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Abstract

Lexical semantics and world knowledge are crucial for interpreting bridging anaphora. Yet,
existing computational methods for acquiring and injecting this type of information into bridging
resolution systems suffer important limitations. Based on explicit querying of external knowledge
bases, earlier approaches are computationally expensive (hence, hardly scalable) and they map the
data to be processed into high-dimensional spaces (careful handling of the curse of dimensionality
and overfitting has to be in order). In this work, we take a different and principled approach which
naturally addresses these issues. Specifically, we convert the external knowledge source (in this
case, WordNet) into a graph, and learn embeddings of the graph nodes of low dimension to capture
the crucial features of the graph topology and, at the same time, rich semantic information. Once
properly identified from the mention text spans, these low dimensional graph node embeddings are
combined with distributional text-based embeddings to provide enhanced mention representations.
We illustrate the effectiveness of our approach by evaluating it on commonly used datasets, namely
ISNotes (Markert et al., 2012) and BASHI (Rösiger, 2018). Our enhanced mention representations
yield significant accuracy improvements on both datasets when compared to different standalone
text-based mention representations.

1 Introduction

An anaphor is an expression whose interpretation depends upon a previous expression in the discourse, an
antecedent. A Bridging anaphor is a special type of anaphor where there is non-identical or associative
relation with its antecedent (Clark, 1975), as in the following example:

“Starbucks has a new take on the unicorn frappuccino. One employee accidentally leaked a picture of
the secret new drink.”

In this case, the anaphor One employee depends on the antecedent Starbucks for the complete interpre-
tation and holds non-identical relationship with the antecedent, hence, a bridging anaphor.

We here address the problem of learning from a set of anaphor-antecedent pairs a predictor capable of
accurately identify such pairs in unseen texts. More precisely, if bridging resolution comprises two main
tasks, bridging anaphora recognition and bridging anaphora resolution, we solely focus on the task of
bridging anaphora resolution and assume that bridging anaphor recognition has already been performed.

Semantic information on anaphor-antecedent pairs plays a crucial role in resolving bridging anaphora.
Consider again the previous example: if the resolution system has the knowledge that Starbucks is a
company and companies have employees, then it is easy to establish the link between them. Standard
text-based features either hand-crafted or automatically extracted from word embeddings (Mikolov et
al., 2013a, Pennington et al., 2014), are not sufficient for bridging resolution (Hou, 2018b). Earlier
systems (Poesio et al., 2004, Lassalle and Denis, 2011) have proposed to extract this information from
knowledge bases, the web, or raw text through queries of the form “X of Y”. The estimated number of
occurrences in these sources gives the probability of relations between X and Y. These types of queries
were generalized by (Hou et al., 2013) where all queries of the type “X preposition Y”, i.e. beyond
the mere “of” preposition, were considered. However, these approaches extract only shallow features,
capturing relations between pair of nodes instead of taking advantage of broader information that is



present in knowledge graphs. Therefore, attempting to extend these strategies to take into account a larger
amount of information on mentions may translate into learning problems where the input space is of high
dimension, which might be a hurdle when dealing with moderate size datasets – for instance, the datasets
that we consider here, i.e ISNotes (Markert et al., 2012) and ARRAU (Uryupina et al., 2019) respectively
contain 663 training pairs and 5512 training pairs.

Recently proposed approaches tried to remedy these shortcomings (Hou, 2018b, Hou, 2018a). Hou
learned embeddings on the pairs of nouns present in the text which are connected by prepositional or
possessive structure (e.g. “X of Y”). She creates “pseudo knowledge” by generating these noun-pairs
and learn embeddings on these pairs. Her approach is better at capturing fine-grained semantics than
vanilla word embeddings such as Word2Vec (Mikolov et al., 2013a), Glove (Pennington et al., 2014), etc.
however, it still depends on the presence of the required noun-pairs in the corpus. The use of knowledge
graphs, either manually or automatically constructed, can alleviate this problem as they contain general
semantic and world-knowledge. We empirically demonstrate that embeddings constructed on these graphs
indeed provide additional information and complement these text-based embeddings.

In the present work, we propose to use low-dimensional graph node embeddings on knowledge graphs
to capture semantic information. We use WordNet 1 (Fellbaum, 1998) as a knowledge graph in the
experiments, though our approach can be extended to any knowledge graph. We hypothesize that the low-
dimensional vectors learned on the nodes of WordNet graph capture lexical semantics such as hypernymy,
hyponymy, meronymy, etc. as well as general relatedness between nodes. This way we eliminate the
cumbersome task of manually designing features as well as the burden of querying. Moreover, as we
shall see, the low dimensionality of the embedding space does not go against its use with small datasets.
But obtaining node embeddings for a mention is non-trivial a task, as it requires mapping a potentially
ambiguous multi-token expression onto a specific node in the graph (synset in case of WordNet). This
entails several key steps, such as: (i) mention normalization where the mention is mapped to a standardized
form which might be present in the graph, (ii) handling the absent knowledge case where the referred
entity is unavailable in the knowledge graph and possibly (iii) sense disambiguation in the presence of
multiple senses for the mention. We propose simple yet effective heuristics to address these issues, as
detailed in the coming sections. These knowledge graph embeddings are combined with distributional
text-based embeddings to produce improved mention representations.

We address the problem of bridging resolution as a ranking problem, where the trained model assigns
a score to anaphor-candidate antecedent pairs, preferring this ranking approach over a classification
perspective for it to be less sensitive to class-imbalance, and making it focused on learning relative scores.
Specifically, we train a ranking SVM model to predict scores for anaphor-candidate antecedent pairs, an
approach that has been successfully applied to the related task of coreference resolution (Rahman and
Ng, 2009). We observe that integrating node embeddings with text-based embeddings produces increased
accuracy, substantiating the ability of graph node embeddings in capturing the semantic information.

2 Related Work

Bridging anaphora resolution. Earlier approaches (Poesio et al., 1997, Poesio and Vieira, 1998, Poesio
et al., 2004, Lassalle and Denis, 2011) put restrictions on the resolution task either by constraining the
types of noun-phrases (NP) to be considered as bridging anaphor or by restricting relations between
bridging anaphors and antecedent where most of the approaches tackle specific type of anaphor like
definite noun-phrases. A pairwise model combining lexical semantic features as well as salience features
to perform bridging resolution limited to mereological relations only is studied by (Poesio et al., 2004) on
the GNOME corpus. Lexical distance is used as one feature in their approach. WordNet (Fellbaum, 1998)
is used to acquire the distance. For a noun head X of an anaphor x and Y of potential antecedent y, the
query of the form “X of Y ” is provided to WordNet. But recall in WordNet is low, so as an alternative,
Google API is used to get the distance between anaphor-antecedent. The API yields number of hits, from
which lexical distance is calculated. Based on this method (Lassalle and Denis, 2011) developed a system

1WordNet is a lexical database and not a knowledge graph in the stricter sense. But, the graph is constructed over it, to be
subsequently used as the knowledge graph.



that resolves mereological bridging anaphors in French.
Improving on the previous approach, (Hou et al., 2013) proposed a generic query with all possible

prepositions. Their query is formulated as “X preposition Y ” instead of limiting to of preposition. They
propose a global model as opposed to previous approaches that relied only on local features. In this model,
they infer links globally instead of choosing from candidate set of the specific anaphor as they argue
that the probability of noun phrase (NP) being antecedent increases if it is already antecedent to another
anaphor. Their assumption is opposite to the local salience hypothesis of (Sidner, 1979) as the local
models indirectly assume that the most salient candidate among the nearest context is the best suitable
for antecedent. Rule-based full bridging resolution system is proposed in (Hou et al., 2014) where they
devised rules for linking anaphors to antecedents. Some of the rules as well as the corresponding features
are acquired by querying the knowledge sources, albeit different queries such as a query to get a list of
nouns which denote a part of building − wall, window, or list of personal relations − husband, sister, etc.
They also propose a learning-based system by converting the rules into features but observe slight gain.

The work (Hou, 2018b) created word embeddings for bridging (embeddings PP) by exploring the
syntactic structure of noun phrases (NPs) to derive contexts for nouns in the GloVe model. She generalizes
previous approaches of querying as her PP context model uses all prepositions for all nouns in big corpora.
The deterministic approach proposed in (Hou, 2018a) is the extension to the work done in (Hou, 2018b)
which creates new embeddings (embedding bridging) by combining embeddings PP and GloVe. Her
approach is efficient and solves the scalability and curse of dimensionality issues. But her approach
depends on the presence of the NP having a specific syntactic structure so that the algorithm can identify
it as “X preposition Y ”. This algorithm misses those anaphor-antecedent pairs which do not possess this
structure. The work (Roesiger et al., 2018) uses neural networks trained on the relation classification
tasks to get the semantic information between anaphor and antecedent. This information is integrated
into the state-of-the-art systems for coreference and bridging resolution. The system fails at capturing
broader semantic relations as only six semantic relations are predicted with neural networks, due to this
they observe marginal improvement in the bridging resolution.

All the previous works assume that the mentions are detected, i.e., noun phrases are presented and the
task is to choose the correct NP as an antecedent. This is discarded in the latest system, BARQA (Hou,
2020). She casts bridging anaphora resolution as a question answering problem where answer produces
antecedent for an anaphor. She also pointed out that most of the previous approaches relied only on the
features of the antecedent-anaphor ignoring the context around them. However, she ignores any semantic
information and relies on BERT (Devlin et al., 2018) architecture to capture both contextual information
as well as required common sense knowledge.

Knowledge Graph Embeddings Graph embeddings represent graph (whole or sub-graph) or nodes
with the lower dimensional vector. The work (Hamilton et al., 2017) details a generic framework of the
commonly used graph embedding algorithms. In recent times, embedding algorithms specifically for
knowledge graphs have been proposed − RESCAL (Nickel et al., 2011), DistMult (Yang et al., 2014),
ComplEx (Trouillon et al., 2016), HolE (Nickel et al., 2016) learn embeddings for knowledge graph
completion, (Bansal et al., 2019) propose A2N neighborhood attention-based technique, (Xu and Li, 2019)
embed relations with dihedral groups whereas (Nathani et al., 2019) employ graph attention network to
acquire embeddings. In this work, we used WordNet as a knowledge graph so we are interested in the graph
node embeddings learned particularly on WordNet (Goikoetxea et al., 2015, Saedi et al., 2018, Kutuzov et
al., 2019). Though, (Goikoetxea et al., 2015, Saedi et al., 2018) do not produce embeddings for senses
present in WordNet as they encode corresponding words. However, path2vec (Kutuzov et al., 2019)
produces embeddings for each sense present in WordNet by optimizing graph-based similarity metric. The
use of knowledge graph embeddings to infuse common sense knowledge into NLP systems is becoming
popular, and our work falls into this category. Language model (Peters et al., 2019), domain-specific
natural language inference (NLI) (Sharma et al., 2019), entity disambiguation (Sevgili et al., 2019) have
been some of the tasks where graph embeddings have been used. To the best of our knowledge, this is the
first work where graph embeddings are used for bridging anaphora resolution.



3 Knowledge-aware mention representation

In this paper, we propose a new, knowledge-aware mention representations for bridging resolution. These
representations combine two components: (i) distributional embeddings learned from raw text data, and
(ii) graph node embeddings learned from relational data obtained from a knowledge graph. Specifically,
the final representation vm for a mention m is obtained by concatenating the text-based contextual embed-
dings gm and the knowledge graph node embeddings hm: vm = [gm, hm].

For the distributional embeddings gm, we use off-the-shelf word embeddings such as word2vec
(Mikolov et al., 2013a), glove (Pennington et al., 2014), BERT (Devlin et al., 2018), or embeddings pp
(Hou, 2018b). Except for BERT, we average over embeddings of the mention’s head word and common
nouns appearing in the mention before the head, as mentioned in (Hou, 2018a). With BERT, mention
embeddings are obtained by averaging over embeddings of all the words of the mention.

However, obtaining knowledge graph-based embeddings hm for the mention is a much more challeng-
ing task, comprising different steps. Before detailing those steps, we first briefly describe the knowledge
graph – WordNet and how we compute node embeddings in the following paragraphs.

Knowledge Graph is a graph with nodes being entities or abstract concepts and edges denoting the
relation between them. A node in the knowledge graph can be a real-world entity such as a person, a place,
etc. or can be an abstract concept such as a word, a sense, etc. A knowledge graph can be domain-specific
(WordNet (Fellbaum, 1998) captures the semantic relation between words and meanings) or open domain
(DBpedia (Lehmann et al., 2015) for general-purpose knowledge). The central purpose of knowledge
graphs is to store common sense knowledge in a structured format so that machines can easily access it.
In this work, we have used WordNet as a knowledge repository but our approach is generic and can be
applied with any other knowledge graph.

WordNet (Fellbaum, 1998) primarily consists of synsets, i.e., a set of synonyms of words. The synsets
which refer to the same concept are grouped together giving it a thesaurus-like structure. Each synset
consists of its definition and small example showing its use in a sentence. The synsets are connected with
different relations such as synonymy, antonymy, hypernymy, hyponymy, meronymy, etc. In addition to
the semantic knowledge, it also includes a bit of common sense knowledge such as real world entities like
cities, countries and famous people. However, WordNet stores this knowledge as a database in its basic
form, so a graph is constructed based on WordNet for further use. Subsequently, the node embeddings
learned on this graph will automatically capture the semantic information associated with the senses.

We briefly discuss different WordNet node embedding algorithms used in our study. We use random
walk and neural language model based embeddings (Goikoetxea et al., 2015), matrix factorization based
WordNet embeddings (Saedi et al., 2018) and graph-similarity based path2vec (Kutuzov et al., 2019)
embeddings. The important distinction between these methods is that the first two algorithms (Goikoetxea
et al., 2015, Saedi et al., 2018) produce word embeddings and path2vec produces embeddings corre-
sponding to each sense present in WordNet. The path2vec algorithm naturally encodes WordNet nodes
as it actually produces embeddings for senses as opposed to (Goikoetxea et al., 2015, Saedi et al., 2018)
algorithms as they conflate all the senses to produce word embeddings instead of generating embeddings
for each sense while losing some finer semantic information in the process.

The approach proposed by (Goikoetxea et al., 2015) is based on the well-known neural language
model Continuous Bag of Words and Skip-gram (Mikolov et al., 2013b). The main idea is to produce
artificial sentences from WordNet and to apply the language models on these sentences to produce word
embeddings. For this, they perform random walk starting at any arbitrary vertex in WordNet, then map
each WordNet sense to the corresponding word to produce an artificial sentence. Each random walk
produces a sentence, repeating this process several times gives a collection of sentences. Finally, this
collection of sentences is considered as the corpus for learning word embeddings.

A different approach based on matrix factorization is taken in (Saedi et al., 2018) to produce embed-
dings. The procedure starts by creating the adjacency matrix M from WordNet graph. The element
Mij in the matrix M is set to 1 if there exists any relation between words wi and wj . 2 Furthermore,

2They also experimented by weighting relations differently (e.g. 1 for hypernymy, hyponymy, antonymy and synonymy, 0.8
for meronymy and holonymy and 0.5 for others) but obtained the best results without weighting.



words which are not connected directly but via other nodes should also have an entry in the matrix, albeit
with lower weights than 1. Accordingly, matrix MG is constructed to get the overall affinity strength
between words. In the analytical formulation, MG can be constructed from the adjacency matrix M as
MG = (I − αM)−1 where I is the identity matrix and 0 < α < 1 decay factor to control the effect of
longer paths over shorter ones. Following that, matrix MG is normalized to reduce the bias towards words
which have more number of senses and finally a Principal Component Analysis is applied on it to produce
dense word vectors.

The path2vec (Kutuzov et al., 2019) learns embeddings based on a pairwise similarity between
nodes. The fundamental concept is that pairwise similarity between nodes of the graph should remain the
same after their projection in the vector space. The model is flexible enough to consider any user-defined
similarity measure while encoding. The objective function is designed to produce such embeddings for
nodes which reduce the difference between actual graph-based pairwise similarity and vector similarity. It
also preserves the similarity between adjacent nodes. Formally, for the graph G = (V,E) where V,E
denote a set of vertices and edges, respectively, the objective is −∑

(a,b)∈V

min
va,vb

(
(vT

a vb − s(a, b))2 − α(vT
a vn + vT

b vm)
)

where n,m are adjacent nodes of nodes a, b respectively, s(a, b) is the user-defined similarity measure
between a, b and va,vb,vn,vm denote the embeddings of a, b, n,m, respectively. To show the ability of
their model in adapting to different pairwise similarity measures.

Mention normalization. The first step for being able to align a mention with a particular node in the
knowledge base and ultimately its graph embedding, is to convert the mention into a normalized form
that can be easily matched. Consider mentions like the wall, one employee, beautiful lady or the famous
scientist Einstein; none of these can be directly matched to a knowledge graph node (in this case WordNet
synset 3). We propose to normalize them into a single word, respectively to wall, employee, lady and
Einstein. We design simple rules to normalize mentions. For this, as a first step, we remove articles
and commonly used quantifiers like the, a, an, one, all etc. from the mention. If we find an entry in the
knowledge graph with this modified word then we get the corresponding embedding, otherwise, we go a
step further and extract the head of the mention and try to obtain embeddings for it. Specifically, we use
the parsed tree of the mention and Collins’ head finder algorithm (Collins, 2003) to get the head.

Absence of Knowledge. Even after mention normalization, it might still be possible that a mention
cannot be aligned with a node in the knowledge graph, simply because some entities are not present
therein. This leads to the unavailability of the corresponding node embeddings. We use zero vector of the
same dimensions to resolve these cases where node embeddings are absent.

Sense disambiguation The knowledge graph may contain multiple concepts or senses for a given
entity. This is the case in all the knowledge graphs. The reason is that the same word has many senses
or refer to different real world entities. For example, the word bank can refer to a financial institution
or the land alongside the river, the entity Michael Jordan can refer to the scientist or the basketball
player. Due to this ambiguity, there are multiple node embeddings for the same mention as they capture
entirely different concepts 4. However, recognizing the correct sense is crucial to get accurate embedding.
We explore two simple heuristics to tackle the issue of multiple senses of an entity − 1. Lesk (Lesk,
1986) algorithm to get the correct sense of the mention depending on the context, as in the discourse,
the meaning of the mention depends on the context in which it is uttered. 2. Unweighted average over
embeddings of all the senses of the mention.

4 Ranking Model

Let D be the given document containing M = {m1,m2, · · · ,mnm}, nm number of mentions. Let
A = {a1, a2, · · · , ana} denote the set of all anaphors and A ⊂ M. Let a be any anaphor in the set A

3In case of WordNet embeddings from (Goikoetxea et al., 2015, Saedi et al., 2018), normalized mention is mapped to words.
4This difficulty does not arise in the cases where embeddings are learned for words instead of senses (Goikoetxea et al.,

2015, Saedi et al., 2018). But, the problem is prevalent for node embeddings learned for actual nodes of the graph.



and j be its position in the setM, then Ea be the set of candidate antecedents for a which is defined
as Ea = {mi : mi ∈ M, i < j}. Let Ta and Fa be the set of true antecedents and false candidate
antecedents of a such that Ta ∪Fa = Ea, Ta ∩Fa = ∅. Let each anaphor a is represented with the feature
vector va and candidate antecedent e represented with ve where e ∈ Ea. Then the goal is to predict score
s(va, ve) between anaphor a and candidate antecedent e. The score denotes the possibility of anaphor a
having bridging relation with the candidate antecedent e, so a higher score denotes a higher chance of e
being true antecedent.

The model is trained to reduce the ranking loss calculated based on the scores obtained between
anaphor-candidate antecedents. The ranking strategy is fairly obvious − for an anaphor a high scoring
candidate antecedent from Ea is ranked higher than the low scoring one. Let this prediction ranking
strategy be r′ and true ranking is given by r∗. For a candidate antecedent, if predicted rank is not the same
as true rank then it is called discordant candidate, otherwise concordant. The difference between true and
predicted ranking strategy can be measured with Kendall’s rank correlation coefficient − τ . Formally,
concordant C, discordant D candidates and τ are calculated as −

C =
∑

(t,f)∈(Ta×Fa)

Is(va,vt)>s(va,vf ) , D = |Ta × Fa| − C and τ(r∗, r′) =
C −D
C +D

where I is an indicator function which takes value 1 if s(va, vt) > s(va, vf ) else 0 and | · | denotes
cardinality of the set. The empirical ranking loss (Joachims, 2002) captures the number of wrongly
predicted ranks which is given as −

L =
1

na

na∑
i=1

−τ(r∗i , r′i)

Inference We consider all the anaphors in the test document separately. For each anaphor, we consider
all previously occurring mentions as candidate antecedents 5 and find out the compatibility score for
each anaphor-candidate antecedent pair with the above ranking model. We apply best first strategy to
choose the most appropriate antecedent from the list of candidate antecedents. In this strategy, the highest
scoring pair is selected as anaphor-antecedent pair. Formally, let a be any anaphor and Ea denote a set
of candidate antecedents for a. Let s(a, e) be the score between a and e where e ∈ Ea. Let êa be the
predicted antecedent of a which is given by - êa = argmaxe∈Ea s(a, e)

5 Experimental Setup

Data We used ISNotes (Markert et al., 2012) and BASHI (Rösiger, 2018) datasets for experiments.
ISNotes and BASHI consist of 50 different OntoNotes documents, containing 663 and 459 anaphors,
respectively. BASHI dataset annotates comparative anaphors as bridging anaphors which are 115 in
numbers, remaining are referential anaphors. Following the setup from (Hou, 2020), we only consider
344 referential bridging anaphors in this work as well from the BASHI dataset. In the experiments, we
implemented nested cross-validation to select the best hyperparameter combination. The setup is − first
we make 10 sets of train and test documents containing 45 and 5 documents respectively with 10-fold
division. Then at each fold, 45 training documents are further divided into 5 sets of 36-9 actual training
and development documents. Each hyperparameter combination is trained on these 5-sets and evaluated.
The highest averaged accuracy over the 5-sets of development documents gives the best hyperparameter
combination. Once the best hyperparameter setting is obtained the SVM model is re-trained over 45
documents (36+9). For each fold number of accurately linked anaphors is calculated. The accurately
predicted number of anaphors over each fold is added to get the total number of accurately linked anaphors
from the complete dataset. Thus, the system is evaluated by the accuracy of predicted pairs (Hou, 2020).

For the training data, we have positive samples where we know true anaphor-antecedent pairs but
no negative samples. We generate these pairs by considering all the noun phrases (NPs) which occur

5In ISNotes dataset 71% of anaphors have antecedent either in the previous two sentences or the first sentence of the document.
So, mentions only from the previous two sentences and the first sentence are considered as candidate antecedents. We apply the
same strategy for BASHI dataset as well.



Data Our Experiments SOTA

WV GV BE EP BEP − SYS ACC

ISNotes

− 25.94 27.60 32.87 31.08 37.10 - PMIII 36.35
+ PL 26.40 28.61 34.39 31.81 43.87∗ 20.06 MMII 41.32
+ PA 24.74 30.92 33.18 33.24 39.82∗ 19.53 EB 39.52
+ RW 27.75 27.6 34.12 33.24 46.30∗ 22.06 MMEB 46.46
+ WNV 21.71 25.13 31.69 26.80 33.28 17.64 BARQA 50.08

BASHI

− 22.92 17.48 31.23 28.51 33.52 - PMIII -
+ PL 30.95 21.49 35.53 29.26 36.68∗ 16.44 MMII -
+ PA 24.07 19.2 35.24 29.48 38.94∗ 17.62 EB 29.94
+ RW 26.64 18.91 34.38 28.91 38.83∗ 15.75 MMEB -
+ WNV 20.92 18.05 26.36 21.20 27.80 12.97 BARQA 38.66

Table 1: Results of our experiments and state-of-the-art models over two datasets − ISNotes and BASHI.
In our experiments section, we present results for different text-based embeddings − word2vec (WV),
glove (GV), BERT (BE), embeddings pp (EP), BERT + embeddings pp (BEP) and the last column −
shows the absence of text-based embeddings. Also, in each row, WordNet node embeddings based
on different algorithms, except the first row, are added − path2vec with Lesk (PL), path2vec with
averaged senses (PA), random walk based (RW) and WordNet embeddings (WNV). The other section
of the table − SOTA, shows results with previously proposed systems − Pairwise Model III (PMIII),
MLN model II (MMII) (Hou et al., 2013), embeddings bridging (EB) (Hou, 2018a), the combination of
embeddings bridging and MLN model (MMEB) and the latest system, BARQA (Hou, 2020). The results
with ∗ are statistically signficant in comparison to the results based only on text embeddings with p-value
< 10−4 with McNemar’s test and Wilcoxon signed-rank test.

before the anaphor in the window of some fixed number of sentences. All the mention pairs which do not
hold bridging relations are considered as negative samples for training. Similarly at the test time, for an
anaphor, all the previous mentions in the fixed window size are considered as candidate antecedents.

Implementation We obtained pre-trained word2vec (Mikolov et al., 2013a), Glove (Pennington et al.,
2014), BERT (Devlin et al., 2018) and embeddings pp (Hou, 2018b) embeddings. We used spanBERT
(Joshi et al., 2020) embeddings in our experiments as it gave better results in (Hou, 2020). Also, we used
pre-trained WordNet embeddings provided by respective authors of (Goikoetxea et al., 2015, Saedi et al.,
2018, Kutuzov et al., 2019). In the case of path2vec (Kutuzov et al., 2019), embeddings learned with
different similarity measures such as − Leacock-Chodorow similarities (Leacock and Chodorow, 1998);
Jiang-Conrath similarities (Jiang and Conrath, 1997); Wu-Palmer similarities (Wu and Palmer, 1994);
and Shortest path similarities (Lebichot et al., 2018), are provided. We experimented with all the four
similarity measures and found out that the shortest path based similarity measure produced better results
most of the time, so we have used those embeddings in our experiments. We used python implementation
of Lesk algorithm from nltk6 library to select the best sense from multiple senses of the mention. Two
sentences previous to mention and two sentences after the mention, including the sentence in which the
mention occurs, are given to this algorithm as a context for a mention.

Both anaphor and candidate antecedent’s embeddings are obtained as mentioned above, afterwards,
element-wise product of these vectors is provided to the ranking SVM. We also did preliminary exper-
iments with the concatenation of the vectors but element-wise product gave better results. We used
SVM rank (Joachims, 2006) implementation for our experiments. In the experiments with SVM, we did
grid search over C = 0.001,0.01,0.1,1, 10,100 with the use of linear kernel. We also use random fourier
features (rff) trick proposed by (Rahimi and Recht, 2008) to approximate non-linear kernels. We found,
use of non-linear kernels slightly improved results in comparison to linear kernels so reported only those

6https://www.nltk.org/_modules/nltk/wsd.html

https://www.nltk.org/_modules/nltk/wsd.html


results. We also varied different widow sizes of sentences − 2,3,4 and all previous sentences, in addition
to NPs from the first sentence (salience), to get candidate antecedents for an anaphor. Out of these settings,
the window size of 2 and salience have yielded the best results which are reported here.

6 Results

Comparison between distributional and graph embeddings is shown in Table 1 in our experiments
section. The first row corresponding to ISNotes and BASHI dataset shows results with only text-based
embeddings. We observe that on both the datasets the best performance is obtained with the use of BERT
embeddings showing the efficacy of these embeddings when only one type of text-based embeddings is
used. It shows that the context of the mention plays important role in resolving bridging anaphora. The
second best scores are obtained with embeddings pp which are specially designed embeddings for the task.
We also observe further improvement in the results when two best performing text-based embeddings −
BERT and embeddings pp are combined (noted as BEP in the Table)7.

The following rows (2-4) of Table 1 show the results obtained with the addition of WordNet information
with different embeddings algorithms − path2vec (Kutuzov et al., 2019)(PL and PA), random walk
based embeddings (Goikoetxea et al., 2015) (RW) and WordNet embeddings (Saedi et al., 2018)(WNV).
The results from these rows in comparison with the result from the first row prove the effectiveness of the
external information and substantiates our claims 8. Interestingly, it also shows that BERT though trained
on a huge unlabelled corpus is not inherently efficient at capturing common sense knowledge required for
bridging anaphora resolution. Though, it has been competitive at capturing relational knowledge required
for other nlp tasks like question answering (Petroni et al., 2019). Moreover, external information seems
to be complementing embeddings pp embeddings which are custom tailored for bridging tasks, further
consolidating our claims. We compare results from path2vec Lesk (PL) with path2vec average (PA)
to see which strategy of disambiguation is effective. But the observations are not conclusive, as in some
cases performance with the use of averaging strategy is better than choosing the best sense with Lesk. The
reason is that Lesk is a naive algorithm which considers overlapping words in the context to get the best
sense. Further, in each row of the second last column of the table, results obtained by combining external
information with BERT embeddings and embeddings pp show that even the best performing text-based
embeddings can still benefit from the external information.

Comparison between different WordNet embeddings We first examine the effectiveness of exter-
nal knowledge without any text-based embeddings. These scores are noted in the last column of our
experiments section against each WordNet graph node embeddings. The lower scores in this column
in comparison with text-based embeddings reveal that the features learned with WordNet embeddings
are not sufficient and should be complemented with the contextual features. This observation further
substantiates our observation of higher scores with BERT embeddings showing the importance of context
(Table 1, the first row). Further, we consider results from averaged embedding over senses (PA) for
comparing path2vec with the other two embeddings as it is the closest analogous setting to correlate.
This comparison shows, there is no best algorithm amongst these WordNet embeddings as sometimes we
get better results with path2vec and sometimes with random walk based embeddings. This result is
surprising as even after losing some semantic information, RW produces competent results compared to
path2vec. This might be happening because of errors in sense disambiguation with path2vec.

Comparison with previous studies The results of different state-of-the-art systems on both the datasets
are presented in SOTA section of Table 1. These results are obtained from Hou’s latest work (Hou, 2020).
In BARQA (Hou, 2020), mentions are also detected in her model, so we considered results where gold
mentions are considered for the equal comparison. We observe that, on ISNotes dataset, our model’s
performance is better than rule-based approaches from Pairwise Model III and MLN model II (Hou
et al., 2013), embeddings bridging based deterministic approach from (Hou, 2018a) and competitive

7We combine BERT and embeddings pp embeddings by concatenating both the vectors
8Except with the addition of WordNet embeddings (WNV) as results with WNV are mostly inferior in comparison with only

text-based embeddings. Lower coverage for WNV, around 65% as opposed to 90% for the other two embeddings as only 60,000
words were present in pre-trained WNV embeddings, might be the possible reason. Also, the vector dimension is significantly
higher − 850 in comparison to 300 for the other two.



Mention Mapping Error Mention Sense Selection

Mention
Normalized
Mention

Mention Selected Sense

Los Angeles, Cali. Angeles
[...] future generations
of memory chips

electronic
equipment

Hong Kong Kong
The move by the coalition
of political parties [...]

organization

U.S.S.R U.S.S.R
[...] when the rising Orange River
threatened to swamp the course [...]

route

IBM IBM
[...] U.S. industry to head off
the Japanese, who now dominate [...]

language

politburo member
Joachim Herrman

Herrman
[...] potential investors
at race tracks [...]

magnetic
paths

U.S. district judge
Jack B. Weinstein

Weinstein
The Thoroughbred Owners
and Breeders Association [...]

a group of
organisms

Table 2: Mention Mapping Error lists examples of mentions for which no entry is found in WordNet
after normalization. The first three mentions are not found because of normalization error but the next
three entities are not present in WordNet. Mention Sense Selection notes a few mentions and their senses
selected by Lesk algorithm. For the first three mentions, Lesk disambiguates correctly but fails in the next
three. The correct senses of the last three are Japanese people, racecourse and organization, respectively.

in comparison with the combination of MLN model and embeddings bridging but lags to BARQA
model. The reason might be that MLN model combines hand-crafted rules in addition to carefully crafted
embeddings. On the other hand, BARQA system is trained on additional data obtained by forming
quasi-bridging pairs. However, with BASHI dataset we observe best results, as the model achieves
significant gains in comparison with embeddings bridging and moderate gains against BARQA.

7 Error Analysis

7.1 Mention normalization and sense disambiguation

ISNotes dataset contains 663 anaphors and combining those with candidate antecedents of each anaphor
we get more than 9500 mentions out of which 10% of mentions can not be mapped to WordNet entries.
The situation is similar in the case of BASHI dataset as around 8% of the 5933 mentions can not be
mapped to WordNet entries.

We analyze cases where normalized mention is failed to map to any sense in WordNet. There are broadly
two reasons for not getting WordNet entry for the mention− 1. Normalization error 2. Inherent limitations
of WordNet. We note down some of the examples from each category in the Table 2. The first three
mentions are wrongly normalized as Los Angeles to Angeles and Hong Kong to Kong, otherwise, both
the cities are present in WordNet. The cases like U.S.S.R shows limitations of our simple normalization
approach, the normalization should map U.S.S.R to Soviet Russia which is present in WordNet. The other
three examples show the inherent limitations of WordNet as those entities are absent from WordNet.

WordNet contains multiple senses for a given word because of which we get on an average 7 senses
for the given mention. We used a simple Lesk algorithm for disambiguation which takes into account
the context of the normalized mention to determine the correct sense. We present some examples of
disambiguation with Lesk in Table 2. It correctly disambiguates in the first three examples but fails for the
following three. This is because of the count of overlapping words between sense’s context and definition
in WordNet. For example, the last example contains words like blood, breeder in the context because of



which it selects sense as a group of organisms and not an organization.

7.2 Anaphor-antecedent predictions
We analyze a few anaphor-antecedent pairs which were identified incorrectly with BERT-based mention
representation but with the addition of WordNet information, we were able to correct it. The underlined
and bold lettered phrases denote antecedent and anaphor, respectively.

(1). Staar Surgical Co.’s board said that it has removed Thomas R. Waggoner [...]. [..] that John R.
Ford resigned as a director, and that Mr. Wolf was named a member of the board.

(2). So far this year, rising demand for OPEC oil and production restraint by some members have kept
prices firm despite rampant cheating by others.

(3). One building was upgraded to red status while people were taking things out, and a resident who
was not allowed to go back inside called up the stairs to his girlfriend, telling her to keep [...].

WordNet contains relations where company and director are related where director works at company.
The OPEC oil is stored as a corporation which in turn is related to prices and stairs are part of building.
This information is present in WordNet which has been used for resolving these pairs as opposed to
relying only on the textual information in case of mention representation only with BERT.

Conversely, we also observed a few pairs where the addition of extra information has been detrimental.
The italic faced phrase is the selected antecedent with WordNet based system but without WordNet correct
antecedent (shown with underline) was selected for boldfaced anaphor.

(4).Within the same nine months, News Corp. [...]. Meanwhile, American Health Partners, publisher
of American Health magazine, is deep in debt, and Owen Lipstein, founder[...].

(5)[...] the magnificent dunes where the Namib Desert meets the Atlantic Ocean [...]Since
this treasure chest [...] up a diamond from the sand.

(6).The space shuttle Atlantis landed [...] that dispatched the Jupiter - bound Galileo space probe. The
five astronauts returned [...].

Example 4, News Corporation is closer to founder than Partners as head word is Partners for the long
phrase. Thus, the system assigns higher scores to wrong candidate antecedent. Similarly, in example 5, the
dunes are closer to sand than treasure chest. In the example 6, WordNet contains Atalantis as legendary
island and not as a space shuttle thus astronauts is closer to space probe than island, thus receiving a
higher score than the correct antecedent. These mistakes can be attributed to the process of normalizing
mentions as well as limitations of WordNet. Interestingly, these examples show the inadequacy of BERT
in capturing the partOf relation but efficacy of capturing some form of relatedness of the terms.

8 Conclusion

We presented a simple approach of incorporating external semantic knowledge for bridging anaphora
resolution. We combined contextual embeddings learned only on the text with the knowledge graph node
embeddings. We establish the potency of knowledge graph embeddings with the experiments with the use
of different WordNet graph embeddings on the ISNotes and BASHI datasets. Though we apply a simplistic
approach to solve mention normalization, absent knowledge resolution and sense disambiguation to obtain
node embeddings, we achieve competitive results on both the datasets. Moreover, this study opens up
further investigation into the design of sophisticated methods to incorporate knowledge graph embeddings
for bridging anaphora resolution such as improved mention normalization and sense disambiguation,
incorporating knowledge from multiple knowledge sources.
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