = r -(θ * ) by the fact D(θ * ) = 0, the curves r + (θ), θ ∈ (0, θ * ] followed by r -(θ * -θ), θ ∈ (0, θ * ], form a continuous curve going from α 2 to α 1 in the upper half-plane. Let α i , i = 1, 2 be the solutions of (10). Since α 1 α 2 = 1 γ < 0 and

α 1 ≤ α 2 , we have α 1 < 0 < α 2 so that Ω = {z ∈ D(f κ,γ ); |θ| < θ * and r -(θ) < r < r + (θ)} .
Since q(-1 γ ) > 0 and q(-κ) < 0 by (12), where q is defined in (11), we see that -1 γ ∈ Ω and -κ ∈ Ω. (2) Assume that a = 0. In this case, the equation ( 8) reduces to b(θ)r -1 = 0 so that

r ± (θ) = r(θ) = 1 b(θ) = 1 cos θ + sin θ cot(κθ) = sin(κθ) sin((κ + 1)θ)
.

Let θ 1 = π κ+1 . Since sin(κθ) and sin((κ + 1)θ) are both positive in the interval (0, θ 1 ), and since lim θ→θ1-0 sin((κ + 1)θ) = 0, we see that

lim θ→θ1-0 r(θ) = +∞.
Thus, it has an asymptotic line with slope tan θ 1 , which is determined later. Since γ = a/κ = 0, the solutions α i , i = 1, 2 are given as α 1 = α 2 = -κ κ+1 . Since q(0) = 1 > 0 and q(-κ) = -κ < 0, we see that the domain Ω is given as

Ω = {z = x + yi ∈ D(f κ,γ ); |θ| < θ 1 , r > r(θ)}
and -κ ∈ Ω.

(3) Assume that 0 < a < 1. In this case, we have

D(θ) = b(θ) 2 + 4a(1 -a) > 0
for any θ ∈ I 0 so that the solutions of (8) are always real. Moreover, since r + (θ) • r -(θ) = -1-a a < 0, they have the different signatures, and r + (θ) is the positive real solution of (8) by the fact |b(θ)| < D(θ). In particular, r + (θ), θ ∈ I 0 forms a continuous curve in C + . The solutions α i , i = 1, 2 of (10) are both negative because we have γ = a/κ > 0 and α 1 + α 2 = -(1 + 1 κ )/γ < 0. Since q(-1 γ ) < 0 and q(-κ) < 0 by (12) and since 1 γ > κ, we see that

α 1 < - 1 γ < -κ < α 2 < 0. ( 20 
)
(a) We first assume that κ ≥ 1. Then, b(θ) is defined on the interval I 0 = (0, θ 0 ), and we have lim

θ→θ0-0 b(θ) = -∞, which implies lim θ→θ0-0 r + (θ) = +∞.
Therefore, the curve r + (θ), θ ∈ (0, θ 0 ) has the asymptotic line with gradient tan θ 0 , which is determined later. By (20), we see that Ω is given as

Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 , r > r + (θ)} ,
and α 1 , -1 γ , -κ ∈ Ω. (b) Next, we assume that 0 < κ < 1. Then, b(θ) is defined for any θ ∈ I 0 = (0, π). If θ = 0, then the positive solution of (8) corresponds to α 2 < 0, and if θ = π then, since b(π) = 2a -1, the positive solution of (8) corresponds to -1 γ . Thus, the curve r + (θ), θ ∈ (0, π) connects z = α 2 and z = -1 γ passing in the upper half plane. This means that z = -κ is in the interior of the curve, whereas z = 0 is in its outside. Since Ω is the connected component including z = 0, Ω is the outside of the curve and hence Ω = {z ∈ D(f κ,γ ); |θ| < π, r > r + (θ)} .

(4) Assume that a = 1 and κ = 1. In this case, the equation ( 8) reduces to r 2 + b(θ)r = 0, whose solutions are r(θ) = 0, -b(θ). Recall that I 0 = (0, min(π, π κ )). By Lemmas 1.8 and 1.5, we see that if 0 < κ < 1 then b(θ) > 0 and if κ > 1 then b(θ) < 0 for any θ ∈ I 0 . This means that if 0 < κ < 1 then the equation ( 8) does not have a positive solution, and hence we have Thus, the curve r + (θ), θ ∈ I 0 has an asymptotic line with gradient tan θ 0 , which is determined later. Thus, we have Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 and r > r + (θ)} .

Ω = {z ∈ D(f κ,γ ); |θ| < π, r > 0} = D(f κ,γ ),
(5) Suppose that a > 1. In this case, we have b(0

) = 1 + 1 κ -2a and b π κ = (1 -2a) cos π κ (if κ > 1), b(π) = 2a -1 > 0 (0 < κ < 1). Note that b(0) > 0 if κ > 1. Since r + (θ) • r -(θ) = a-1
a > 0, two solutions r ± (θ) of ( 8) have the same signature if r ± (θ) are real. (a) We first consider the case κ > 1 and D(0) ≥ 0. Let us show that D(θ) > 0 for θ ∈ I 0 . Set

K(x) := x 4 1 + 1 x 2 , G(x) = 2x 2 + 3x + 1 6x (x > 0).
Then, the condition D(0) ≥ 0 is equivalent to a ≤ K(κ), and hence we have a ≤ G(κ) because

G(x) -K(x) = x 2 -1 12x > 0 if x > 1.
By the assumption κ > 1, we see that b (θ) < 0 for any θ ∈ I 0 by Lemma 6.2 so that b is monotonic decreasing in this interval. Since b(0) < 0, the function b is negative in I 0 , and hence D (θ) = 2b(θ)b (θ) > 0 so that D(θ) is monotonic increasing in the interval I 0 , and in particular, it is positive on I 0 . By (9), we have r + (θ) > 0, and hence the function r + (θ) is monotonic increasing, whereas r -(θ) is monotonic decreasing because r -(θ) = a-1 ar+(θ) . Note that lim θ→θ0-0

r + (θ) = +∞, lim θ→θ0-0 r 0 (θ) = 0.
Thus, r + (θ), θ ∈ I 0 draws an bounded curve connecting z = α 2 to ∞, and r -(θ), θ ∈ I 0 draws a bounded curve connecting z = α 1 to z = -κ. Since we have -κ < -1 γ < α 1 < α 2 < 0 and since Ω is the connected component including z = 0, we have

Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 , r > r + (θ)} .
(b) Next, we assume that κ > 1 and D(0) < 0. According to Lemma 1.9 (1), we consider the function b (θ) in two cases, that is, (i) a ≤ G(κ) and (ii) a > G(κ).

(i) Assume that a ≤ G(κ). Then, b(θ) is monotonic decreasing. Since b(0) < 0, we see that b(θ) < 0 for any θ ∈ I 0 and therefore D (θ) = 2b(θ)b (θ) > 0 for any θ ∈ I 0 . Thus, D(θ) is monotonic increasing with D(0) < 0. In particular, there exists a unique θ * such that D(θ * ) = 0, and r ± (θ) are real for θ ∈ (θ * , θ 0 ). In this interval, since r + (θ) + r -(θ) = -b(θ)/a > 0, we see that r ± (θ) are both positive. By (9), we have r + (θ) > 0 and thus the function r + (θ) is monotonic increasing, whereas r -(θ) is monotonic decreasing because r -(θ) = a-1 ar+(θ) . By taking a limit θ → θ 0 -0, we have lim

θ→θ0-0 r + (θ) = +∞, lim θ→θ0-0 r -(θ) = 0.
This means that r + (θ) draws an unbounded curve connecting z = α 1 and z = ∞, and r -(θ) draws a bounded curve connecting z = α 1 and z = -κ, where α 1 is the complex solution of (10) with positive imaginary part. Since we have -κ < -1 γ < 0, the domain Ω is given as

Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 , if |θ| ≥ θ * then 0 < r < r -(θ) or r > r + (θ)} .
(ii) Assume that a > G(κ). Then, there are two possibilities on b(ϕ * ). If b(ϕ * ) ≤ 0, then we have

θ 0 • • • ϕ * • • • π κ b (θ) + 0 - b(θ) - - - D (θ) - 0 + D(θ) D(0) < 0 +∞ ×
and if b(ϕ * ) > 0, then there exist exactly two ϕ 1 < ϕ 2 such that b(ϕ i ) = 0 so that

θ 0 • • • ϕ 1 • • • ϕ * • • • ϕ 2 • • • π κ b (θ) + 0 - b(θ) - - 0 + 0 - D (θ) - 0 + 0 - 0 + D(θ) D(0) < 0 +∞ × We note that D(ϕ i ) = b(ϕ i ) 2 -4a(a -1) < 0. Since r + (θ) + r -(θ) = -b(θ)/a, if D(ϕ * ) > 0, then r ± (θ)
are both negative so that we do not deal with this case. Thus, in both cases, there exists a unique θ * ∈ I 0 such that D(θ * ) = 0 and r ± (θ) > 0 for any θ ∈ (θ * , θ 0 ). By ( 9), we see that r + (θ) is monotonic increasing on (θ * , θ 0 ), whereas r -(θ) is monotonic decreasing. Moreover, we have lim

θ→θ0-0 r + (θ) = +∞, lim θ→θ0-0 r -(θ) = 0,
and hence the curves r ± (θ), θ ∈ (θ * , θ 0 ) form an unbounded curve connecting z = α 1 and z = ∞. Since -κ < -1 γ < 0, we have Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 , and if |θ| ≥ θ * then 0 < r < r -(θ) or r > r + (θ)} .

(c) We finally assume that 0 < κ < 1. In this case, we have D(π) = (2a -1) 2 -4a(a -1) = 1. We note that b(0) < 0 implies D(0) < 0. In fact, b(0) < 0 means 1 + 1 κ < 2a so that

D(0) = 1 + 1 κ 2 - 4a κ < 2a 1 + 1 κ - 4a κ = 2a 1 - 1 κ < 0. ( 21 
)
Since a > 1, the signatures of r ± (θ) are the same, and they are the opposite to the signature of b(θ). Let I D ⊂ I 0 be the maximal interval such that D is positive on I D . We shall show that there are no suitable solutions of (8), that is, r ± (θ) < 0 for any θ ∈ I D , which yields that Ω = D(f κ,γ ). Let us recall Lemma 1.9.

(i) Assume that 0 < κ < 1 2 and a > G(κ). In this case, we have

θ 0 • • • ϕ * • • • π b (θ) + 0 - b(θ) b(0) b(π) > 0
If b(0) ≥ 0, then we see that b(θ) > 0 for any θ ∈ I 0 , which implies r ± (θ) < 0 for any θ ∈ I D . If b(0) < 0, then there exists a unique 0 < ϕ < ϕ * such that b(ϕ) = 0, and we have D(0) < 0 by (21). Hence,

θ 0 • • • ϕ • • • ϕ * • • • π b (θ) + + + 0 - b(θ) - 0 + + D (θ) -0 + 0 - D(θ) D(0) < 0 - + 1 
This table yields that b is negative on I D , whence r ± (θ) < 0 for any θ ∈ I D .

(ii) Assume that 0 < κ < 1 2 and a ≤ G(κ). Then, Lemma 1.8 tells us that b (θ) < 0 for any θ ∈ I 0 . Thus, b(θ) is monotonic decreasing on the interval I 0 with b(π) > 0, and hence b(θ) > 0 for any θ ∈ I 0 . This means that D (θ) < 0 and D(θ) is monotonic decreasing on I 0 . Since D(π) = 1, we see that I D = I 0 and hence r ± (θ) < 0 for any θ ∈ I D .

(iii) Assume that 1 2 ≤ κ < 1. In this case, we have we have b (θ) > 0 for any θ ∈ I 0 so that b(θ) is monotonic increasing. In fact, if κ > 1 2 , then since (1+ √ 2) 2 6 < G(κ) < 1 for 1 2 < κ < 1 and since a > 1, we always have a > G(κ) so that b (θ) > 0 by Lemma 1.8, and if κ = 1 2 then we have b (θ)2(a -1) sin θ so that b (θ) > 0 b y(14). If b(0) ≥ 0, then we have b(θ) ≥ 0 for any θ ∈ θ and hence we see that r ± (θ) < 0 for θ ∈ I D . If b(0) < 0 then there exists a unique ϕ such that b(ϕ) = 0 and we have

θ 0 • • • ϕ • • • π b (θ) + + + b(θ) - 0 + D (θ) -0 + D(θ) - - 1 
This table indicates that for θ ∈ I D we have b(θ) > 0, which implies r ± (θ) < 0. We shall determine an asymptotic line with respect to Ω when r + (θ) → +∞ as θ → π κ or π κ+1 . To calculate them in a one scheme, we set ϑ = π κ or π κ+1 , and denote its denominator by α. A line having gradient tan ϑ can be written as x sin ϑ-y cos ϑ = A with some constant A. Since x = κ(r(θ) cos θ-1) and y = κr(θ) sin θ, we have

x sin ϑ -y cos ϑ = κ sin ϑ(r(θ) cos θ -1) -cos ϑr(θ) sin θ = κ r(θ)(cos θ sin ϑ -sin θ cos ϑ) -sin ϑ = -κ r(θ) sin(θ -ϑ) + sin ϑ .
When θ → ϑ, we have r + (θ) → +∞ and b(θ) → -∞, and 

r + (θ) = -b(θ) + b(θ) 2 -4a(a -1) 2a = - b(θ) 2a 1 + 1 - 4a(a -1) b(θ) 2 . Since lim θ→ϑ-0 sin(θ -ϑ) sin(αϑ) = lim θ→ϑ-0 - sin(θ -ϑ) sin(α(θ -ϑ)) = lim θ→ϑ-0 - θ -ϑ α(θ -ϑ) = - 1 
r(θ) sin(θ -ϑ) = lim θ→ϑ-0 - b(θ) sin(θ -ϑ) 2a 1 + 1 - 4a(a -1) b(θ) 2 = - sin ϑ aα .

Thus, we have

A = -κ(-sin θ0 aκ + sin θ 0 ) = 1 a -κ sin θ 0 (if α = κ), -κ(-sin θ1 κ+1 + sin θ 1 ) = -κ 2 κ+1 sin θ 1 (if α = κ + 1),
and therefore the proof is now complete.

The domain Ω for κ = +∞

In this section, we deal with the case κ = ∞. Since κθ(x, y) is regarded as y in this case, the equation ( 4) can be written as

F (x, y) = x + γx 2 + γy 2 + y cot y = 0. ( 22 
)
Assume that γ = 0, that is, the case of the classical Lambert function. Then, the above equation reduces to F (x, y) = x + y cot y = 0. Since the point z = x + yi = 0 satisfies F (0, 0) = 1 > 0, we have Ω = {z = x + yi ∈ C; x > -y cot y, |y| < π}.

Assume that γ = 0. Then, the equation ( 22) can be calculated as

x 2 + x γ + y 2 + y cot y γ = 0 ⇐⇒ x + 1 2γ 2 = 1 4γ 2 -y 2 - y cot y γ . ( 23 
)
Let us consider the function

h(y) := 1 4γ 2 -y 2 - y cot y γ = 1 4γ 2 -y + cot y 2γ 2 + cot 2 y 4γ 2 = 1 4γ 2 sin 2 y -y + cot y 2γ 2 = 1 -2γy sin y + cos y 2 4γ 2 sin 2 y .
Note that

h(0) = lim y→0 h(y) = 1 4γ 2 - 1 γ lim y→0 y sin y = 1 -4γ 4γ 2 and lim y→π-0 |h(y)| = +∞.
In order that the equation ( 22) has a real solution in x and y, the function h(y) needs to be nonnegative, and it is equivalent to the condition that the absolute value of the function g(y) := cos y + 2γy sin y is less than or equal to 1. At first, we observe that g(0) = 1 and g(π) = -1, and its derivative is

g (y) = -sin y + 2γ(sin y + y cos y) = -(1 -2γ) sin y + 2γy cos y = (2γ -1) 2γ 2γ -1 y + tan y cos y. Set c γ = 2γ 2γ-1 .
Then, the signature of g can be determined by the signatures of 2γ -1, cos y and c γ y + tan y.

Assume that γ > 1 4 . If γ > 1 2 , then we have c γ > 1 and hence there exists a unique y * ∈ ( π 2 , π) such that c γ y + tan y = 0 and we have

y 0 • • • π 2 • • • y * • • • π g + + 0 - g 1 -1 If 1 4 < γ < 1 2
, then we have c γ < -1 and hence there exists a unique y * ∈ (0, π 2 ) such that c γ y * + tan y * = 0 and we have

y 0 • • • y * • • • π 2 • • • π g + - - g 1 -1
If γ = 1 2 , then we have g (y) = y cos y so that g is monotonic decreasing on the interval ( π 2 , π) with g( π 2 ) > 1, and in this case we set y * = π 2 . These observation shows that, if γ > 1 4 , then there exists one and only one y 0 ∈ (y * , π) such that g(y 0 ) = 1 and g(y 0 -ε) > 1 for ε ∈ (0, y 0 -y * ). In this case, h(y) is non-negative in the interval [y 0 , π), and h(h 0 -ε) < 0 for ε ∈ (0, y 0 -y * ). Let x i (y), i = 1, 2 be the real solutions of the equation ( 23) with x 1 (y) ≤ x 2 (y). Then, since we have x 1 (y 0 ) = x 2 (y 0 ) and lim y→π-0

x 1 (y) = -∞, lim y→π-0

x 2 (y) = +∞, the curves x i (y), y ∈ (y 0 , π) form a connected curve, and hence we have

Ω = {z = x + yi ∈ C; |y| < π and if |y| ≥ y 0 then x < x 1 (y) or x > x 2 (y)} .
Assume that 0 < γ ≤ 1 4 . Then, we have -1 ≤ c γ < 1 and hence there are no y ∈ (0, π) such that c γ y + tan y = 0. Thus, we obtain g (y) < 0 for any y ∈ (0, π) so that g is monotonic decreasing from g(0) = 1 to g(π) = -1. This shows that h(y) is non-negative in the interval (0, π). Let x i (y), i = 1, 2 be the solutions of the equation ( 23) with x 1 (y) ≤ x 2 (y). Then, since we have lim y→π-0

x 1 (y) = -∞, lim y→π-0
x 2 (y) = +∞ and x 1 (0) < x 2 (0) < 0, we have

Ω = {z = x + yi ∈ C; |y| < π and x > x 2 (y)} .
Assume that γ < 0. Then, there exists a unique y * ∈ ( π 2 , π) such that c γ y * + tan y * = 0, and we have y 0

• • • π 2 • • • y * • • • π g - - 0 + g 1 -1
This observation shows that there exists one and only one y 0 ∈ (0, y * ) such that g(y 0 ) = -1 and g(y 0 + ε) < -1 for ε ∈ (0, y * -y 0 ). Thus, h(y) is non-negative on y ∈ [0, y 0 ], and h(y 0 + ε) < 0 for ε ∈ (0, y * -y 0 ). Let x i (y), i = 1, 2 be the solutions of the equation ( 23) with x 1 (y) ≤ x 2 (y). Then, since x 1 (0) < 0 < x 2 (0) and x 1 (y 0 ) = x 2 (y 0 ), these two paths (x ± (y), y) form a continuous curve connecting x + (0) and x -(0) and we have Ω = {z = x + yi ∈ C; |y| < y 0 and x 1 (y) < x < x 2 (y)} .

We summarize these calculations as a proposition. Proposition 3.1. Assume that κ = +∞ and let x i (y), i = 1, 2 be solutions of (23) with x 1 (y) ≤ x 2 (y) if they are real.

(1) If γ = 0, then one has Ω = {z = x + yi; |y| < π and x > -y cot y}.

(2) Suppose that γ > 1 4 . In this case, there exists a unique y 0 ∈ (0, π) such that x 1 (y 0 ) = x 2 (y 0 ) and if y ≥ y 0 then x i (y), i = 1, 2 are real. Moreover, one has

Ω = {z = x + yi ∈ C; |y| < π and if |y| ≥ y 0 then x < x 1 (y) or x > x 2 (y)} . (3) If 0 < γ ≤ 1 4
, then x i (y), i = 1, 2 are both real for any y ∈ (0, π), and one has

Ω = {z = x + yi ∈ C; |y| < π and x > x 2 (y)} .
(4) Suppose that γ < 0. Then, there exists a unique y 0 ∈ (0, π) such that x 1 (y 0 ) = x 2 (y 0 ) and if y ≤ y 0 then x i (y), i = 1, 2 are real for (23). Moreover, one has

Ω = {z = x + yi ∈ C; |y| < y 0 and x 1 (y) < x < x 2 (y)} .
In particular, Ω is bounded.

Proof of Theorem 1.2

In this section, we shall show Theorem 1.2 for κ > 0 or κ = ∞. To do so, we consider the domain D := Ω ∩ C + , and show that f κ,γ maps D to C + bijectively.

The key tool is the argument principle (see [1, Theorem 18, p.152], for example).

Theorem 4.1 (The argument principle.). If f (z) is meromorphic in a domain Ω with the zeros a j and the poles b k , then

1 2πi γ f (z) f (z) dz = j n(γ, a j ) - k n(γ, b k )
for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros or poles. Here, n(γ, a) is the winding number of γ with respect to a.

We also use the following elementary property of holomorphic functions.

Lemma 4.2. Let f (z) = u(x, y) + iv(x, y) be a holomorphic function. The implicit function v(x, y) = 0 has an intersection point at z

= x + yi only if f (z) = 0. Proof. Let p(t) = (x(t), y(t)) be a continuous path in C ∼ = R 2 satisfying v p(t) = 0 for all t ∈ [0, 1].
We assume that (x (t), y (t)) = (0, 0). Set

g(t) := u(p(t)) = u(x(t), y(t)), h(t) := v(p(t)) = v(x(t), y(t)).
Obviously, we have h (t) ≡ 0 for any t, and

h (t) = v x x (t) + v y y (t) = (v x , v y ) • (x (t), y (t)).
Assume that g (t 0 ) = 0 for some point t 0 ∈ [0, 1]. Then

g (t) = u x x (t) + u y y (t) = (u x , u y ) • (x (t), y (t)) = (v x , v y ) 0 -1 1 0 • (x (t), y (t)) = (v x , v y ) • (-y (t), x (t)),
the condition g (t 0 ) = 0 implies that the vector (v x , v y ) is orthogonal both to (x (t 0 ), y (t 0 )) and (-y (t 0 ), x (t 0 )), which are non-zero vectors and mutually orthogonal. Such vector is only zero vector in R 2 , that is, (v x , v y ) = (0, 0), and hence (u x , u y ) = (0, 0) by Cauchy-Riemann equations. Thus, if g (t 0 ) = 0 then p(t 0 ) needs to satisfy f (p(t 0 )) = 0.

4.1. The case γ < 0. Assume that γ < 0. By Propositions 2.1, 2.2 and 3.1, it is equivalent to the condition that Ω is bounded. We first consider the set S (see [START_REF] Claeys | Biorthogonal ensembles with two-particle interactions[END_REF] for definition). Let α i , i = 1, 2 be solutions of (10). Since γ < 0, these are distinct real numbers. Set α 1 < α 2 . Then, we have

Ω ∩ R = (α 1 , α 2 ). Lemma 4.3. One has f (α 2 ) < f (α 1 ) < 0 and S = (f κ,γ (α 2 ), f κ,γ (α 1 )).
Proof. Assume that κ < +∞. Since γ < 0, we have by ( 1)

x -κ • • • α 1 • • • 0 • • • -1 γ • • • α 2 • • • f κ,γ - 0 + + + × + 0 - f κ,γ f κ,γ (α 1 ) 0 +∞ × -∞ f κ,γ (α 2 )
The inequality f (α 1 ) < 0 is obvious by the above table. We shall show f (α 1 ) > f (α 2 ). By the fact that

α 1 α 2 = 1 γ , we have f (α 2 ) f (α 1 ) = α 2 (1 + γα 1 ) (1 + γα 2 )α 1 • 1 + α 2 /κ 1 + α 1 /κ κ = α 2 + 1 α 1 + 1 • 1 + α 2 /κ 1 + α 1 /κ κ .
Since 1+γα 2 < 0 and α 1 < 0, we have α 1 +1 = (1+γα 2 )α 1 > 0. Moreover, the facts that 1+α 1 /κ> 0 and α 2 > α 1 yield that

α 2 + 1 α 1 + 1 > 1 and 1 + α 2 /κ 1 + α 1 /κ > 1,
whence we obtain

f (α 2 ) f (α 1 ) > 1. Since f (α 2 ) < 0 because α 2 > -1 γ and γ < 0, we conclude that 0 > f (α 1 ) > f (α 2 ).
Assume that κ = +∞. Since γ < 0 and γ(-

1 γ ) 2 + (-1 γ ) + 1 = 1 > 0, we have the following variation table of f (x): x -∞ • • • α 1 • • • 0 • • • -1 γ • • • α 2 • • • +∞ f - 0 + × + 0 - f 0 f (α 1 ) 0 × f (α 2 ) -∞ Since γα i + 1 = -1 αi , we see that f (α i ) = -α 2 i e αi < 0. By α 1 α 2 = 1 γ , we have f (α 2 ) f (α 1 ) = α 2 (1 + γα 1 ) α 1 (1 + γα 2 ) e α2-α1 = α 2 + 1 α 1 + 1 e α2-α1 > 1,
whence f (α 2 ) < f (α 1 ) < 0. Thus, the proof is now completed. Now we show that f κ,γ : D → C + is bijective. Since the proof is completely analogous, we only prove the case κ < +∞.

We take a path C = C(t) (t ∈ [0, 1]) in such a way that by starting from z = -1 γ , it goes to z = α 2 along the real axis, next goes to z = α 1 along the curve r +-defined by (4) and connecting α 2 and α 1 in the upper half plane, and then it goes to z = -1 γ along the real axis (see Figure 1). Here, we can assume that C (t) = 0 whenever C(t) = α i , i = 1, 2. Actually, the curve v(x, y) = 0 has a tangent line unless f vanishes. If we take an arc-length parameter t, then C (t) represents the direction of the tangent line at (x, y) = C(t). We note that C(t) describes the boundary of D.

We show that f κ,γ maps the boundary of D to R bijectively. We take t i , i = 1, 2 as C(t i ) = α i . Note that the sub-curve C(t), t ∈ (t 2 , t 1 ) describes the curve r +-(t), and f κ,γ does not have a pole or singular point on C(t), t ∈ (t 2 , t 1 ). Set f (z) = u(x, y) + iv(x, y). By Lemma 4.2, the implicit function v(x, y) = 0 may have an intersection point only if f (x + iy) = 0, i.e. at x + iy = α i (i = 1, 2) or at x + iy = -κ if κ > 1. Then, the function g(t) = u(C(t)), t ∈ [t 2 , t 1 ] attains maximum and minimum in the interval because it is a continuous function on a compact set. Moreover, g never vanishes in (t 2 , t 1 ) by the above argument and by the fact that f (C(t)) = 0 for t ∈ (t 2 , t 1 ). Therefore, g is monotone and hence it takes maximal and minimal values at the endpoints t = t 2 , t 1 . Now we have f (α 1 ) > f (α 2 ) by the last claim so that the image of g is [f (α 2 ), f (α 1 )], and the function g is bijective.

We shall show that for any w 0 ∈ C + there exists one and only one z 0 ∈ D such that f (z 0 ) = w 0 . Let us take an R > 0 such that |w 0 | < R. For δ > 0, let C =C δ be a path obtained from C in such a way that the pole z = -1/γ is avoided by a semi-circle -1 γ + δe iθ , θ ∈ (0, π) of radius δ (see Figure 3). Denote by D the domain surrounded by the curve C . Then, we can choose δ > 0 such that f -1 γ + δe iθ > R (for all θ ∈ (0, π)). In fact, if z = -1 γ + δe iθ , then we have

1 + γz = |γ|δ, z = -1 γ + δe iθ > 1 2|γ| (if δ < 1 2|γ| ), and 1 + z κ = 1 -1 κγ + δ κ e iθ > κγ -1 2κγ (if δ < κ 2 1 -1 κγ ), so that f -1 γ + δe iθ > 1 2|γ| 2 κγ -1 2κγ κ • 1 δ .
Thus it is enough to take δ = min

1 2|γ| 2 R κγ-1 2κγ κ , 1 2|γ| , κ 2 1 -1 κγ .
Since f is non-singular on the semi-circle -1 γ + δe iθ , θ ∈ [0, π], the curve θ → f (-1 γ + δe iθ ) does not have a singular angular point, so that it is homotopic to a large semicircle (with radius larger than R) in the upper half-plane (see Figure 5).

Note that

Im f (x + yi) = (1 + x/κ) 2 + (y/κ) 2 κ 2
(1 + γx) 2 + γ 2 y 2 (x + γx 2 + γy 2 ) sin(κθ(x, y)) + y cos(κθ(x, y)) .

By changing variables as in ( 6), we have

Im f (re iθ ) = positive factor × sin(κθ) • (ar 2 + b(θ)r + a -1) = positive factor × sin(κθ) • a(r -r -(θ))(r -r + (θ)).
Note that the inside of the path C can be written as re iθ ; θ ∈ (0, θ * ), r ∈ (r -(θ), r + (θ)) in (r, θ) coordinates. Since a < 0 and sin(κθ) > 0 when θ ∈ (0, θ * ), we see that Im f (z) > 0 if z is inside of the path C. In particular, the inside set of the curve f (C ) is a bounded domain in C + including w 0 .

Since the winding number of the path f (C ) with respect to w = w 0 is exactly one, we see that

1 2πi C f (z) f (z) -w 0 dz = 1 2πi f (C ) dw w -w 0 = 1.
By definition of f , we see that f (z) -w 0 does not have a pole in D . Therefore, by the argument principle, the function f (z)-w 0 has only one zero point, say z 0 ∈ D ⊂ D. Thus, we obtain f (z 0 ) = w 0 , and such z 0 ∈ D is unique. We conclude that the map f is a bijection from D to the upper half-plane C + . 4.2. The case γ ≥ 0. Assume that γ ≥ 0. By Propositions 2.2, 2.1 and 3.1, it is equivalent to the condition that Ω is unbounded. We first consider the behavior of |f κ,γ (z)| as ∂Ω z → ∞. We have

f κ,γ (z) = 1 γ + 1 z • 1 + z κ κ .
We consider the change variables 1 + z κ = re iθ for z ∈ Ω. Then, we have

γ + 1 z ≤ |γ| + 1 |κ| • 1 |re iθ -1| ≤ |γ| + 1 |κ| • |r -1| , so that f κ,γ (z) ≥ r κ |γ| + 1 |κ|•|r-1| -→ +∞ (as r → +∞).
Propositions 2.2, 2.1 and 3.1 show that, if κ > 1 or γ = 0, then ∂Ω ∩ C + can be described as a connected curve C(t), t ∈ [0, 1) with C(0) = α 2 and lim t→1-0 C(t) = ∞. In this case, if z ∈ ∂Ω ∩ C + , then we have F (x, y) = 0 and

f κ,γ (z) = 1 + z κ κ 1 + γz 2 • -y sin(κθ(x, y)) < 0. ( 24 
)
This means that, if z ∈ C + goes to ∞ along the path ∂Ω ∩ C + , then f κ,γ must tend to -∞.

We next consider S for cases κ ≥ 1 or γ = 0.

Lemma 4.4. Let α i , i = 1, 2 be the solutions of (8).

(1) Assume that κ > 1 or κ = ∞, and also D(0) ≥ 0. Then, α i are both real and S = (-∞, f κ,γ (α 2 )) with f κ,γ (α 2 ) < 0. (2) Assume that γ = 0. Then, one has α i = -κ κ+1 if κ < +∞ and α i = -1 if κ = ∞ (i = 1, 2). Moreover, one has S = (-∞, f κ.γ (α 2 )).

(3) Assume that κ = 1 and 0 < γ < 1. Then, α i are both real, and one has S = (f κ,γ (α 1 ), f κ,γ (α 2 ))

with f κ,γ (α 2 ) < 0. (4) Assume that κ ≥ 1 or κ = ∞, and also D(0) < 0. Then, α i are both non-real, and one has S = ∅.

On the other hand, one has f κ,γ (∂Ω ∩ C + ) = (-∞, 0).

Proof.

(1) If κ > 1 and D(0) ≥ 0, then Proposition 2.2 (5-a) tells us that Ω ∪ R = (α 2 , +∞). On the other hand, if κ = ∞ and D(0) ≥ 0, that is, γ ≤ 1 4 , then we also have Ω ∪ R = (α 2 , +∞) by Proposition 3.1 (1) and ( 3). Since it is easily verified that f κ,γ is monotonic increasing on this interval for both cases, we have f κ,γ (α 2 ) < 0 and lim x→+∞ f κ,γ (x) = +∞. Thus, by definition (5), we obtain S = (-∞, f κ,γ (α 2 )) for both cases.

(2) Assume that γ = 0. Propositions 2.2 (2) and 3.1 [START_REF] Ahlfors | Complex Analysis, An introduction to the theory of analytic functions of one complex variable[END_REF] show that we have Ω ∩ R = (α, +∞) where

α = α 1 = α 2 = -κ κ+1 if κ < +∞, and if κ = ∞ then α = -1.
Since it is easily verified that f κ,γ is monotonic increasing on this interval, we have f κ,γ (α 2 ) < 0 and lim x→+∞ f κ,γ (x) = +∞. Thus, by definition (5), we obtain S = (-∞, f κ,γ (α)).

(3) Assume that κ = 1 and 0 < γ < 1. By Proposition 2.1, we have Ω ∩ R = (-∞, α 1 ) ∪ (α 2 , +∞). An elementary calculation yields that the image of this set by f κ,γ is (-∞, f κ,γ ) ∪ (f κ,γ (α 2 ), +∞) with f κ,γ (α 1 ) < f κ,γ (α 2 ) < 0, and therefore we obtain S = (f κ,γ (α 1 ), f κ,γ (α 2 )). ( 4) Assume that κ ≥ 1 or κ = ∞, and also assume that D(0) < 0. Then, Propositions 2.2 (5-b) and 3.1 (2) tell us that Ω ∩ R = (-κ, +∞), where if |kappa = ∞ then we regard -κ as -∞. Since we have -κ < -1 γ < 0, we have the following increasing/decreasing table of f κ,γ .

x -κ • • • -1 γ • • • 0 • • • f κ,γ + × + + + f κ,γ 0 +∞ × -∞ 0 
+∞ Thus, we obtain S = ∅. Let C(t), t ∈ [0, 1) be a path describing ∂Ω ∩ C + with C(0) = α 2 . Assume that C(t 1 ) = α 1 . Then, by (24) and by the discussion below of it, we see that f κ,γ (α 1 ) < 0 and lim t→1 f κ,γ (C(t)) = -∞. Thus, by Lemma 4.2, we conclude that f κ,γ (∂Ω ∩ C + ) = (-∞, 0).

We note that if (κ, γ) = (1, 1), then we have f κ,γ (z) = z, and hence we omit this case. Recall that D = Ω ∩ C + . We shall show that f κ,γ maps D to C + bijectively. We divide cases according to the above lemma. 4.2.1. The case (1) and (2). Assume that κ > 1 or γ = 0. We also assume that D(0) ≥ 0. Let us take a path C = C(t), t ∈ (0, 1) in such a way that by starting from z = ∞, it goes to z = α 2 along the curve r + defined by (4) in the upper half plane, and then goes to z = ∞ along the real axis (see Figure 2). Here, we can assume that C (t) = 0 whenever C(t) = α i , i = 1, 2. Actually, the curve v(x, y) = 0 has a tangent line unless f vanishes. If we take an arc-length parameter t, then C (t) represents the direction of the tangent line at (x, y) = C(t). We note that C(t) describes the boundary of D. Lemma shows that g(t) := f κ,γ (C(t)) is a monotonic increasing function on (0, 1) such that g(t) → -∞ if t → 0 and g(t) → +∞ if t → 1.

We shall show that for any w 0 ∈ C + there exists one and only one z 0 ∈ D such that f (z 0 ) = w 0 . Note that we have Im f κ,γ (z) > 0 for any z ∈ D by definition. Let us take an R > 0 such that |w 0 | < R. For L > 0, let Γ L be the the circle -κ + Le iθ of origin z = -κ with radius L. Let L -κ and z L be two distinct intersection points of C and Γ L . Let C := C L be a closed path obtained from C by connecting L -κ and z L via the arc A of Γ L included in the upper half plane, see Figure 4.

Since f is non-singular on the arc A, the curve f (A) does not have a singular point so that it is homotopic to a large semi-circle (whose radius is larger than R) in the upper half plane (see Figure 6). In particular, the inside set f (D ) of the curve f (C ) is a bounded domain including w 0 ∈ C + . Since the winding number of the path f (C ) about w = w 0 is exactly one, we see that

1 2πi C f (z) f (z) -w 0 dz = 1 2πi f (C ) dw w -w 0 = 1.
We know by definition of f that f does not have a pole on D . Therefore, by the argument principle, the function f (z) -w 0 has the only one zero point, say z 0 ∈ D . Then, we obtain f (z 0 ) = w 0 , and such z 0 is unique. We conclude that the map f is bijection from the interior set D of C to the upper half plane.

4.2.2. The case (3). Assume that κ = 1 and 0 < γ < 1. Then, Ω is given in Proposition 2.1. By a simple calculation, we see that α i , i = 1, 2 are both real such that α 1 < α 2 < 0, and we have Ω ∩ R = (-∞, α 1 ) ∪ (α 2 , +∞). Moreover,

f κ,γ ([α 1 , +∞)) = [f κ,γ (α 1 ), +∞), f κ,γ ((-∞, α 2 ]) = (-∞, f κ,γ (α 2 )],
and we have S = (f κ,γ (α 1 ), f κ,γ (α 2 )). Let C = C(t), t ∈ [0, 1] be a path in C + connecting z = α 1 to z = α 2 along ∂Ω ∩ C + . Then, since f κ,γ (C (t)) = 0 for any t ∈ (0, 1) and since f κ,γ (C(t)) ∈ R, Lemma 4.2 tells us that f κ,γ (C(t)) is monotonic increasing on the interval (0, 1), and hence f κ,γ (C([0, 1])) = S. This shows that f κ,γ maps ∂D to R bijectively. We can show the bijectivity of f κ,γ on D to C + similarly to the case κ > 1 and D(0) ≥ 0 by taking Γ L to be the semi-circle -1 + Le iθ of origin z = -1 with radius L, contained in the upper half plane. Thus, we omit the detail. 4.2.3. The case (4). Assume that κ ≥ 1 and D(0) < 0. Then, the solutions α i , i = 1, 2 of (10) are both non-real complex numbers by D(0) < 0. Let Im α 1 > 0. In this case, we have -κ < -1 γ < 0 and x -κ

• • • -1 γ • • • 0 • • • f κ,γ + × + + + f κ,γ 0 +∞ × -∞ 0 +∞
Note that if κ = ∞, then we regard -κ as -∞. By the above table, we have S = ∅, and set S = (-∞, 0). Since we have for z = x + yi ∈ ∂Ω f κ,γ (z) = C((x + γx 2 + γy 2 ) cos(κθ(x, y)) -y sin(κθ(x, y))) = -C y sin(κθ(x, y)) ,

we see that f κ,γ (α 1 ) < 0. This shows that the image of the function f κ,γ (z(θ)), θ ∈ (0, θ 0 ) is (-∞, 0). Let us adopt a similar argument of the proof of bijectivity of the map f κ,γ as in unbounded cases. since the winding number of the path of the boundary ∂D is two, we see that the map f κ,γ maps D to C + in two-to-one, and hence f κ,γ does not map D to C + bijectively.

4.2.4. Assume that 0 < κ < 1 and γ > 0. In this case, Proposition 2.2 tells us that if 0 < a = κγ < 1 then Ω ∩ R = (α 2 , +∞), and if a > 1 then Ω ∩ R = x ∈ R; x > -κ and x = -1 γ . If f κ,γ maps D = Ω ∩ C + to C + bijectively, then it needs map ∂D = I to R. However, if x ∈ R satisfies x < min(α 1 , -κ), then exp κ (z) to 1 + x κ κ e iκπ as z → x via the arc re iθ where r = 1 + x κ . Since 0 < κ < 1, then we see that lim z→x f κ,γ (z) is not real and hence f κ,γ cannot map D to C + bijectively. Now we have completed the proof of Theorem 1.2 for the case κ > 0 or κ = ∞. .

Then, it can be written as

z = 1 0 1/κ 1 • z = z 1 + z/κ ⇐⇒ z = 1 0 -1/κ 1 • z = z 1 -z /κ .
6. Appendix 6.1. Tables. This subsection contains increasing/decreasing tables of H α and b (θ).

Lemma 6.1. One has the following increasing/decreasing table of H α .

(A) 0 < α ≤ 1 2 • Graphs of f κ,γ (x) for real x. 

x 0 • • • 2π α+1 • • • 2π H α 0 + 0 + H α 0 H α ( 2π α+1 ) H α (2π) H α (2π) ≥ 0 (B) 1 2 < α < 1 x 0 • • • 2π α+1 • • • 2π H α 0 + 0 - H α 0 H α ( 2π α+1 ) H α (2π) H α (2π) < 0 (C) 1 < α < 2 x 0 • • • 2π α+1 • • • 2π α H α 0 - 0 + H α 0 H( 2π α+1 ) H α ( 2π α ) H α ( 2π α ) > 0 (D) α ≥ 2 x 0 • • • 2π α+1 • • • 2π α H α 0 - 0 + H α 0 H α ( 2π α+1 ) H α ( 2π α ) H α ( 2π 

)

  Suppose that a = 1 and κ = 1. (a) If 0 < κ < 1, then one has r + (θ) = 0 and r -(θ) = -b(θ) < 0 for θ ∈ I 0 , and Ω = D(f κ,γ ). One has α 1 ∈ ∂Ω and α 2 = -κ = -1 γ ∈ ∂Ω. (b) If κ > 1, then one has r + (θ) = -b(θ) > 0 and r -(θ) = 0 for θ ∈ I 0 , and one has Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 and r > r + (θ)} .

  which shows the assertion (4)-(a). If κ > 1, then since b (θ) < 0 for θ ∈ I 0 and since b(0) = 1+ 1 κ -2 < 0 and lim θ→θ0-0 b(θ) = -∞, the function D(θ) is monotonic increasing on I 0 and hence we have lim θ→θ0-0 r + (θ) = +∞.

0 ( 1 -

 01 sin(θ -ϑ) = lim θ→ϑ-2a) cos θ sin(θ -ϑ) + sin θ cos(αθ) sin(θ -ϑ)

5 .

 5 The case of κ < 0 We shall complete the proof of Theorem 1.2 by proving it for the case κ < 0. To do so, let us recall the homographic (linear fractional) action of SL(2, R) on C. For a b c d ∈ SL(2, R) and z ∈ C + , For each g ∈ SL(2, R), the corresponding homographic action map C + to C + bijectively. Let κ = -κ with positive κ > 0.

α ) ≤ 0 Lemma 6 . 2 . 1 κa ≤ 2κ 2 +3κ+1 6κ κ = 1 2 ( 1 ) 1 1 2 < 1 κa < 2κ 2 +3κ+1 6κ ( 2 ) 1 κa ≤ 2κ 2 +3κ+1 6κ If κ = 1 ,

 062121121216κ1 The signature of b (θ) on the interval I is given as follows.0 < κ < 1 2 (1) θ 0 • • • ϕ * • • • π b (θ) + 0 -(i) (κ, a) ≥ 0, (ii) (κ, a) < 0, -J κ (a) > 1 κ a > 2κ 2 +3κ+1 6κ (2) b (θ) < 0 for θ ∈ I (i) (κ, a) < 0, -J κ (a) ≤ b (θ) = 0 for θ ∈ I (κ, a) = 0 a = 1 (2) b (θ) > 0 for θ ∈ I (κ, a) > 0 a > 1 (3) b (θ) < 0 for θ ∈ I (κ, a) < 0 a < (κ, a) < 0, (ii) (κ, a) = 0, (iii) (κ, a) > 0, -J κ (a) > b (θ) > 0 for θ ∈ I -J κ (a) ≤ 1 κ , (κ, a) > 0 a ≥ a) > 0, -J κ (a) < 1 κ a > 2κ 2 +3κ+1 6κ (2) b (θ) < 0 for θ ∈ I (i) (κ, a) < 0,(ii) (κ, a) = 0, (iii) (κ, a) > 0, -J κ (a) ≥ then one has b (θ) = 2(a -1) sin θ.6.2.Figures. This subsection collects figures of graphs of f κ,γ (x) (for real x), F κ , and of shapes of Ω with some deformation.

Figure 1 .Figure 2 . 2 Figure 3 .Figure 4 .Figure 5 .Figure 6 .

 1223456 Figure 1. The case of (i) Figure 2. The case of (ii), when κ > 2

Figure 7 .Figure 8 . 2 1 2 < κ < 1 1 < κ < 2 κ ≥ 2

 782212 Figure 7. f (x) for x ≥ -κ, case (i)

Note that since 1 0 1/κ 1 ∈ SL(2, R), it maps C + to C + bijectively. Then, since

(recall that we are taking the main branch so that log z = -log(z -1 )), we obtain

Set γ = γ + 1/κ . Since homographic actions map C + to C + bijectively, there exists a domain Ω such that f κ,γ maps D = Ω ∩ C + to C + bijectively if and only if it holds for f γ ,κ . Thus,

and κ > 1 and γ > 0 with γ

This shows the case κ < 0 in Theorem 1.2, and hence we have completed the proof of Theorem 1.2.

• Shapes of Ω The case of γ < 0 The case of κ > 1 and 0 < γ < 1 κ

The case of κ > 1, a > 1 and D(0) ≥ 0 The case of κ > 1 and D(0) < 0

The case of κ = 1 and 0 < γ < 1 4
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