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Abstract
France was one of the first countries to be reached by the COVID-19 pandemic. Here, weanalyse 196 SARS-Cov-2 genomes collected between Jan 24 andMar 24 2020, and performa phylodynamics analysis. In particular, we analyse the doubling time, reproduction number(Rt) and infection duration associated with the epidemic wave that was detected in inci-dence data starting from Feb 27. Different models suggest a slowing down of the epidemicin Mar, which would be consistent with the implementation of the national lock-down onMar 17. The inferred distributions for the effective infection duration and Rt are in line withthose estimated from contact tracing data. Finally, based on the available sequence data, weestimate that the French epidemic wave originated between mid-Jan and early Feb. Over-all, this analysis shows the potential to use sequence genomic data to inform public healthdecisions in an epidemic crisis context and calls for further analyses with denser sampling.
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Introduction
On Jan 8 2020, the Chinese Center for Disease Control announced that an outbreak of atyp-ical pneumonia was caused by a novel coronavirus (Liu et al., 2020). The genetic sequence ofwhat is now known as SARS-Cov-2 was released on Jan 10 (Wu et al., 2020; Zhou et al., 2020).This was less than two weeks after the initial report of the outbreak by the Wuhan Health Com-mission, which took place on Dec 31 2019. Never has a novel pathogen been sequenced sorapidly.The number of sequences in the databases grew rapidly thanks to an altruistic and inter-national effort of virology departments all around the world gathered via the Global Initiativeon Sharing All Influenza Data (GISAID, https://www.gisaid.org/). Early results allowed bet-ter understanding the origin of SARS-Cov-2 and identification of a bat coronavirus (SARSr-CoVRaTG13) as its closest relative with more than 96% homology, as well as some potentially adap-tive mutations (Andersen et al., 2020; Coronaviridae Study Group of the ICTV, 2020; Xiao et al.,2020).The available sequences were also analysed using the field of phylodynamics (Frost et al.,2015; Grenfell et al., 2004; EM Volz et al., 2013), which aims at inferring epidemiological pro-cesses from sequence data with known sampling dates. Most of these analyses were sharedthrough the website virological.org. In particular, using 176 genomes from which he ex-tracted 85 representative sequences (to avoid a potential cluster effect), (Rambaut, 2020) es-timated the molecular clock to be approximately 8 · 10−4 substitutions per position per year,with a 95% Highest Posterior Density (HPD) between 1.4 · 10−4 and 1.3 · 10−3 subst./pos./year,which yielded a date of origin of the outbreak mid-Nov 2019, with a 95% HPD spanning fromAug 27 to Dec 19. Further analysis with more recent sequences found a median estimate of

1.1 · 10−3 subst./pos./year with a similar HPD (Duchene et al., 2020). In their work, (Scire et al.,2020) explored a variety of priors for the analysis and found similar orders of magnitude for themolecular clock estimate. They also applied a birth-death model to estimate several parametersincluding the temporal reproduction number (Rt ) but a difficulty is that not all sequences origi-nated from China and the sampling rate could also vary. Finally, (E Volz et al., 2020) performedone of the early analyses of the outbreak using coalescent models, allowing them to estimatethe date of the origin of the epidemic in early Dec 2019 (with a 95% CI: between 6 Nov and 13Dec 2019) and the doubling time of the epidemic to be 7.1 days (with a 95% CI: 3.0-20.5 days).These reports mention several caveats, which are due to the limited number of sequences, thelimited amount of phylogenetic signal, the potentially unknown variations in sampling rates andthe sampling across multiple countries.The first COVID-19 cases were detected in France from Jan 24, 2020, mostly from travellers,but these remained isolated until Feb 27, when the national incidence curve of new COVID-19
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cases started to increase steadily. Limited measures were announced on Feb 28, but schoolswere closed from Mar 16, and a nationwide lock-down was implemented from Mar 17. On Apr19, the prime minister gave the first official estimate of the basic reproduction number (R0),which was 3.5, and of the temporal reproduction number after the lock-down, which was 0.5(Salje et al., 2020).We study the COVID-19 epidemic in France by analysing 196 genomes sequenced frompatients diagnosed in France that were available on Apr 4, 2020 thanks to the GISAID and toFrench laboratories (see the online Supplementary Table for the full list). (Gambaro et al., 2020)provided a first picture of the general genomic structure of French epidemic using 97 genomesfrom samples collected in the north of France between Jan 24 andMar 24, 2020. They identifiedseveral independent introductions of the virus in France but also found that the majority of thesequences belong to a major clade. This clade belongs to a larger clade labelled as G by GISAID,A2 by the nextstrain (http://nextstrain.org/) platform and B.1 following the dynamical tax-onomy introduced by (Rambaut, Holmes, et al., 2020). We refer to it as the clade related to theepidemic wave.Our early phylodynamics analyses focus on the epidemic doubling time, the generation time,and the temporal reproduction number R(t). Current data does not allow us to perform a phy-logeographic study and future work will investigate the structure of the epidemic within France,as well as potential dispersion between regions.
Materials and Methods

Data and quality check.
On Apr 4, 196 sequences were available from samples originating from France via the GlobalInitiative on Sharing All Influenza Data (GISAID, https://www.gisaid.org/) thanks to the workof the two Centre National de Référence and local virology laboratories. These sequences onlyprovide a partial view of the epidemic as they originate from 8 the 18 French regions (Figure S1).Sequences were aligned and cleaned using the Augur pipeline developed by nextstrain (Hadfieldet al., 2018). One sequence was removed due to low quality. The list of the sequences used isshown in the Online Supplementary Table.We screened the dataset with RDP4 (Martin et al., 2015) using default parameter values anddid not detect any recombination events.

Phylogenetic inference.
We first performed a maximum likelihood inference of the phylogeny using SMS (Lefort etal., 2017) and PhyML (Guindon and Gascuel, 2003). The mutation model inferred by SMS wasGTR and was used as in input in PhyML. Other PhyML parameters were default. The result-ing phylogeny was time-scaled and rooted using the software LSD (To et al., 2015) using aconstrained mode with the sampling dates and a molecular clock rate fixed to 8.8 · 10−4 sub-stitutions/position/year (the tree is provided in a Newick format in the Online SupplementaryMaterials).We then used Beast 1.8.3 (Drummond, Suchard, et al., 2012) to perform inference using aBayesian approach. More specifically, we assumed an exponential coalescent for the populationmodel (Drummond, Nicholls, et al., 2002). We used the default settings for the model, whichcorrespond to a gamma distribution for the growth rate prior Γ(0.001, 1000) and an inverse priorfor the population size 1/x (see Supplementary Methods S1).We also used Beast 2.3 (Bouckaert et al., 2014) to estimate key parameters using the birth-death skyline (BDSKY) model (Kühnert et al., 2014; Stadler, Kühnert, et al., 2013). One of theseparameters is the temporal reproduction number (Rt ) and we here assume three periods in theepidemic (which means we estimate 3 values R1, R2 and R3). Another parameter is the the re-covery rate, i.e. the rate at which the infectiousness ends. The final key parameter is the samplingrate, the inverse of which corresponds to the average number of days until an infected personis sampled. The ratio between the sampling rate and the sum of the sampling and the recoveryrates indicates the fraction of infections that are actually sampled. By sampled, we mean that
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the patient is identified and the virus population causing the infection is sequenced. Note thatwe assume sampled hosts are not infectious anymore. We considered multiple priors for therate of end of the infectious period by setting a lognormal prior LogNorm(90, 0.5) and a uniformprior Unif(5, 350). We assumed a beta prior β(1.0, 1.0) for the sampling rate (see SupplementaryMethods S1). As in previous models (Stadler, Kühnert, et al., 2013), we set the sampling rate to0 before the first infected host is sampled (here on Feb 21, 2020).For both analyses in Beast, we assumed a GTR mutation model, following the results of SMS.We also assumed a uniform prior U(0, 1) for the nucleotide frequencies and a lognormal priorfor parameter κ, LogNorm(1, 1.25).Regarding the molecular clock, earlier studies have reported a limited amount of phyloge-netic signal in the first sequences from the COVID-19 pandemic. Given that we here focus on asubset of these sequences, we chose to fix the value of the strict molecular clock to 8.8 · 10−4

substitutions/position/year, following the analysis by (Rambaut, 2020). In Appendix, we studythe influence of this value on the results by setting it to a lower (4.4 · 10−4 subst./pos./year) ora higher (13.2 · 10−4 subst./pos./year) value. Finally, we also estimate this parameter assuming astrict molecular clock. The most recent estimates suggest that the intermediate and high valueare the most realistic ones (Duchene et al., 2020).
Data subsets.

We analysed subsets of the whole data set. Our largest subset excluded 10 sequences thatdid not belong to the French epidemic wave clade and therefore contained 186 sequences. Fig-ure S1 shows the sampling date and French region of origin for each sequence. In general, theproportion of infections from the French epidemic that are sampled is expected to be in theorder of 0.01%.Some sampling dates are over-represented in the dataset, which could bias the estimation ofdivergence times (Seo et al., 2002; Stadler, Kouyos, et al., 2012). To correct for this, we sampled6 sequences for each of the days where more than 6 sequences were available. This was done10 times to generate 10 datasets with 122 sequences (France122a to France122h).To investigate temporal effects using the coalescent model, we created three other subsetsof the France122a dataset: "France61-1" contains the 61 sequences sampled first (i.e. from Feb21 to Mar 12), "France61-2" contains the 61 sequences sampled more recently (i.e. from Mar12 to Mar 24), and "France81" contains the 81 sequences sampled first (i.e. from Feb 21 to Mar17).With the exponential coalescent model (denoted DT for "doubling time"), we analysed allsubsets of data (France61-1, France61-2, France81, and all the 10 France122 datasets), whereasfor the BDSKY model we show the main dataset (France186) and analyse the 10 subsets with122 leaves in Appendix.
Results

Phylogeny and regional structure.
Figure 1 shows the regional structure of the French epidemic. Sequences corresponding toblack leaves were ignored in the subsequent analyses because they do not belong to the mainclade. Most of these originate from travelers isolated upon arrival in France, which explains theirunder-representation in the ongoing epidemic wave.Focusing on the main clade, we see that all the leaves originate from a common branchingevent, which is approximately half-point of the phylogeny. The polytomy in this point likely indi-cates a lack of phylogenetic signal. Addressing this issue will require more sequences from theearly stages of the epidemic wave since currently the earliest sequence in this major clade isfrom Feb 21, 2020.Colors indicate the regional structure of the French epidemic. As expected, we see someregional clusters.We also see that sequences from the same region belong to different subcladesof the major clade, which is consistent with multiple introductions or dispersal between regions.Several French regions are not represented in the analysis. This is largely reflects the nature of
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Figure 1 – Phylogenetic structure of 196 SARS-Cov-2 genomes from France. Colorshows the French region of sampling. Sequences in black were removed from the anal-ysis because they fall outside the main clade corresponding to the epidemic wave. Thephylogeny in a Newick format is available in the online Supplementary Materials.
the French COVID-19 epidemic, which has been stronger in the East of France and in the Parisarea. This is also why this work focuses more on the speed of spread of the epidemic than onits general structure, which will be the focus of a future study (see also the work by (Gambaroet al., 2020)).In the following, we focus on the main clade associated with the epidemic wave.
Dating the epidemic wave.

We first report the estimation of the time to the most recent common ancestor (TMRCA) ofthe 186 sequences that belong to the epidemic wave. Although this is the ancestor of the vastmajority of the French sequences grouped in the B.1 clade (also referred to as G or A2 clade),the associated infection may have taken place outside France because the epidemic wave maybe due to multiple introduction events (although from infections caused by similar viruses giventhe clustering).Estimates of SARS-Cov-2molecular clock should be treatedwith care given the limited amountof phylogenetic signal (Duchene et al., 2020; Rambaut, 2020). This is particularly true in our casesince we are analysing a small subset of the data. In the Appendix, we present the analysis of thetemporal signal in the data using the TempEst software (Rambaut, Lam, et al., 2016) and showthat it strongly relies on early estimates that do not belong to the epidemic wave clade (FigureS2).As shown in Figure 2, the molecular clock value directly affected the time to the most recentcommon ancestor for the coalescent model. This was also true for the BDSKY model, wherethe prior shape for the recovery rate, lognormal or uniform, had little impact compared to theassumption regarding the molecular clock (Figure S3). For both models, sampling of the 122sequences amongst the 186 has a much smaller impact (Figure S5).Table 1 shows the dates for models with different evolution rates and different populationmodels (exponential coalescent or BDSKY). Note that smaller datasets may not include the mostrecent samples.For most of our datasets andmodels, the origin for the clade corresponding to the sequencesfrom the French epidemic wave is dated between mid-Jan and early Feb. This large interval is

Gonché Danesh et al. 5

Peer Community Journal, Vol. 1 (2021), article e45 https://doi.org/10.24072/pcjournal.40

https://doi.org/10.24072/pcjournal.40


0.00

0.05

0.10

30 40 50 60 70 80 90 100
time to the MRCA (in days)

de
ns

ity

model

Fix13.2−DT

Fix4.4−DT

Fix8.8−DT

Figure 2 – Time to the origin of the French epidemic wave as a function of the molec-ular clock. This estimate was obtained assuming an exponential growth coalescent pop-ulation model and a fixed molecular clock (see Figure S4 for the BDSKY model). Colorsindicate substitution rates and numbers (4.4, 8.8, 13.4) refer values to be multiplied by
10−4 subsitutions/site/year. The slower the clock rate, the further away in time the mostrecent common ancestor (MRCA). Vertical lines show the distribution medians. The mostrecent sample dates from Mar 24, 2020.

due to the scarcity of "old" sequences (the first one collected in this clade dates from Feb 21)and on the fact that this clade averages the epidemic in several regions of France, which couldhave been seeded by independent introductions from outside France. The date provided by theslowest molecular clock (Fix4.4-DT) seems at odds with the data as we will see below.To evaluate the effect of a potential sampling bias, we also estimate the time to theMRCA for10 different sets of 122 sequences (Figure S5). We found similar median values for 9 of these 10random datasets. Notice that the value of their parent dataset (France186), was slightly larger.For the BDSKY model, the effect was even less pronounced (Figure S4).Overall, these dates (except for the slowest molecular clock) are consistent with those ob-tained by (Rambaut, 2020) regarding the beginning of the epidemic in China, which is datedNovember 17, 2019 with a confidence interval between Aug 27 and Dec 19, 2020. This inter-val is highly dependent on the number of available sequences as there are documented (butunsequenced) cases of COVID-19 in China early Dec 2019 (Li et al., 2020).
Doubling time.

Using a coalescent model with exponential growth and serial sampling (Drummond, Nicholls,et al., 2002), we can estimate the doubling time, which corresponds to the number of days forthe epidemic wave to double in size. This parameter is key to calculate the basic reproductionnumber R0 (Wallinga and Lipsitch, 2007).
Table 1 – Date of the most recent common ancestor of the clade corresponding to theFrench epidemic wave. Unless specified otherwise, the year is 2020. The "model" indi-cates the value of the molecular clock and the population dynamics model used (DT orBDSKY).

model size most recent sample median value 95% HPDFix8.8-DT 122a 24 Mar 31 Jan [19 Jan - 9 Feb]Fix8.8-BDSKY 122a 24 Mar 31 Jan [20 Jan - 11 Feb ]Fix13.2-DT 122a 24 Mar 8 Feb [30 Jan - 15 Feb ]Fix4.4-DT 122a 24 Mar 1 Jan [11 Dec 2019 - 17 Jan ]Fix8.8-DT 81 17 Mar 2 Feb [17 Jan - 11 Feb ]Fix8.8-DT 61-1 12 Mar 03 Feb [21 Jan - 12 Feb ]Fix8.8-DT 61-2 24 Mar 08 Feb [25 Jan - 17 Feb ]
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Figure 3 – Epidemic doubling time.We assume an exponential growth coalescent modelwith a fixed molecular clock. The four datasets differ in the sequences analysed (see theMethods). Vertical lines show the distribution medians.

In Figure 3, we show this doubling time for datasets that cover the whole (France122a), thefirst three quarters (France81), and the first half (France61-1) of the time period. Since the firstdataset includes more recent sequences than the second, which itself includes more recent se-quences than the third, our hypothesis is that we can detect variations in doubling time overthe course of the epidemic. For completeness, we also show the results for the dataset coveringonly the second half of time period (France61-2).Adding more recent sequence data indeed leads to an increase in epidemic doubling time.Initially, with the first 61 sequences (which run from Feb 21 to Mar 12), the epidemic spreadsrapidly, with a median doubling time of 2.5 days. With the addition of sequences sampled be-tween Mar 12 and 17, the doubling time increases to 3.3 days. Finally, by adding sequencessampled between Mar 17 and 24, the doubling time rises to 3.7 days.Importantly, the lower the number of sequences, themore the inferences become sensitive tothe sampling scheme. This can be visualised with the fact that the doubling time obtained withthe 61 most recent sequences (France61-2), which is, as expected, higher than that obtainedusing the 61 oldest sequences (France61-1), is lower than that obtained using all sequences(France122). Our interpretation is that phylogenetic signal becomes limited when only 61 se-quences are considered. This can also be seenwhen estimating the date of origin of the epidemic:with the 61 most recent sequences, the date is comparable to that inferred using 122 sequencesbut assuming a faster evolutionary rate (Table 1). A more recent origin of the epidemic estimatedwith this subset of the data would directly lead to a lower epidemic doubling time.To further explore the effect of sampling, we estimate the doubling time on 10 different setsof 122 sequences and find a limited effect on the median value (Figure S7). Notice that the valueof the parent dataset (France186), is slightly larger.We also study the effect of the molecular clock, i.e. the substitution rate, on the doublingtime (Figure S6). As already mentioned above, the higher the molecular clock value, the lowerthe doubling time. However, for our realistic molecular clocks, the effect is limited: the medianis 3.4 days assuming a high value for the molecular clock and 3.7 days for our default (medium)value. The low value of the molecular clock led to a high median doubling time of 5.6 days. Thisis at odds with the incidence data in France, which indicates an exponential growth rate of 0.23days −1 which corresponds to a doubling time of 3 days, suggesting that our default molecularclock is more realistic.In comparison, phylodynamic inferences made from data from China with 86 genomes (Ram-baut, 2020) found a median doubling time of about 7 days with a confidence interval between4.7 and 16.3 days). One reason for the slower growth rate of the epidemic compared to ours isthat we have focused on one rapidly expanding clade of the epidemic and neglected the smallerclades. Another possibility could be related to the timing of the sampling (early or late in theinfection).
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Figure 4 –Distribution of effective infection duration. The prior distribution is shown ingray, and the posterior distribution in black. Thewhite line shows the distributionmedianand the dashed line the 95% highest posterior density (HPD), which is between 3 and 7days in agreement with results obtained using contact tracing data.
Effective infection duration.

The birth-death skyline (BDSKY) model (Stadler, Kühnert, et al., 2013) allows us to estimatethe effective duration of infection, which is defined in the model as the rate of becoming non-infectious (either through recovery, death, or sampling), and the reproduction number of theepidemic (i.e. the number of secondary infections caused by an infected host). The exponen-tial growth coalescent model described above cannot distinguish between these two quantities.However, the BDSKY model requires more parameter values to be estimated.The BDSKY model estimates separately the recovery rate and the sampling rate, and it isimportant to account for the latter because patients whose infections are sequenced can beassumed not to transmit the infection after this detection. The sampling rate after Feb 21 (it isset to 0 before that date) is estimated at 0.093 days −1 with a (wide) 95% confidence intervalbetween 0.006 and 0.627 days −1. If we analyse this in days, the median value of the distributionyields 10.8 days and is consistent with the fact that in the French epidemic most of the screeningfor SARS-Cov-2 is done on severe cases upon hospital admission.The distribution of infectious durations is obtained by taking the inverse of the sum of thesampling rate and the recovery rate. The median of this distribution is 5.12 days and 95% of itsvalues are between 2.89 and 7.05 days (Figure 4). Note that this is an effective infection durationin that public health interventions can reduce it, e.g. by preventing transmission in the later stagesof the infection, such that people can be infected but not infectious.In Supplementary Figure S8, we show that the estimate for the effective infection durationis sensitive to the shape of the prior assumed for the recovery rate. Indeed, if we use a lessinformative (uniform) prior then the median sampling rate estimate is larger and the medianinfectious period estimated is shorter.
Reproduction number.

With the BDSKY model, we can estimate the temporal reproductive number, noted R(t),since the onset of the epidemic wave. Here, given the limited temporal signal, we only dividedthe time into 3 intervals to estimate three reproduction numbers:R1 before Feb 19,R2 betweenFeb 19 and Mar 7, and R3 between Mar 7 and Mar 24.These results are very consistent with those obtained for the doubling time, even if the timeperiods are different. For the period before Feb 19, the estimate is the least accurate with valuesofR1 with a median of 1.05 but at 95% Highest Posterior Density (HPD) between 0.13 and 3.22.The lack of information can be seen in Figure 5 as the posterior distribution (gray area) is verysimilar to the prior (dashed curve). This is consistent with the fact that the oldest sequence datesfrom Feb 21, while the tree root is estimated at the beginning of Feb. Over the second timeperiod (in orange), the distribution shape is similar to that of the prior but the median is verydifferent and rapid growth is detected with a median value of R2 of 2.56 (95% HPD between
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Figure 5 – Temporal reproduction numbers inferred using the BDSKY model. These re-sults are obtained for the France186 dataset. The black dashed curve show the priordistribution, and the posterior distributions are in color. Vertical plain lines show distri-bution medians, while vertical dashed lines indicate the 95% highest posterior density(HPD).
1.66 and 4.74). Finally, the most recent period after Mar 7 is the most accurate and detects aslowing down of the epidemic with a R3 of 1.38 (95% HPD between 1.13 and 2.03)In Appendix, we show that these estimates forRt are robust to the prior used for the recoveryrate (Figure S9). They are also robust to the sampling of 122 of the 186 sequences (Figure S10).

Discussion
Analysing SARS-Cov-2 genome sequences with a known date of sampling allows one to inferphylogenies of infections and to estimate the value of epidemiological parameters of interest(Frost et al., 2015; EMVolz et al., 2013).We performed this analysis based on the 196 sequencessampled in France and available on Apr 4, 2020. We focus in particular on the largest claderegrouping 186 of the most recent sequences and likely corresponding to the epidemic wavethat peaked in France early Apr 2020.Before summarizing the results, we prefer to point out several limitations of our analysis.First, the French clade we analysed is in fact an international clade: although most French se-quences appear to be grouping into two main subclades within this clade, it is possible that thevariations in epidemic growth that we detect are more due to European than French controlpolicies. Second, some French regions (e.g. Auvergne-Rhône-Alpes) are more represented thanothers (e.g. Occitanie is absent), which could bias the analysis at the national level. However, thecoverage is largely proportional to the state of the epidemics in France inMarch, where the Parisarea and the East of France were more heavily impacted. Therefore, we expect the addition ofsequences from less impacted regions to have a limited effect on our doubling time and repro-duction number estimates. Finally, the molecular clock had to be set in this analysis because wedo not have enough samples from the month of Feb in France.Despite these limitations, our results obtained early Apr confirm a slowing down of the epi-demic in France, where the epidemic peak in terms of ICU admissions was reached on Apr 1.Indeed, by adding sequences sampled between Mar 12 and 24 to the phylogeny, the doublingtime of the epidemic estimated by an exponential growth coalescent model increased by 48%.This slowdown is more clearly detected using a birth death model via the temporal reproductionnumber R(t): the median value decreased by 41% after Mar 12. This is consistent with the im-plementation of strict control measures in France as of Mar 17. These variations and even theseorders of magnitude are consistent with our estimates based on the time series of incidenceof new hospitalizations and deaths (Sofonea et al., 2021). However, these results were obtainedwith relatively few sequences and a denser sampling is needed to bemore confident in our abilityto detect an epidemic slowdown.
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Finally, the BDSKYmodel also provides uswith an estimate of the effective infection duration.This can be seen as the generation time of the epidemic, i.e. the number of days between twoinfections, and is an essential component in the calculation of R0 (Wallinga and Lipsitch, 2007).The result we obtain, with a 95% Highest Posterior Distribution between 3 and 7 days and amedian of 5.2, is highly relevant biologically and comparable to results obtained using contacttracing data. For instance, (Ferretti et al., 2020) estimated a serial interval, which correspondsto the time between the onset of the symptoms in a ‘donor’ host and that in a ‘recipient’ host,with a median of 5 days and a standard deviation of 1.9 days. To date, there is no estimate ofthe serial interval in France.By increasing the number of SARS-CoV-2 genomic sequences from the French epidemic (andthe number of people working on the subject), in particular sequences collected at the beginningof the epidemic, it would be possible to better estimate the date at which the epidemic wavetook off in France, improve the estimate for the infection generation time and the reproductionnumber, better understand the spread between the different French regions, and estimate thenumber of virus introductions into the country.Finally, it is important to set these results into their context. As acknowledged in the introduc-tion, the French state only acknowledged the magnitude of the COVID-19 epidemic on the lastdays of Feb 2020 and these genomes were mostly collected between Feb 21 and Mar 24. Mostof this analysis was published on Apr 6. At this time, the epidemic peak was barely noticeable inthe incidence data. Furthermore, the serial interval, which is used to estimate the generation timeof the infection and classically measured from contact tracing data, is still unknown in France.These results illustrate the contribution phylodynamics can make to public health during a crisis.
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Appendix
S1. BEAST priors

MCMC chains were run for 5 · 108 iterations. The first 10% runs were discarded as a burn inand convergence was assessed using Effective Sample Size (ESS). All parameters had ESS greaterthan 200.
Original XML files cannot be shared due to the GISAID agreement.

Table S1 – Prior summary for the exponential coalescent model
Parameter ValueMolecular clock fixedEvolution model GTRkappa LogNormal(1,1.25)frequencies Uniform(0,1])popsize 1/xgrowth rate Gamma(0.001,1000)

Table S2 – Prior summary for the BDSKY model
Parameter ValueMolecular clock fixedEvolution model GTRkappa LogNormal(1,1.25)frequencies Uniform[0,1]Rate of end of infection Uniform(1.2,∞) or LogNormal(0,1.2)Sampling rate Beta(1,1)Reproduction number LogNormal(0,1.2) with maximum at 10
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S2. Supplementary figures
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Figure S1 – Sampling date and region. List of samples collected, analysed and shared viaGISAID by the two French National Reference Centers (CNR) as of Apr 4, 2020.
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20 Gonché Danesh et al.

Peer Community Journal, Vol. 1 (2021), article e45 https://doi.org/10.24072/pcjournal.40

https://doi.org/10.24072/pcjournal.40


F
rance122

F
rance122b

F
rance122g

F
rance122h

F
rance122i

F
rance122j

F
rance186

0 1 2 3 4 5 6

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

infection period duration (in days)

de
ns

ity

fill

R1

R2

R3

Figure S10 – Reproduction numbers for the France186 dataset and subsets with 122sequences. Here we assume BDSKY model. The thick line shows the prior distribution.ForR1, posterior distributions are close to the prior (black dashed line) indicated limitedinference power.
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Figure S11 – Effective infection duration for the France186 dataset and subsets with122 sequences assuming a BDSKY model. The median value obtained with the wholedataset (France186, black full line) is close to the average of the median values obtainedwith the subsets (red full lines).
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