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Abstract: Using quantum representations of mapping class groups, we prove that profi-
nite completions of Burnside-type surface group quotients are not virtually prosolvable,
in general. Further, we construct infinitely many finite simple characteristic quotients of
surface groups.

1. Introduction and Statements

Letπg denote the fundamental groupπ1(Sg, p) of a closed orientable surface Sg of genus
g, based at a point p ∈ Sg . Recall that πg is a one-relator group with the presentation:

πg = ⟨a1, a2, . . . , ag, b1, b2, . . . , bg| [a1, b1] · · · [a2, b2] · · · [ag, bg] = 1⟩

Here the classes ai , bi are represented by non-separating simple closed loops on Sg
based at p.

We denote by "g the mapping class group of Sg . Further "1
g denotes the mapping

class group of the pair (Sg, p), namely the group of isotopy classes of orientation pre-
serving homeomorphisms of Sg fixing p. It is well-known that "1

g is isomorphic to the
mapping class group of the punctured surface Sg − {p}. By forgetting the marked point
p one obtains a surjective homomorphism "1

g → "g which is part of the Birman exact
sequence:

1 → πg → "1
g → "g → 1

The Dehn–Nielsen–Baer theorem states that the map associating to ϕ ∈ "1
g the

automorphism ϕ∗ : π1(Sg, p) → π1(Sg, p) provides an isomorphism between "1
g and

Aut+(πg) and induces an isomorphism "g → Out+(πg). Furthermore, the diagram
below is commutative:
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1 → πg → "1
g → "g → 1

↓ ↓ ↓
1 → πg → Aut+(πg) → Out+(πg) → 1

where the top horizontal line is the Birman exact sequence.
If M ⊂ πg we denote by M [n] the normal subgroup of πg generated by ϕ∗(xn), for

all x ∈ M and ϕ∗ ∈ Aut+(πg). Note that M [n] is the characteristic subgroup generated
by the subset Mn of n-th powers of elements in M .

TheBurnside-type group B(πg, n,M) is the quotientπg/M [n]. Several choices forM
are particularly interesting. An element x ∈ πg is called primitive if it can be represented
by a non-separating simple closed curve on Sg . This is equivalent to saying (see [45]) that
x ∈ πg canbemapped into onegenerator, saya1, by someautomorphismϕ∗ ∈ Aut+(πg),
where a1, . . . , ag, b1, . . . , bg are the generators from the standard presentation above.

The set of primitive classes of πg is then contained in the set S(Sg) of homotopy
classes of simple closed curves on Sg . More generally, we set Sn(Sg) for the set of
homotopy classes of closed curves on Sg with at most n self-intersections.

We denote by Ĝ the profinite completion of a group G. We are concerned in this
paper with how large the profinite completion of B(πg, n,M) could be. Our first result
is:

Theorem 1.1. Let g ≥ 2 and p ≡ 3(mod 4) a large enough prime. Then for every m
there exists some d such that the group ̂B(πg, dp,M) is not virtually prosolvable, if
M ⊂ Sm(Sg). When m = 1 then d = 1.

Remark 1.1. The result above also holds for large enough primes p ≡ 1(mod 4), ac-
cording to Remark 2.1. An explicit p0 such that the claim holds for all p ≥ p0 can be
obtained from effective bounds in Lemma 3.8. Moreover, the claim holds for all primes
p < 104, by a computer check of Lemma 3.8.

The proof shows that under these assumptions ̂B(πg, dp,M) is neither solvable-by-
finite nor finite-by-solvable. Our notational convention is that a finite-by-solvable group
is an extension of a finite group by some solvable group, also called a virtually solvable
group in the litterature.

Zelmanov [45] considered the group π̂g/⟨Mn⟩, where ⟨Mn⟩ is the closure in π̂g of
the normal subgroup of π̂g generated by Mn . Problem 2 from [45] asked whether this
group is solvable-by-finite, when M denotes the set of primitive elements of πg . The
result above shows that this is not the case, in general:

Corollary 1.2. Let g ≥ 2 andn ≡ 3(mod 4), a large enoughprime. The group π̂g/⟨Mn⟩,
where M = S(Sg), is not virtually solvable.
Proof. The surjective map πg → B(πg, n,M) induces a surjective continuous ho-
momorphism between the corresponding profinite completions π̂g → ̂B(πg, n,M).
The kernel of the last map contains M [n] and hence the closure ⟨Mn⟩ of the nor-
mal subgroup of π̂g generated by Mn . Therefore we have a surjective continuous map
π̂g/⟨M [n]⟩ → ̂B(πg, n,M). ⊓,

Our method also provides a large supplies of finite quotients for all intermediary
subgroups:

Corollary 1.3. Let g ≥ 2 and " be a group such that πg ⊂ " ⊂ "1
g. Then " ad-

mits surjective homomorphisms onto infinitely many finite simple groups, for instance
PSL(N ,Fq), where N and q are arbitrarily large.
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In particular, this holds if " is the fundamental group of a closed 3-manifold fibering
over the circle with fiber a closed orientable surface of genus g ≥ 2.

Recall that a subgroup H ⊂ G is characteristic if it is invariant by the action of the
group Aut(G) of automorphisms of G. Further, the quotient Q of G is a characteristic
quotient of G if there is a surjective homomorphism p : G → Q whose kernel ker p is
a characteristic subgroup of G. A consequence of an intermediary result obtained in the
proof of Theorem 1.1 is the following:

Theorem 1.4. For g ≥ 2 there exist infinitely many finite simple characteristic quotients
of πg.

This answers a question of Lubotzky from ([22], sections 10 and 6.4).
The proof of the main results goes as follows. We consider the so-called quantum

representations of the mapping class groups "g and "1
g depending on some root of unity

of order 2p. It was proved in [10] that these representations have infinite image, for
p ≥ 5. The proof was simplified in [27] where explicit elements of infinite order were
found. Further, in [21] the authors showed that the images of "g are topologically dense
in the corresponding special unitary groups, when p ≥ 5 is prime. On the other hand
the matrices in the images have coefficients in a cyclotomic ring (see [15]). Eventually
the restriction of scalars provides Zariski dense discrete representations in semi-simple
linear algebraic groups defined over Q whose images are contained in arithmetic groups
of higher rank (see [15]). The aim of [11] and [28] was to construct quotients of "g
which are simple finite groups of Lie type of arbitrary large rank.

Our strategy is to consider the restriction of the quantum representations from "1
g

to the subgroup πg . These representations were recently studied by Koberda and San-
tharoubane in [18], where it is proved that they still have infinite images, while they
factor through the Burnside-type group B(πg, p,S(Sg)). Our aim is to show that the
restriction of scalars provides Zariski dense discrete representations of B(πg, p,S(Sg))
in some semi-simple linear algebraic group defined over Q of higher R-rank. The Nori–
Weisfeiler approximation theorem (see [30,44]) then provides many finite quotients of
congruence type. This implies that our profinite Burnside-type groups surjects onto an
infinite product of simple non-abelian groups, proving our first theorem. We note that
the image of the surface group coincides with that of the mapping class group. Thus
every kernel of a homomorphism of πg onto a finite simple quotient obtained this way
is invariant by the mapping class group action. We obtain therefore finite simple char-
acteristic quotients of πg , proving the second theorem. Eventually, we notice that the
quotients obtained by this method are principal congruence quotients.

2. Preliminaries on Quantum Mapping Class Group Representations

2.1. The setting of the skein TQFT. A TQFT is a functor from the category of surfaces
into the category of finite dimensional vector spaces. Specifically, the objects of the
first category are closed oriented surfaces endowed with colored banded points, and
morphisms between two objects are cobordisms decorated by uni-trivalent ribbon graphs
compatible with the banded points. A banded point on a surface is a point with a tangent
vector at that point, or equivalently a germ of an oriented interval embedded in the
surface. There is a corresponding surface with colored boundary obtained by deleting
a small neighborhood of the banded points and letting the boundary circles inherit the
colors of the respective points.
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We will use the TQFT functor Vp, for p ≥ 3 and a primitive root of unity A of
order 2p, as defined in [2]. The vector space associated by the functor Vp to a surface
is called the space of conformal blocks. Let Sg denote the genus g closed orientable
surface, Hg be a genus g handlebody with ∂Hg = %g . Assume given a finite set Y of
banded points on Sg . Let G be a uni-trivalent ribbon graph embedded in Hg in such a
way that Hg retracts onto G, its univalent vertices are the banded points Y and it has no
other intersections with Sg .

We fix a natural odd number p ≥ 3, called the level of the TQFT. We define the set
of colors in level p to be Cp = {0, 2, 4, . . . , p − 3}.

An edge coloring of G is called p-admissible if the triangle inequality is satisfied at
any trivalent vertex of G and the sum of the three colors around a vertex is bounded by
2(p − 2).

Fix a coloring of the banded points Y . Then there exists a basis of the space of
conformal blocks associated to the surface (%g,Y) with the colored banded points (or
the corresponding surface with colored boundary) which is indexed by the set of all p-
admissible colorings of G extending the boundary coloring. We denote byWg,(i1,i2,...,ir )
the vector space associated to the closed surface %g with r banded points colored by
i1, i2, . . . , ir ∈ Cp. Note that banded points colored by 0 do not contribute.

Observe that an admissible p-coloring of G provides an element of the skein module
SA(Hg) of the handlebody with banded boundary points colored (i1, i2, . . . , ir ), eval-
uated at the primitive 2p-th root of unity A. This skein element is obtained by cabling
the edges of G by the Jones-Wenzl idempotents prescribed by the coloring and having
banded points colors fixed. We suppose that Hg is embedded in a standard way into the
3-sphere S3, so that the closure of its complement is also a genus g handlebody Hg .
There is then a sesquilinear form:

⟨ , ⟩ : SA(Hg) × SA(Hg) → C

defined by

⟨x, y⟩ = ⟨x , y⟩.

Here x , y is the element of SA(S3) obtained by the disjoint union of x and y in
Hg ∪ Hg = S3, and ⟨ ⟩ : SA(S3) → C is the Kauffman bracket invariant.

Eventually the spaceof conformal blocksWg,(i1,i2,...,ir ) is the quotient SA(Hg)/ ker⟨ , ⟩
by the left kernel of the sesquilinear form above. It follows thatWg,(i1,i2,...,ir ) is endowed
with an induced Hermitian form HA.

The projections of skein elements associated to the p-admissible colorings of a triva-
lent graph G as above form an orthogonal basis of Wg,(i1,i2,...,ir ) with respect to HA.
It is known ([2]) that HA only depends on the p-th root of unity ζp = A2 and that in
this orthogonal basis the diagonal entries belong to the totally real maximal subfield
Q (ζp + ζp) (after rescaling).

Let G ′ ⊂ G be a uni-trivalent subgraph whose degree one vertices are colored,
corresponding to a sub-surface %′ of %g with colored boundary. The projections in
Wg,(i1,i2,...,ir ) of skein elements associated to the p-admissible colorings of G ′ form an
orthogonal basis of the space of conformal blocks associated to the surface %′ with
colored boundary components.

There is a geometric action of the mapping class groups of the handlebodies Hg

and Hg respectively on their skein modules and hence on the space of conformal
blocks. Moreover, these actions extend to a projective action ρg,p,(i1,...,ir ),A of "r

g on
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Wg,(i1,i2,...,ir ) respecting theHermitian formHζp = HA.When referring toρg,p,(i1,...,ir ),A
the subscript specifying the genus g will most often be dropped when its value will be
clear from the context. Notice that the mapping class group of an essential (i.e. without
annuli or disks complements) sub-surface%′ ⊂ %g is a subgroup of "g which preserves
the subspace of conformal blocs associated to %′ with colored boundary. It is worthy
to note that ρp,(i1,...,ir ),A only depends on ζp = A2, so we can unambigously shift the
notation for this representation to ρp,(i1,...,ir ),ζp .

There is a central extension "̃g of "g by Z and a linear representation ρ̃p,ζp on Wg
which resolves the projective ambiguity of ρp,ζp . The largest such central extension has
class 12 times the Euler class (see [14,29]), but the central extension considered in this
paper is an index 12 subgroup of it, called "̃1 in [29]. When g ≥ 3 it is a perfect group
which therefore coincides with the universal central extension.

We denote by Srg,n the compact orientable surface of genus g with n boundary com-
ponents and r marked points. Then "r

g,n denotes the pure mapping class group of Srg,n
which fixes pointwise boundary components and marked points.

We consider a subsurface %g,r ⊂ %g+r whose complement consists of r copies of
%1,1. Let "̃r

g be the pull-back of the central extension "̃g to the subgroup "g,r ⊂ "g+r .

Then "̃g,r is also a central extension, which we denote "̃r
g of "r

g by Zr+1. From [14,29]
we derive that "̃r

g is perfect, when g ≥ 3 and of order 10, when g = 2.

Definition 2.1. Let p ≥ 5 be odd and ζp a primitive p-th root of unity. We denote by
ρ̃p,ζp,(i1,i2,...,ir ) the linear representation of the central extension "̃r

g which acts on the
vector spaceWg,p,(i1,i2,...,ir ) associated by the TQFT to the surface with the correspond-
ing colored banded points (see [14,29]).

The functorVp associates to a handlebody Hg the projection of the skein element cor-
responding to the trivial coloring of the trivalent graph G by 0. The invariant associated
to a closed 3-manifold is given by pairing the two vectors associated to handlebodies in
a Heegaard decomposition of some genus g and taking into account the twisting by the
gluing mapping class action on Wg .

One should notice that the skein TQFT Vp is unitary, in the sense that Hζp is a

positive definite Hermitian form when ζp = (−1)p exp
(
2π i
p

)
, corresponding to Ap =

(−1)
p−1
2 exp

(
(p+1)π i

2p

)
. For the sake of notational simplicity, from now we will drop

the subscript p in ζp, when the order of the root of unity will be clear from the context
and the precise choice of the root of given order won’t matter. Note that for a general
primitive p-th root of unity, the isometries of Hζ form a pseudo-unitary group.

Now, the image ρp,ζ (Tγ ) of a right hand Dehn twist Tγ in a convenient basis given
by a trivalent graph is easy to describe. Assume that the simple curve γ is the boundary
of a small disk intersecting once transversely an edge e of the graphG. Consider v ∈ Wg
be a vector of the basis given by colorings of the graph G and assume that edge e is
labeled by the color c(e) ∈ Cp. Then the action of the (canonical) lift T̃γ of the Dehn
twist Tγ in "̃g is given by (see [2], 5.8) :

ρ̃p,ζ (T̃γ )v = Ac(e)(c(e)+2)v

2.2. Unitary groups of spaces of conformal blocks. For a prime p ≥ 5 we denote by
Op the ring of cyclotomic integers Op = Z[ζp], if p ≡ 3(mod 4) and Op = Z[ζ4p], if



L. Funar, P. Lochak

p ≡ 1(mod4) respectively, where ζr denotes a primitive r -th root of unity (the subscript
r will sometimes be omitted). The main result of [15] states that there exists a freeOp -
lattice )g,p in the C-vector space of conformal blocks associated by the TQFT Vp to
the genus g closed orientable surface and a non-degenerate Hermitian Op-valued form
on )g,p both invariant under the action of "̃g via the representation ρ̃p,ζ . Therefore
the image of the mapping class group consists of unitary matrices (with respect to the
Hermitian form) with entries in Op. Let Ug,p,ζ (Op) and PUg,p,ζ (Op) be the group of
all such matrices and respectively its quotient by scalars. Then Ug,p,ζ (Op) is the group
ofOp-points of the unitary group Ug,p,ζ associated to the Hermitian form Hζ , which is
a linear algebraic group defined over Q (ζ + ζ ).

When p is prime p ≥ 5 and g ≥ 2, (g, p) ̸= 5, then ρ̃p,ζp takes values in the special
unitary group SUg,p,ζp (see [5,11,12]). It is known that SUg,p,ζ (Op) is an irreducible
lattice in a semi-simple algebraic group G g,p obtained by the so-called restriction of
scalars construction from the totally real cyclotomic field Q (ζp + ζp) to Q . Specifically,
the group G g,p is a product

∏
σ∈S(p) SUg,p,σ (ζ ). Here S(p) stands for a set of represen-

tatives of the classes of complex embeddings σ ofOp modulo complex conjugation, or
equivalently the set of places of the totally real cyclotomic field Q (ζp + ζp). The factor
SUg,p,σ (ζ ) is the special unitary group associated to the Hermitian form conjugated by
σ , thus corresponding to some Galois conjugate root of unity.

Denote by ρ̃p and ρp the representations
∏

σ∈S(p) ρ̃p,σ (A2
p)

and
∏

σ∈S(p) ρp,σ (A2
p)
,

respectively. Notice that the real Lie groupG g,p is a semi-simple algebraic group defined
over Q .

In [11] it is proved that ρ̃p("̃g) is a discrete Zariski dense subgroup ofG g,p(R)whose
projections onto the simple factors of G g,p(R) are topologically dense, for g ≥ 3 and
p ≥ 7 prime, p ≡ 3(mod 4).

Remark 2.1. When p ≡ 1(mod 4) the image of the central extension of "g from [29] by
ρ̃p is contained inG g,p(Z[i]) and thus it is a discrete Zariski dense subgroup ofG g,p(C).
However, if we restrict to the universal central extension "̃g coefficients are reduced from
Z[ζ4p] to Z[ζp] (see [15], section 13). Note that the corresponding invariant form Hζp
should be suitably rescaled and after rescaling it will be skew-Hermitian when g is odd
and Hermitian for even g.

As mentioned in ([28], Rem.3.5) for the proof of our main result we don’t need the
integral TQFT of [15] as the Burnside-type groups are finitely generated and hence only
finitely primes could appear in the denominators of matrices in their image.

3. Quantum Surface Group Representations

3.1. Zariski density of quantum representations. Our aim is to find the Zariski closures
of ρp,(i)(πg). We follow closely the strategy from [11], where we proved that ρp,(i)("g)
is Zariski dense in PG p(R), based on the topological density result in the corresponding
special unitary group earlier obtained in [21].

The mapping class group "g,1 is a subgroup of "g+1, by identifying Sg+1 with the
result of gluing of Sg,1 and S1,1. It is well-known that

Wg+1,p =
⊕

i

Wg,p,(i) ⊗ W1,p,(i)

The decomposition corresponds to the eigenspaces for the Dehn twist T̃c along the curve
c = ∂Sg,1. Let Ug,p,ζ,(i) = U (Wg,p,(i), Hζ ) be the unitary subgroup keeping invariant
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the subspace Wg,p,(i), when endowed with the (restriction of the) Hermitian form Hζ .
The groupUg,p,ζ,(i) is a closed linear algebraic subgroup ofUg+1,p,ζ and is also defined
over the maximal totally real algebraic field Q (ζ + ζ ) of Q (ζ ).

Since "̃1
g is perfect when g ≥ 3 and of order 10 for g = 2, it follows that ρ̃p,(i)("̃1

g) is
contained within the special unitary group SUg,p,ζ,(i), if (g, p) ̸= (2, 5), as in [5,11,12].

Wedenote byG g,p,(i) the groupobtainedby scalar restriction fromQ (ζ+ζ ) toQ of the
linear algebraic group SUg,p,ζ,(i), namely theproductG g,p,(i) =

∏
σ∈S(p) SUg,p,σ (ζ ),(i).

It follows that the product representation ρ̃p,(i) =
∏

σ∈S(p) ρ̃p,σ (A2
p),(i)

of "̃1
g takes val-

ues in G g,p,(i). Since the boundary Dehn twist acts as a scalar this representation of "̃1
g

descends to a projective representation ρg,p,(i) : "1
g → PG g,p,(i).

Set π̃g = ker("̃1
g → "g). It follows that π̃g is an extension by Z2 of πg .

Our main result in this section is:

Theorem 3.1. Let g ≥ 2 and p ≡ 3(mod 4), p a large enough prime. Then the Zariski
closure of ρ̃p,(p−3)(π̃g) is G g,p,(p−3)(R). Moreover, if g ≥ 3 every non-compact factor
of G g,p,(p−3)(R) has real rank at least 2.

The rest of this section is devoted to the proof of the theorem above.
The key ingredient is the following proposition, whose rather technical proof is

postponed to Sect. 3.3 below:

Proposition 3.1. Let g ≥ 2 and p ≡ 3(mod 4), p a large enough prime. The represen-
tation ρ̃p,ζ,(p−3) of "̃g,1 into Wg,p,(p−3) has dense image in the special unitary group
SUg,p,ζ,(p−3).

Proposition 3.2. Let g ≥ 2 and p ≥ 5 be odd. Suppose that ρ̃p,ζ,(i)(̃"g,1) is Zariski
dense in SUg,p,ζ,(i). Then ρ̃p,ζ,(i)(π̃g) is Zariski dense in the special unitary group
SUg,p,ζ,(i).

Proof of Proposition 3.2. As πg is a normal subgroup of "1
g , we derive that the topo-

logical closure of its image by ρp,ζ,(i) is a closed normal Lie subgroup of the projective
unitary group PUg,p,ζ,(i). Therefore the image of π̃g is a closed normal subgroup of
SUg,p,ζ,(i). Since the Lie algebra of SUg,p,ζ,(i) is simple it follows that the Lie group has
dimension zero and hence it is a discrete subgroup. However a normal discrete subgroup
of SUg,p,ζ,(i) must be contained in its center, which is cyclic of order dimWg,p,(i).

Now, the result of [18] for i = 2 shows that the image of πg by ρp,ζ,(i) is infinite
non-abelian. We claim that this holds true for all i ̸= 0 and we will give a detailed proof
for i = p − 3.

The k+1-holed sphere S0,k+1,whoseboundary circles are coloredby c = (a, a, . . . , a,
ak − 2) has associated a space of conformal blocks W0,c of dimension k which has a
natural action of the braid group Bk on k strings. Note that %0,k+1 can be embedded into
%g,1 such that the homomorphism Bk → "g,1 is injective, if k ≤ g. It is well-known
that this braid group action coincides with the Burau representation at a suitable root of
unity (see [13]) twisted by a character. Specifically, the Burau representation is the one
for which the standard braid generators have eigenvalues −1 and A2a2

p . Moreover, in
[13] one proved that the image of the Burau representation of B3 is infinite non-abelian
if A2a2

p is not a primitive root of unity of order 2, 3, 4 or 5, while the image of B4 is

infinite non-abelian (see e.g. [10]) if A2a2
p is not a primitive root of unity of order 2 or 3.
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It suffices to consider i ≥ 4. If we canwrite i = ak−2, 3 ≤ k ≤ g, a ∈ Cp, the image
of Bk is infinite. Further π1(S0,3) ⊂ π1(S0,k+1), if k ≥ 2 and the restriction of the Burau
representation to the pure braid group PB3 is infinite non-abelian. But PB3 = F2 × Z,
where the factor Z is central and its image by the Burau representation is of finite order,
while the free factor F2 can be identified with π1(S0,3). We derive that the image of
π1(Sg,1) by the subrepresentation of ρp,(i) corresponding to the Burau representation
contains the image of F2, namely a triangle group according to [13].

When g = 2 and i = p − 3 we consider the image of π1(%1,2) by the quantum
representation of "1

2, where%1,2 ⊂ %2,1 is the complementary of a one holed torus with
boundary label 2. Then "1,2 acts onW1,p,(2,p−3) which has dimension 3 and an explicit
calculation shows that the image of π1(%1,2) is infinite non-abelian. ⊓,

Let now " → Hi , i = 1, . . . ,m, be a collection of representations of the group ".
The subgroup H ⊂ ∏m

i=1 Hi is called "-diagonal, if there exists a partition A1, . . . , As
of {1, 2, . . . ,m} such that:

(1) All factors Hi , with i ∈ At , 1 ≤ t ≤ s are equivalent as representations of ".
Pick up some it ∈ At . Given some intertwining isomorphisms L j,it : Hj → Hit ,
j ∈ At \ {it }, we set:

HAt = {(x, (L j,it (x)) j∈At\{it }), x ∈ Hit },

which is the graph of the homomorphism ⊕ j∈At\{it }L j,it .
(2) Then there exist intertwining isomorphisms as abovewith the property that the group

H contains
∏

1≤t≤s HAt . In particular, if all representations Hi of " are pairwise
inequivalent, then H = ∏m

i=1 Hi .

We then have the following Hall lemma from [19]:

Lemma 3.1 ([19]). Let " be a subgroup of the product
∏m

i=1 Hi of the adjoint simple
(i.e. connected, without center and whose Lie algebra is simple) Lie groups Hi . Assume
that the projection of " on each factor Hi is Zariski dense. Then the Zariski closure of
" in

∏m
i=1 Hi is a "-diagonal subgroup.

We will use next the following classical result of Dieudonné ([4]) and Rickart ([34],
Thm. 4.3):

Proposition 3.3 ([4,34]). Any group isomorphism L : U (W1) → U (W2) between the
unitary groups of Hermitian vectors spaces W1 and W2 has the form:

L(h) = χ(h) · V−1hV

where the map V : W1 → W2 is either linear or anti-linear, and χ : U (W1) → U (1) is
a homomorphism.

Lemma 3.2. Let A and B be primitive 2p-th roots of unity, for odd p. If ρ̃p,A2,(p−3)|π̃g

and ρ̃p,B2,(p−3)|π̃g are linearly or anti-linearly equivalent, then either A = B or A = B.

Proof. According to Proposition 3.3 the two representations in the same unitary group
U (W ) are equivalent only if there exists an intertwiner (either linear or anti-linear) map
V : W → W which conjugates the two representations, possibly up to twisting by a
character χ : U (W ) → U (1). In our case the representations take values into the special
unitary group and hence we can take χ = 1.



Profinite Burnside-type groups...

Observe thatV should send eigenspaces for ρ̃p,A2,(i)(γ ) to eigenspaces for ρ̃p,B2,(i)(γ )
of the same eigenvalues. If γ a simple non-separating based loop on the surface, let γ+, γ−
denote the curves obtained by slightly pushing left and right respectively. Then γ+, γ−
and a small circle around the base point determine a pair of pants S0,3 whose complement
Sg−1,2 is a genus g − 1 surface with two boundary components. Therefore

ρ̃p,A2,(i)(γ̃ )x = A j ( j+2)−k(k+2)x, if x ∈ W0,(i, j,k) ⊗ Wg−1,( j,k)

where the lift γ̃ ∈ π̃g is given by T̃γ+ T̃γ−
−1 ∈ "̃1

g .
It follows that V should send vector spaces of the form W0,(i, j,k) ⊗ Wg−1,( j,k) into

spaces of the same form associated to possibly different labels.
Consider i = p− 3. Therefore, the only possibilities for j, k such that dimW0,(i, j,k)

be non-zero is j = p − 3 − 2m, k = 2m, for some 2m ∈ Cp. Now, observe that the
symmetry exchanging the two boundary components induces an isomorphism between
Wg−1,( j,k) and Wg−1,(k, j). Further, consider a circle embedded in Sg−1,2 which bounds
a pair of pants along with the two boundary circles. If ℓ is a label for the third circle then
the set of p-admissible ℓ for boundary labels ( j, k), where j > k is strictly contained
in the set of p-admissible values of ℓ for the boundary labels ( j − 2, k + 2). It follows
that dimWg−1,( j,k) are distinct for all values j ≥ k, with j + k = p − 3.

Therefore either V keeps invariant each subspace W0,(i, j,k) ⊗ Wg−1,( j,k) or else V
sends everyW0,(i, j,k) ⊗Wg−1,( j,k) ontoW0,(i,k, j) ⊗Wg−1,(k, j). Since the corresponding
eigenvalues should be the same we derive that either A = B or A = B. ⊓,

End of the proof of Theorem 3.1. The Hall Lemma 3.1 shows that the Zariski closure
of ρp,(p−3)(πg) is all of PG p,(p−3)(R). Now, using ([19], Lemma 3.6) we obtain that
ρ̃p,(p−3)(π̃g) is Zariski dense in G p,(p−3)(R).

Finally notice that G g,p,(p−3) contains G g−1,p as a subgroup. In particular, for g ≥ 4
each non-compact factor has rank at least 2, by [12]. We can follow the proof of this
result in [12] for i = 0 to obtain the result for g = 3 as well. This proves the theorem.

3.2. Preliminaries on Verlinde formulas. We start by collecting a few properties of
the dimensions of the space of conformal blocks. The main tool is the combinatorial
description of the space of conformal blocks which admits a basis indexed by the set
of p-admissible colorings of any uni-trivalent graph associated to the surface, possibly
with colored boundary components, as explained in Sect. 2.1. As a consequence, if we
split a surface Sg,k by cutting along r essential pairwise non isotopic simple curves into
the subsurfaces Sh,s+r and Sg−h−r+1,k−s+r then we have a corresponding decomposition
for the spaces of conformal blocks:

Wg,p,(i1,...,ik ) =
∑

j1,... jr∈Cp

Wh,p,(i1,...,is , j1,..., jr ) ⊗ Wg−h−r+1,p,(is+1,...,is , j1,..., jr )

Lemma 3.3.

dimW1,p,( j,i) =
(p − 1 − max(i, j))(min(i, j) + 1)

2

Proof. Direct computation using the combinatorial description of the vector space. ⊓,
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Lemma 3.4. For k ∈ Cp we have:

dimW2,p(k) =
1
24

·
(
(k + 1)p3 − 3

2
k(k + 2)p2 +

1
2
(k3 + 3k2 − 4)p

)

and, in particular:

dimW2,p,(p−3) =
p3 − p
24

Proof. We have

dimW2,p(k) =
∑

j∈Cp

dimW1,p,( j) · dimW1,p,( j,k)

then expand all terms using Lemma 3.3. ⊓,
Lemma 3.5.

dimW3,p,(p−3) =
1

5760
· p(p − 1)(p − 3)(7p3 + 28p2 + 101p + 80) +

1
24

· (p3 − p)

Proof. This is a consequence of Lemmas 3.3 and 3.4 along with

dimW3,p,(p−3) =
∑

j∈Cp

dimW2,p,( j) · dimW1,p,( j,p−3)

⊓,
Lemma 3.6. We have dimWg,p,(p−3) > dimWg,p,(0), if g ≥ 3.

Proof. We will prove by induction on g that dimWg,p,(k) ≥ dimWg,p,(0), for any
k ∈ Cp, with equality only if k = 0, g ≥ 3 or g = 2 and k = p − 3.

When g = 2 the explicit formula from Lemma 3.4 allows for a direct verification.
Assume that our claim holds true for all genera up to g. We can write from Lemma 3.3:

dimWg+1,p,(k) =
∑

j∈Cp

dimWg,p,( j) ·
(p − 1 − max(k, j))(min(k, j) + 1)

2

to be compared with

dimWg+1,p,(0) =
∑

j∈Cp

dimWg,p,(0) ·
(p − 1 − j)

2

Now the induction hypothesis dimWg+1,p,(0) ≤ dimWg,p,( j) for all j ∈ Cp implies the
claim for g + 1. ⊓,
Lemma 3.7. For any g ≥ 3, p ≥ 7 we have

dimWg+1,p,(p−3) <
dimWg,p,(p−3)(dimWg,(p−3) − 1)

2

Further, for g = 2 we have the weaker inequality:

dimW3,p,(p−3) < (dimW2,p,(p−3))
2
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Proof. Recall the Verlinde formula (see [16]) computing the dimension of the space of
conformal blocks:

dimWg,p,(k) =
( p
4

)g−1
p−1
2∑

s=1

sin
(
(k + 1)πs

p

)
sin

(
πs
p

)1−2g

Set αs =
( p
4

)
sin

(
πs
p

)
. If g ≥ 4 we have the following inequalities:

∑

s

α
g
s ≤

∑

s

α
4(g−1)/3
s < (

∑

s

αs)
4/3

which imply that:

dimWg+1,p,(0) < (dimWg,p,(0))
4/3, whenever g ≥ 4

We derive from Lemma 3.6 that whenever g ≥ 4 we have:

dimWg+1,p,(p−3) < dimWg+2,p,(0) ≤ (dimWg+1,p,(0))
4/3 < (dimWg,p,(0))

16/9

< (dimWg,p,(p−3))
16/9

On the other hand

(dimWg,p,(p−3))
16/9 <

dimWg,p,(p−3)(dimWg,p,(p−3) − 1)
2

if g ≥ 4 and p ≥ 5, since dimWg,p,(p−3) ≥ dimW4,5,(2) = 75.
Eventually, we have to check the case when g = 3. From Lemma 3.4

dimW2,p,(k) <
1
24

(
(k + 1)p3 +

k3 + 3k2

2
p
)
<

p3(3p + 5)
48

We have the following crude upper bound:
∑

j∈Cp

(p − 1 − max(k, j))(min(k, j) + 1)
2

<
1
4
p3

which leads to the upper bounds:

dimW3,p,(k) <
p3(3p + 5)

48

∑

j∈Cp

(p − 1 − max(k, j))(min(k, j) + 1)
2

<
p6(3p + 5)

192

and further

dimW4,p,(k) <
p6(3p + 5)

192

∑

j∈Cp

(p − 1 − max(k, j))(min(k, j) + 1)
2

<
p9(3p + 5)

728

Now, if p > 35 we have that

dimW4,p,(p−3) <
p9(3p + 5)

728
<

7p12

32 × (5760)2
<

dimW3,p,(p−3)(dimW3,p,(p−3) − 1)
2

The cases when 5 ≤ p ≤ 35 can be verified by a direct computer search.
Finally, the inequality claimed for g = 2 is a consequence of Lemmas 3.4 and 3.5.
Note that the inequality for g ≥ 3 is actually valid with the same proof for all labels

i on the boundary circle. ⊓,
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Remark 3.1. The inequality stated in Lemma 3.7 for g ≥ 3 does not hold when g = 2.
Indeed we have the following asymptotical behavior, derived from Lemma 3.5:

lim
p→∞

dimW3,p,(p−3)

(dimW2,p,(p−3))2
≃ 0.7

Lemma 3.8. There exist only finitely many p such that 1 + 8 dimW3,p,(p−3) is a perfect
square.

Proof. The function f (p) = 1 + 8 dimW3,p,(p−3) is a degree 6 square free polynomial
in p. Faltings (see [7]) proved that a non-singular algebraic curve of genus at least two
which is defined over a number field has only finitely many rational points (Mordell’s
conjecture). Since the projective curve given by the affine equation y2 = f (x) is a
hyperelliptic curve of genus 2, the equation y2 = f (x) has therefore only finitely many
solutions in Q .

Alternatively, we can use a classical theorem of Siegel, which asserts that a smooth
affine algebraic curve defined over Q of genus at least one has only finitely many points
with integral coordinates (see [20], chap. VI). In particular, a polynomial with integer
coefficients and at least 3 distinct roots takes only finitely many square values on the
integers. Although (24)2(1 + 8 dimW3,p,(p−3)) has rational coefficients, by considering
the change of variable p = 5q +s, for each s ∈ {0, 1, 2, 3, 4}we obtain five polynomials
with integer coefficients to each of which Siegel’s theorem applies. ⊓,

3.3. Proof of Proposition 3.1. Larsen and Wang in [21] proved the topological density
of the image of the mapping class group of a closed surface of genus g. This result
corresponds to the case when i = 0 and ζ = A2

p. We will show that their proof suitably
amended actually works for i = p− 3 and g ≥ 2. Some of the steps below are valid for
every color i , but for the sake of simplicity we stick to i = p − 3. In this section p is an
odd prime, p ≥ 5.

The start point is the irreducibility of ρ̃g,p,ζ,(i), for any i , according to (the proof
given by) Roberts ([35], see also [16], Cor. 3.2).

Consider the topological closure Gg,p,(i) of ρ̃p,A2
p,(i)

(̃"g,1). We know from [10], that
when g ≥ 2, p ≥ 7 the group Gg,p,(i) is infinite and non-abelian. Denote by Vg,p,(i) the
representation of Gg,p,(i) into Ug,p,ζ,(i).

If the representation Vg,p,(i) were self-dual, its restriction to ˜"g−1,1 × "1,1 would
be a direct sum of self-dual and pairs of dual representations. The invariant subspace
Wg−1,(0)⊗W1,(0,i) is not self-dual (see [21], step 10), asWg−1,(0) is not self-dual. More-
over, it is not dual toWg−1,( j)⊗W1,( j,i), for any other values of j , since these subspaces
are tensor products of irreducible representations and the corresponding dimensions of
W1,( j,i) do not agree with that for j = 0 unless j = 0.

Wewish now to prove our claim by induction on g.When g = 2we choose i = p−3.
From above it follows that dimW2,p,(p−3) = p3−p

24 . Now the results from ([21], section
4) show that ρp,A2

p,(p−3)("
1
g) is topologically dense into PU2,p,(p−3). We can show

using the same lines that the result holds for large enough p, for any i .
Further it follows from [21] that:

(1) the restriction of Vg,p,(p−3) to the identity component G◦
g,p,(p−3) of Gg,p,(p−3) is

isotypic.
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(2) For any normal subgroup H ⊂ Gg,p,(p−3) with the property that all morphisms
SL2(Z/pZ) → Gg,p,(p−3)/H are trivial, the representation of H into Vg,p,(p−3) is
tensor indecomposable.

(3) Moreover, Vg,p,(p−3) is irreducible as a G◦
g,p,(p−3)-representation.

Further the content of Lemma 3.7 is the extension of ([21], Lemma 12) to the case of
surfaces with boundary. This is the main condition needed to prove the induction step
from g to g + 1. It actually works for all g ≥ 3, except for g = 2.

When g = 2 we only obtain that G◦
3,p,(p−3) is a simple compact Lie group of type

An and the representation V3,p,(p−3) is either the standard one or else the exterior or the
symmetric square. In particular, if this representation were not the standard one, then
dimW3,p,(p−3)would be of the formm(m+1)/2, for some natural numberm ∈ {n, n+1}.
This situation could only occur for finitely many p, according to Lemma 3.8.

Eventually the arguments from ([21], steps 14 and 15) show that the identity com-
ponent G◦

g,p,(p−3) is a simple compact Lie group and for g ≥ 3, p ≥ 7 we have the

equality Gg,p,(p−3) = SUg,p,(p−3). Thus ρ̃p,A2
p,(p−3)(̃"g,1) is topologically dense into

SUg,p,(p−3). This implies that ρ̃p,ζ,(p−3)("̃1
g) is Zariski dense into SUg,p,ζ,(p−3) for all

primitive roots of unity ζ .

3.4. Trace fields. Recall that SUg,p,(i) is an absolutely almost simple simply con-
nected algebraic group defined over Q (ζp + ζp) (i.e. its proper normal algebraic sub-
groups are finite). The adjoint trace field of a subgroup . ⊂ SUg,p,(i) is the field
Q (tr(Ad(x)), x ∈ .), where Ad is the adjoint representation of SUg,p,(i). We have
the following extension of the corresponding result for mapping class groups of closed
surfaces from ([28], section 4.3):

Lemma 3.9. Up to rescaling ρp,(p−3) by some 2p-th root of unity we can insure that
the adjoint trace field of ρ̃p,(p−3)(π̃g) is Q (ζp + ζp).

Proof. If ℓ denotes the adjoint trace field in the statement then ℓ ⊂ Q (ζp + ζp).
The Zariski density and classical theorems of Vinberg (see [28], Prop.4.2) show that
SUg,p,(p−3) is defined over ℓ and Ad(ρ̃p,(p−3)(π̃g)) is contained in the group Ad
(SUg,p,(p−3))(ℓ) of ℓ points of the adjoint group Ad(SUg,p,(p−3)). If we show that
ρ̃p,(p−3)(π̃g)) is contained in the group SUg,p,(p−3)(ℓ) then the argument of ([28], sec-
tion 4.3) will imply that ℓ = Q (ζp + ζp).

If Z is the center of SUg,p,(p−3), then we have an exact sequence

Z(Q (ζp + ζp)) → SUg,p,(p−3)(Q (ζp + ζp)) → Ad(SUg,p,(p−3))(Q (ζp + ζp))

Let σ ∈ Gal(Q (ζp + ζp)/ℓ). Then we have a homomorphism

f : ρ̃p,(p−3)(π̃g) → Z1(Gal(Q (ζp + ζp)/ℓ), Z(Q (ζp + ζp))

f (γ )(σ ) = γ σ (γ −1), for γ ∈ ρ̃p,(p−3)(π̃g), σ ∈ Gal(Q (ζp + ζp)/ℓ)

The group of 1-cocycles Z1 is an abelian group and hence f factors through the abelian-
ization H1(ρ̃p,(p−3)(π̃g) which is a quotient of (Z/pZ)2g . On the other hand the group
cohomology H1(H, Z) is killed by the order of the finite group H . Now, the order of
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the group Gal(Q (ζp + ζp)/ℓ) is a divisor of
p−1
2 . Thus elements in the image of the map

induced by f :

f∗ : ρ̃p,(p−3)(π̃g) → H1(Gal(Q (ζp + ζp)/ℓ), Z(Q (ζp + ζp))

should be killed by both p and some divisor of p−1
2 and hence they are trivial in coho-

mology. Therefore there exists a in the center Z(Q (ζp + ζp)) such that

f (γ )(σ ) = a · σ (a−1)

and thus rescaling ρp,(p−3) by a will insure that f (γ ) is trivial for every γ and hence
ρ̃p,(p−3)(π̃g)) is contained in thegroup SUg,p,(p−3)(ℓ).Note now that the center Z(Q (ζp+
ζp)) consists of scalars which are roots of unity in Q (ζp + ζp), and thus they are 2p-th
roots of unity. ⊓,

4. Proofs of the Main Theorems

4.1. Abundance of finite quotients. We will need the following versions of the strong
approximation theorem due to Nori–Weisfeiler. First, we record the statement due to
Nori for algebraic groups defined over Q :

Theorem 4.1. ([30], Thm.5.4). Let G be a connected linear algebraic group G defined
over Q and ) ⊂ G(Z) be a Zariski dense subgroup. Assume that G(C) is simply
connected. Then the completion of ) with respect to the congruence topology induced
from G(Z) is an open subgroup in the group G(Ẑ) of points of G over the pro-finite
completion Ẑ of Z.

Further, in ([28], Thm. 2.6) Masbaum and Reid stated the following consequence of the
approximation theorem stated by Weisfeiler ([44], Thm. 10.5, Cor. 10.6), which is now
valid for algebraic groups defined over number fields:

Theorem 4.2. ([28], Thm.2.6). If . ⊂ SUg,p,(i)(Q (ζ + ζ )) is a Zariski dense subgroup
of SUg,p,(i) such that the adjoint trace field of. is Q (ζ +ζ ), then for all but finitely many
primes p in Q (ζ + ζ ) the reduction homomorphism . → SUg,p,(i)(Fp) is surjective,
where Fp denotes the residue field Q (ζ + ζ )/p.

Our key ingredient in the proofs of the main theorems is the following result showing
that infinitely many finite groups of Lie type should occur among the quotients of a
Burnside-type group:

Proposition 4.1. Let g ≥ 2 and p ≡ 3(mod 4), p large enough prime. Then, for all
but finitely many primes q there exist surjective homomorphisms B(π̃g, p,S(Sg)) →
G g,p,(p−3)(Z/qkZ) and B(πg, p,S(Sg)) → PGg,p,(p−3)(Z/qkZ). Moreover, for in-
finitely many q the finite groups on the right hand side surject onto PSL(Ng,p,Fq),
where Fq denotes the finite field on q elements and Ng,p = dimWg,p,(p−3).

Proof. The linear algebraic group G = G g,p,(p−3) satisfies the assumptions of Nori’s
Theorem 4.1. If we take ) to be a finite index subgroup of ρ̃p,(p−3)(π̃g), then Theorem
4.1 implies our claim for k = 1.

In fact ρ̃p,(p−3)|π̃g factors through B(π̃g, p,S(Sg)), since each homotopy class of a
simple closed curve on Sg is sent into the composition of two commuting Dehn twists
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in "̃1
g . Moreover, the Dehn twist along the boundary curve c = ∂Sg is central in "g,1,

and hence the image by ρ̃g,p of the center of "̃1
g consists of central elements of finite

order p.
Then a classical result due to Serre (see [38]) for GL(2) and extended by Vasiu (see

[42]) to all reductive linear algebraic groups defined over Q improves the surjectivity
statement to all k ≥ 1.

An alternate approach for k = 1 would be to use directly the Nori–Weisfeiler ap-
proximation theorem on SUg,p,(p−3). From Lemma 3.9 the group ρ̃p,A2

p,(p−3)(π̃g) ⊂
SUg,p,(p−3) has trace fieldQ (ζ +ζ ), up to possibly translating it by a root of unity. There-
fore, by Theorem 4.2 for all but finitely many primes p in the trace field the reduction
mod p is well-defined and provides a surjection ρ̃p,A2

p,(p−3)(π̃g) → SUg,p,(p−3)(Fp).
According to the discussion in ([40], p.55; [31], 2.3.3) the group SUg,p,(p−3)(Fp) is ei-
ther a special unitary group, when p is prime or ramified in Q (ζ ) or else a special linear
group, when p splits completely inQ (ζ ). In particular, if q is a rational primewhich splits
completely in Q (ζ ) and p a prime in Q (ζ + ζ ) which divides q, then SUg,p,(p−3)(Fp) is
isomorphic to SL(Ng,p,Fq), for all but finitely many p. ⊓,

We now record the following version of Hall’s lemma (see [17]) for finite groups,
due to Dunfield and Thurston:

Lemma 4.1. ([6], Lemma 3.7). Suppose that we have a set of epimorphisms fi : G →
Hi , where H1, H2, . . . , Hk are non-abelian simple groups. If fi are pairwise non-
equivalent, namely there is no isomorphism between α : Hi → Hj such that α◦ fi = f j ,
for i ̸= j , then the map

( f1, f2, . . . , fk) : G → H1 × H2 × · · · × Hk

is surjective.

Proposition 4.2. For large enough prime p ≡ 3(mod 4) and g ≥ 2 the group
̂B(πg, p,S(Sg)) is neither finite-by-solvable, nor solvable-by-finite.

Proof. For large enough prime q the surjective maps B(πg, p,S(Sg)) → PGp,(p−3)

(Z/qkZ) induce a continuous surjective homomorphism: ̂B(πg, p,S(Sg)) → PG p,(p−3)
(Zq).

If ̂B(πg, p,S(Sg)) had a prosolvable normal subgroup of finite index at most N ,
then PG g,p,(p−3)(Zq) would also have a prosolvable normal subgroup of index at most
N . But the index of the largest normal prosolvable group within PG g,p,(p−3)(Zq) goes
to infinity with q. It is well-known that PG g,p,(p−3)(Z/qZ) are finite simple groups
([40], p.55; [31], 2.3.3). More precisely, by Proposition 4.1 we can find infinitely many
finite groups of the form PSL(Ng,p,Fq) and PU (Ng,p,Fq) among these quotients. In
particular, a normal solvable subgroup of PG g,p,(p−3)(Zq) must project to the trivial
subgroup of PG g,p,(p−3)(Z/qZ) and hence has index at least the size of the later. This
is optimal, as

PG g,p,(p−3)(qZq) = ker(PG g,p,(p−3)(Zq) → PG g,p,(p−3)(Z/qZ))

is a pro-q group and hence it is prosolvable. Now the size of PG g,p,(p−3)(Z/qZ) goes
to infinity with q. Therefore ̂B(πg, p,M) is not virtually prosolvable.
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An alternate proof is as follows. Since PG g,p,(p−3)(Z/qZ) are simple non-abelian
groups, for large q they are pairwise non-isomorphic. From Hall’s Lemma 4.1 we derive
that the product homomorphism

̂B(πg, p,S(Sg)) → ⊕q≥m(p)PG g,p,(p−3)(Z/qZ)

is surjective.
According to ([33], Corollary 4.2.4) a prosolvable group has all its finite quotients

solvable. In our case any finite index normal subgroup of ̂B(πg, p,S(Sg)) surjects onto
infinitely many simple groups, and hence it cannot be virtually prosolvable.

Eventually, suppose that ̂B(πg, p,S(Sg)) is solvable-by-finite, namely it contains
a finite normal subgroup L such that the quotient ̂B(πg, p,S(Sg))/L is prosolvable.
Then the image of L in every large enough finite simple quotient PG g,p,(p−3)(Z/qZ)
should be trivial, as it cannot be the whole group by cardinality reasons. Therefore,

̂B(πg, p,S(Sg))/L surjects onto infinitelymanyfinite simple groups PG g,p,(p−3)(Z/qZ).
By the arguments above this contradicts the fact that ̂B(πg, p,S(Sg))/L was supposed
(virtually) prosolvable. ⊓,

4.2. Proof of Theorem 1.1. The case m = 1 is settled in Proposition 4.2 above.
Now, in order to prove a similar statement for B(πg, p,Sm(Sg)), where m ≥ 2 we

have to pass to a finite cover of Sg . Indeed the classes of closed immersed based loops
in Sg with no more thanm self-intersections up to a homeomorphism of Sg form a finite
set. Choose a set of based loops M of representatives of this set.

According to a classical Theorem of Scott ([36,37]), given a based loop γ on Sg there
exists a finite cover Sh of Sg and some d such that the loop γ d lifts to an embedded loop
in Sh . There exists then a finite characteristic cover, say of degree d, of pointed surfaces
f : (Sh, z̃) → (Sg, z) so that the d-th powers of all based loops from M admit simple
lifts based at z̃. It follows that the d-th powers of based loops from Sn(Sg) lift to simple
based loops in Sh .

Observe that the restriction of any automorphism of πg to the (image of) πh , viewed
as a subgroup, is an automorphism of πh . This defines a homomorphism F : "1

g → "1
h .

If ϕ ∈ "1
g is such that ϕ(x) = x , for any x ∈ πh , then ϕ(xd) = xd , for any x ∈ πg .

Since surface groups are bi-orderable (this goes back to Magnus) we have ϕ(x) = x for
any x ∈ πg , as a strict inequality for some x would imply a strict inequality for its d-th
powers. Therefore F is injective.

Recall that for any based loop γ on Sg we have f ( f −1(γ )) = γ d ∈ π1(Sg, z), as
the loop γ is traveled d-times. If γ ∈ Sm(Sg), there exists some simple lift γ̃ based at
z̃. It follows that f (γ̃ ) = γm(γ ) ∈ π1(Sg, z), where m(γ ) is a divisor of d.

Denote by adSg,γ the action by conjugacy by γ , namely the image of γ into "1
g =

Aut+(πg). As γ d belongs to the image of πh we can compute:

F(adSg,γ d ) = adSh ,γ̃ d/m(γ )

It follows that the image by F of the group Sm(Sg)[nd] is contained into S(Sh)[n].
Although F(πg) is not contained into πh , it contains πh of finite index dividing d

since for any element γ ∈ πg its image F(adSg,γ )
d ∈ πh .
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Further the map F induces a homomorphism

F : B(πg, nd,Sm(Sg)) → "1
h/F(Sm(Sg)[nd])

Now, the subgroup πh/F(Sm(Sg)[nd]) is of finite index into the image F(B(πg, nd,Sm
(Sg))). As

F(Sm(Sg)[nd]) ⊂ S(Sh)[n] ⊂ πh

and πh is a normal subgroup in "1
h , the group πh/F(Sm(Sg)[nd]) surjects onto the

Burnside-type group B(πh, n,S(Sh)).
It follows that the group B(πg, nd,Sm(Sg)) has a finite index subgroupwhich surjects

onto B(πh, n,S(Sh)), and in particular it is not virtually prosolvable nor solvable-by-
finite or finite-by-solvable.

Remark 4.1. If we had proven that d = 1 is convenient for allm then the family of finite
quotients of B(πg, nd,Sm(Sg)) would provide a negative answer to Problem 4’ from
[45].

Remark 4.2. It would be interesting to know whether the image of ̂B(πg, p,M) →∏
q≥m(p) G p,(i)(Zq) is open.

Remark 4.3. The arithmetic group G p,(p−3)(Z), for g ≥ 3 and prime p ≥ 5 has the
congruence property. This follows from results of Tomanov (see [41], Main Thm. (a))
and Prasad and Rapinchuk (see [32], Thm. 2.(1) and Thm. 3) on the congruence kernel
for Q -anisotropic algebraic groups of type 2An−1, with n ≥ 4. Moreover, G p,(p−3)(Z)
is cocompact in G p,(p−3)(R), since it is Q -anisotropic, by a classical result of Borel and
Harish-Chandra (see [3]).

4.3. Proof of Corollary 1.3. We have the following sequence of inclusions:

ρp,(p−3)(πg) ⊂ ρp,(p−3)(") ⊂ ρp,(p−3)("
1
g) ⊂ PG g,p,(p−3)(Z)

Proposition 4.1 shows that for g ≥ 2 and large enough prime p ≡ 3(mod 4) the reduction
modqk sendsρp,(p−3)(πg) onto PG g,p,(p−3)(Z/qkZ), for all but finitelymany primes q.
Therefore, all groups in the sequence above have the same image PG g,p,(p−3)(Z/qkZ)
under the reduction mod qk .

For infinitelymanyq the groups PG g,p,(p−3)(Z/qZ) are either of the form PSL(Ng,p,
Fq) or PSU (Ng,p,Fq), for some Ng,p going to infinity with p. This gives the first as-
sertion of Corollary 1.3.

Eventually, the fundamental group π1(M3) of the fibered 3-manifold M3 with mon-
odromy ϕ ∈ Aut+(πg) is isomorphic to the semi-direct product πg $ϕ Z, where the
action of the generator of Z on πg is given by ϕ. Now, π1(M3) embedds in "1

g , since it
is isomorphic to the preimage of the group ⟨ϕ⟩ ⊂ "g generated by the class ϕ ∈ "g of
ϕ, under the homomorphism "1

g → "g . Then the claim follows from above.

Remark 4.4. Quantum representations are asymptotically faithful (see [1,9]); for a sur-
face of genus g ≥ 2 with one boundary component and an infinite set A of odd numbers
we have (see [9], Thm.3.3):

∩p∈A,i∈Cp ker ρg,p,(i) = 1 ∈ "1
g
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It seems that ([25]) the methods of [23,24] could improve the asymptotic faithfulness
above to the case where we only consider a single boundary color for each p, namely
that:

∩p∈A ker ρg,p,( f (p)) = 1 ∈ "1
g, provided that lim

p→∞
f (p)
p

= 1

Now, a non-trivial element of PG g,p,(p−3)(Z) can be detected by reduction modulo
some prime q belonging to any given infinite set of primes. Thus projections onto finite
simple quotients PG g,p,(p−3)(Z/qZ) could detect any non-trivial element of "1

g , when
p and q belong to (any) infinite sets of primes.

4.4. Proof of Theorem 1.4. Consider the homomorphism/g,p,q obtained by composing
the projection on a simple factor, the reduction mod qk and ρp,(p−3) as follows:

"1
g → ρp,(p−3)("

1
g) ⊂ PG g,p,(p−3)(Z) → PG g,p,(p−3)(Z/qZ)

Recall from the first lines of the proof of Corollary 1.3 that for any large prime p ≡
3 (mod 4) and large enough prime q we have:

/g,p,q(πg) = /g,p,q("
1
g) = PG g,p,(p−3)(Z/qZ)

We obtained therefore infinitely many surjective homomorphisms / : Aut+(πg) →
F onto finite simple groups F of Lie type,with the property that/(πg) = F (we dropped
the subscripts to simplify the notation). We now claim that ker/|πg are characteristic
subgroups, which will settle the result.

Observe first that every subgroup ker/|πg ⊂ πg is Aut+(πg)-invariant because:

/|πg (ϕ(x)) = /(ϕxϕ−1) = 1, for x ∈ ker/|πg ,ϕ ∈ Aut+(πg)

We are almost done since Aut+(πg) is an index 2 subgroup of the group of all
automorphisms Aut(πg). To proceed further, realize Sg in the Euclidean space as the
double along the boundary of Sg

2 ,1
, if g is even and Sg−1

2 ,2, when g is odd, respectively.
Let τ denote the Euclidean symmetry exchanging the two halves of Sg , so that τ is an
involution reversing the orientation of Sg .We denote by the same letter the corresponding
mapping class τ ∈ Aut(πg). Further, Aut(πg) is generated by Aut+(πg) and an arbitrary
orientation reversing mapping class, in particular τ .

We have now the following lemma whose proof is postponed a few lines:

Lemma 4.2. Thehomeomorphism τ induces ananti-linearmap τ∗ : Wg,p,(i) → Wg,p,(i)
which coincides with the anti-linear involution J induced by the complex conjugation
of coordinates.

The group of homeomorphisms of %g,1 which are identity on the boundary acts on
the space of conformal blocksWg,p,(i), since their construction is functorial. This action
provides a representation of Aut(πg) into the general linear group of the real vector
space underlying Wg,p,(i) which extends ρp,ζ,(i). We keep the same notation ρp,ζ,(i) for
this extension.

Now, Lemma 4.2 gives us:

ρp,ζ,(i)(τ xτ−1) = Jρp,ζ,(i)(x)J = ρp,ζ ,(i)(x), for x ∈ Aut+(πg)
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Further, if we identify τ (x) ∈ πg with its image by the point pushing map πg → "1
g

arising in the Birman exact sequence, we can write:

τ (x) = τ xτ−1, for x ∈ πg

We then obtain from above:

ρp,ζ,(i)(τ (x)) = ρp,ζ,(i)(τ xτ−1) = Jρp,ζ,(i)(x)J = ρp,ζ ,(i)(x), for x ∈ πg

Therefore, ker(ρp,(i)|πg ) is τ -invariant and hence a characteristic subgroup of πg .
The complex conjugation J induces an automorphism of G g,p,(i) keeping invariant

the lattice G g,p,(i)(Z). Then the two surjective homomorphisms /|πg and /|πg ◦ τ :
πg → F are equivalent, so that ker(/|πg ) is both Aut+(πg)-invariant and τ -invariant
and hence a characteristic subgroup, as claimed. This proves Theorem 1.4.

Proof of Lemma 4.2. The homeomorphism τ extends to S3 and sends any link into its
mirror image. Recall that the Kauffman bracket invariant ⟨ ⟩A at the parameter A is
well-behaved with respect to the mirror symmetry, namely we have:

⟨τ (K )⟩A = ⟨K ⟩A−1

Therefore τ induces amap at the level of skeinmodules of the handlebodies Hg (and Hg)
still denoted τ : SA(Hg) → SA−1(Hg). According to the definition of the sesquilinear
form ⟨, ⟩ we have:

⟨τ (x), τ (y)⟩A−1 = ⟨τ (x , y)⟩A−1 = ⟨x , y⟩A−1

It follows that x ∈ ker⟨, ⟩A if and only if τ (x) ∈ ker⟨, ⟩A−1 . We obtain Wg,p,(i) as the
quotient by the kernel of ⟨, ⟩A after specifying an embedding Z[A, A−1] → C sending
A to a 2p-th root of unity. It follows that τ induces the complex conjugation at the level
of Wg,p,(i). In other terms τ provides an isomorphism between the space of conformal
blocks Wg,p,(i) associated to the surface %g,(i) and its dual W ∗

g,p,(i) which is associated
to the surface −%g,(i) with the opposite orientation. ⊓,
Remark 4.5. More generally, kernels of unitary TQFT representations are characteristic
subgroups of πg .

4.5. Generalized congruence quotients. A principal congruence subgroup of "1
g is the

kernel of the homomorphism Aut+(πg) → Aut(F) induced by some surjective homo-
morphism πg → F onto a finite characteristic quotient F of πg . We actually only need
an Aut+(πg)-invariant quotient F . The image of Aut+(πg) within Aut(F) is called a
principal congruence quotient. This construction naturally extends to all characteristic
quotients F of πg , not necessarily finite ones; we will call them generalized principal
congruence subgroups and quotients respectively.

Proposition 4.3. If ρp,(i)|πg : πg → PG g,p,(i) is Zariski dense then the mapping class
group representation ρp,(i) is equivalent to a generalized principal congruence repre-
sentation. In particular, this holds when i = p − 3.
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Proof. The action by conjugacy of ρp,(i)("
1
g) on ρp,(i)(πg) provides a homomorphism:

1 : ρp,(i)("
1
g) → Aut(ρp,(i)(πg))

In the proof of Lemma 4.2 we noted that ρp,(i)(πg) are characteristic quotients of πg . It
remains to prove that the homomorphism1 is injective. Let ϕ ∈ "1

g such that ρp,(i)(ϕ) ∈
ker1. This is equivalent to:

ρp,(i)(ϕ)ρp,(i)(x)ρp,(i)(ϕ)
−1 = ρp,(i)(x), for all x ∈ πg

Since ρp,(i)(πg) is Zariski dense in PG g,p,(i) this implies that ρp,(i)(ϕ) is identity. This
proves the claim. ⊓,
Remark 4.6. The same proof works under the weaker assumption that Ad ◦ ρp,(i)|πg
is irreducible (see [39], Prop.14). Moreover, if we suppose that ρp,(i)|πg is irreducible,
then the homomorphism 1 has a finite abelian kernel (see [39], Prop.15).

Proposition 4.4. The finite quotients PG g,p,(p−3)(Z/qkZ) of "1
g obtained in Proposi-

tion 4.1 are principal congruence quotients.

Proof. The proof of Theorem 1.4 and Proposition 4.3 above show that the image of "1
g

acts by conjugacy on the finite characteristic quotient of πg obtained by reduction mod
qk of ρp,(p−3)(πg). The reduction mod qk of the map 1 above is still injective since
PG g,p,(p−3)(Z/qZ) are center-free. ⊓,

4.6. Comments. The statement of Theorem 1.4 had several other reformulations which
were discussed in ([22], 6.4). Conjecture 6.12 from [22] claims that for all finite dimen-
sional linear representations of the group Aut(Fn) of automorphisms of the free group
Fn on n ≥ 3 generators the image of the subgroup Fn of inner automorphisms is virtually
solvable. Proposition 3.2 above shows that a similar statement cannot hold when the free
group Fn is replaced by a surface group πg , g ≥ 2. This already follows from ([18], Cor.
4.2). Although representations ρ̃g,p,(i) arising here are all projective representations,
they can be easily converted into linear representations with the same properties by con-
sidering the tensor product ρ̃g,p,(i) ⊗ ρ̃∗

g,p,(i) with their respective dual representations.
This conjecture is both related to the non-linearity of Aut(Fn), for n ≥ 3 following
Formanek and Procesi and the Weigold conjecture. The later states that Aut(Fn) acts
transitively on the set of kernels of surjective homomorphisms Fn → G, for any finite
simple group G (see [22]) and it is known to hold for large enough n in terms of G.

In ([22], section 10) the authors discussed similar questions for a surface group. Any
homomorphismπg → G defines a class in H2(G)which is the image of the fundamental
class of H2(πg). This class is left invariant by the left composition with automorphisms
from Aut(πg) and its image in H2(G)/Out(G) is also invariant by the right composi-
tion with automorphisms from Aut(G). The extended Weigold conjecture asks whether
Aut(πg) (or just Aut+(πg)) acts transitively on the set of kernels of surjective homo-
morphisms πg → G corresponding to a given class in H2(G)/Out(G), provided G is a
finite simple group and g ≥ 3. This was proved to hold for large enough g, depending
on G in [6].

The existence of characteristic finite simple quotients of πg , g ≥ 2 from Theorem
1.4 and the discussion in ([22], 6.4) also show that this analog of the Weigold conjecture
for surface groups does not hold. We choose p such that Ng,p are odd and then primes
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q such that q − 1 is coprime to Ng,p. Then H2(PSL(Ng,p,Fq)) = 1, so that there is
only one class of homomorphisms. One knows from [6] that there exists a large orbit of
Aut(πg) where this group acts as an alternating group. On the other hand for infinitely
many finite quotients of πg of the form PSL(Ng,p,Fq) the action of Aut(πg) is trivial.
Thus for large enough q there exist several Aut(πg)-orbits (in the same class).

Another problem stated in ([22], 6.4) for the free group is whether, for a Chevalley
group scheme F and surjective homomorphisms/ : πg → F(Fq) the number of conju-
gacy classes in the image /(S(Sg)) of primitive elements (i.e. simple closed curves) is
unbounded as q → ∞. For those / encountered in the proof of Theorem 1.4 the image
of "1

g is still F(Fq) and hence there are at most
[ g
2

]
+ 1 conjugacy classes for all q.

Acknowledgements. The authors are indebted to C. Blanchet, S. Checcoli, P. Eyssidieux, T. Koberda, J.
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