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Magnetic domain-walls travelling through a magnetic circuit1 perform naturally and 

simultaneously logic and memory operations, eliminating the von Neumann information 

bottleneck2. The motion of magnetic domain-walls along nanoscale tracks is thus promising 

to achieve high-speed, low-power and non-volatile information processing, and an 

extensive range of domain-wall-based logic architectures is being explored3–6. Traditional 

domain-wall devices suppress intrinsic stochastic processes to enhance accuracy7,8. Still, 

domain-wall stochasticity could be turned into an asset by using stochastic computing 

frameworks, such as Bayesian sensing9 or random neural networks10. These approaches 

however require controlling and tuning stochasticity. An iconic device used to illustrate the 

emergence of order from controlled randomness is the Galton board11. In this device, 

multiple balls fall into an array of pegs to generate a bell-shaped curve that can be modified 
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via the array spacing or the tilt of the board. Here, we demonstrate the controllability of 

domain-wall stochastic processes by recreating this experiment at the nanoscale. Balls are 

substituted by magnetic domain-walls, and bifurcating nanowires recreate the array of 

pegs. By probing domain-wall propagation through such a structure a large number of 

times, we demonstrate that stochastic domain-wall trajectories can be controlled and fine-

tuned. This result sets the foundations for an integration of stochastic computing 

frameworks into domain-wall devices, opening new paths towards post-Von Neumann 

spintronics. 

A foreseen stalling of Moore’s Law12 and the success of brain-inspired artificial-intelligence 

hardware13–16 have triggered an intense search for spintronic devices that can perform 

complex computational tasks efficiently17. Magnetic vortex nano-oscillators15, magnetic 

domain-wall synapses18, and spin-ice networks19 are part of this emerging family of 

alternative physics-based computing platforms17. In magnetic domain-wall devices, non-

volatile information storage, transfer, and processing can occur simultaneously through the 

controlled movement of oppositely magnetized regions in a magnetic track1, placing such 

devices under intense investigation3–6.  

Stochasticity in domain-wall motion is highly detrimental for traditional Boolean logic 

applications, and great efforts have been made to inhibit it in devices7,8. However, a powerful 

set of stochastic computing frameworks exists and is under intense investigation. These 

frameworks function by generating and transforming probability distributions, and can 

efficiently deal with data in which uncertainty is intrinsically present, or with difficult 

optimization tasks20–22. In this context, the once detrimental DW stochasticity becomes an 

exploitable asset, in the form of a natural source of randomness directly deployable within 
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more complex architectures. Here, we demonstrate that domain-wall stochasticity is 

controllable and tuneable by recreating one of the iconic experiments in statistics: the Galton 

board11. 

Our nanoscale magnetic equivalent of a Galton board is composed of an elliptical domain-

wall nucleation pad and a bifurcating network of Ni80Fe20 magnetic nanowires (Figure 1a), 25 

nm thick and 200 nm wide (see Methods). Upon application of an external magnetic field in 

the x-y plane (H1), the elliptical pad reverses and injects a domain-wall into the network. The 

domain-wall then travels downwards, taking a random decision at each node it encounters. 

Magneto-Optical Kerr Effect (MOKE) microscopy (Figure 1b, see Methods) reveals the path 

taken by the domain-wall. Figure 1c illustrates, for the domain-wall path in Figure 1b, the 

magnetic orientation of each segment in the board. The ‘?’ symbol indicates the nodes where 

the domain-wall took a random decision. 

 

Figure 1: Nanoscale magnetic Galton board. (a) Scanning electron micrograph of a nanoscale magnetic Galton 

board composed by an elliptical nucleation pad at the top and a branching network of magnetic nanowires. 
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Inset: Round edges are employed at nanowire merging points to prevent domain-wall pinning. (b) Longitudinal 

Kerr Effect (MOKE) imaging of magnetic domain-wall propagation. (c) Schematics of the magnetisation reversal 

triggered by the domain-wall trajectory in (b). An 18mT uniaxial field (H1) along the -y direction was employed 

to inject a domain-wall, which took a random decision at each node marked '?'. (d) Distribution of activated 

board outputs after N = 845 single-cascade events in 2,403 field cycles. (e) Order in which the 845 output 

activations occur. (f) Binarized output sequence employed to test randomness quality using the NIST test suite, 

obtained by mapping odd outputs in (e) to 0 and even outputs to 1. Scale bars: (a, b) 5µm, (a, inset) 500nm. 

In this experiment, the detection of a large number of domain-wall propagation events is 

required. To achieve this, we optimize a full-field MOKE microscope (see Methods) to obtain 

201,852 high-resolution magnetic images, a number hardly reachable by other means such as 

X-ray imaging or magnetic force microscopy. An automatic extraction of domain-wall paths 

from this large dataset allows us to precisely probe the properties of each node in the Galton 

board, the tuneability of the random process, and the degree of randomness in domain-wall 

path selection. 

We first study domain-wall motion under symmetric conditions (Field H1 along y), counting 

the number of times that a domain-wall reaches each of the eight outputs (Figure 1d). 

Stochastic domain-wall propagation is observed, with the distribution obtained approaching 

a binomial one. True stochasticity also requires independence between events in the time 

domain, i.e., the order of output activations (Figure 1e). For a quantitative evaluation of this 

degree of randomness, we binarized the sequence (mapping even outputs to 1, and odd 

outputs to 0, see Figure 1f) and passed it through the NIST Statistical Test Suite for Random 

and Pseudorandom Number Generators23, which searches binary sequences for deviations 

from complete unpredictability. The sequence passes the 13 tests applicable to its length (see 

Methods), indicating that it comprises a highly uncorrelated set of random events. Another 

possibility in domain-wall systems is to have short-term memory, leading to correlations 

between subsequent domain-wall decisions24. Detailed trajectory analysis in the Galton board 
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reveals that no significant memory is present, which we associate to a chaotic interaction 

between magnetic vortices and anti-vortices in the domain-wall25,26 (see Methods).  

We continue by investigating the tuneability of the decision process at each node, a critical 

degree of freedom for the generation of arbitrary distributions. We define ‘node probability’ 

as the probability of a right turn at a given bifurcation, and we evaluate how the node 

probability depends on the angle θ between the driving field H1 and the y-axis (Figure 2a). 

Introducing this angle is the magnetic equivalent to misaligning a macroscopic Galton board 

with respect to the gravitational field. 
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Figure 2: Tuneability of node probability. (a) The probability of a magnetic domain-wall (DW) for turning right 

at each node marked '?' (node probability) is controlled by tuning the angle between the applied field H1 and 

the symmetry axis of the Galton board (y). A dark-yellow arrow indicates the direction (left turn) favoured by 

the angle θ in the diagram. (b) Histogram of node probability vs. field angle for the 28 nodes in the Galton board 

studied in Figure 1. (c) Mean and standard deviation of the distribution in node probability as a function of field 

angle θ. Dashed line: guide to the eye hyperbolic tangent fit. (d) Effect of field alignment on the magnetic Galton 

board output distribution. In colour: output distribution, light-grey shade: distribution at θ=0.0°. Colour follows 

the scale in (e). N indicates the number of events in each distribution after 2,403 field cycles. Red circles and 

green dots in panels θ=0.0° and θ=3.0° indicate the theoretically expected distribution for an ideal Galton board 

with the same probability in all nodes (red) and for a board in which each probability corresponds to the 

measured probability in panel (f) (green). (e) Spatial distribution of node activation as a function of θ. (f) Spatial 

distribution of node probability values. Confidence intervals given in Supplementary Figure 3. Grey nodes 

indicate impossibility to perform the measurement (insufficient counts/not-applicable). (b-f) ±0.3° experimental 

uncertainty in the alignment between the θ=0.0° direction and the y axis. 

The structure studied contains 28 nodes, the first six marked ‘?’ in Figure 2a, and as a MOKE 

image is available for each domain-wall propagation event, node probability can be studied 

for each node independently, at every field angle. We monitor first the overall evolution of 

node probability with θ. Figure 2b plots node probability for the 28 nodes as histograms, at θ 

= 0.0° (green), 3.0° (blue) and -3.0° (orange) respectively. We directly observe that a field tilt 

of 3.0° leads to a uniform bias in node probability of approximately 25 percentage units. 

Figure 2c displays the centre and standard deviation of the histograms for a larger number of 

field alignments, revealing that this bias is continuous and smooth in θ.  Examining the output 

probability distributions (Figure 2d), a lateral shift of the distribution is observed as direct 

consequence of such uniform shift in node probability, analogously to the macroscopic case 

of a tilted board. 

To confirm the behaviour, we further characterize the complete board (Figures 2e-f), looking 

at the number of trajectories that went through each node (Figure 2e) and evaluating locally 

all node probabilities (Figure 2f) by measuring the fraction of domain-walls that took a right 

turn. The expected tilting in the distribution of domain-wall trajectories is observed in Figure 
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2e, and a narrow distribution in node probability is observed at all fields (See also Figures 1b-

c) with no obvious spatial correlations, indicating that variability between nodes is likely 

caused by small random differences during nanofabrication. 

The red circles in Figure 2d show the expected output distribution of an ideal Galton board 

with uniform probabilities of 50% (θ = 0.0°) and 68% (θ = 3.0°) respectively. These red circles 

do not coincide with the observed distributions. However, if we calculate numerically the 

distribution resulting from cascading the individual node probabilities measured 

experimentally in Figure 2f, an accurate match is observed, represented by green dots in 

Figure 2d. This shows that the generated output distribution can be precisely computed by 

knowing the individual node probabilities, and can be controlled through these probabilities.  

Results in Figure 2 set the foundations for creating devices in which node probability is tuned 

locally by means of electrical currents or geometrical modifications, to generate arbitrary 

output distributions. Given the wide and continuous tuneability range of node probabilities 

demonstrated (Figure 2e), generating an arbitrary probability distribution in such a device 

would only require a simple numerical optimization protocol. 

Finally, we illustrate how the lattice structure can be engineered to further tune the output 

distribution and its normalization. In a complete board, all possible paths through the 

structure lead to an output, and therefore a consistent number of activations (N) is obtained 

at all operation angles. The structure in Figures 3a and b, however, breaks this condition by 

removing the central vertical element of the board and leaving the oblique elements marked 

*. These elements act as domain-wall sinks, preventing them from reaching an output and 

changing the resulting distribution. These sinks are the nanoscale equivalent to drilling a hole 

at the back of a macroscopic Galton board. 
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The measured consequences in the output distributions are presented in Figures 3c and d. At 

θ = 0.0°, a significant flattening of the distribution occurs compared to the complete board 

(see solid bars vs. grey lines), as well as a reduction of the number of detected events N. For 

tilted fields, the lateral shift of the output distribution is larger than in the complete board, 

while the reduction in N is less pronounced. These effects can be directly correlated to the 

number of domain-walls that travel through the central segment in Figure 2e, i.e., a reduction 

of 50% in N is observed at θ = 0.0°, whereas a reduction of 30% in N is observed at θ = ±3.0°. 

In future devices, strategic positioning of domain-wall sinks or stochastic pinning traps may 

be exploited in addition to node probability tuning to control the output distributions. 

 

Figure 3: Galton board lattice edition. (a) Scanning electron micrograph of a nanomagnetic Galton board with 

a missing central element. The segments marked '*' act as domain-wall sinks. (b) The probability of a magnetic 

domain-wall (DW) for turning right at each node marked '?' (node probability) is controlled by tuning the angle 
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between the applied field H1 and the symmetry axis of the Galton board (y).  (c) Effect of field alignment θ on 

the distribution of output activations. Grey lines display the distribution of a complete board. N indicates the 

number of events in the distribution after 2,403 field cycles. (d) Spatial distribution of node activation as a 

function of θ. The node removed is indicated with a white cross. Scale bar: 5µm. 

In conclusion, the suitability of magnetic domain-walls to generate and sample tuneable 

probability distributions is demonstrated by evaluating key randomness metrics in a 

nanoscale magnetic Galton board. Continuous tuneability of the domain-wall path-selection 

process is achieved and highly-uncorrelated randomness is demonstrated in the time and 

space domains. Further tuneability is achieved by using domain-wall sinks, which selectively 

destroy domain-walls passing through some nodes. These results extend the range of 

applicability of magnetic domain-walls beyond deterministic computing, opening their use as 

information carriers in high-speed non-volatile stochastic devices. 
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